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Abstract

A seller prices a good with network externalities. Purchasing deci-

sions being complementary, a pricing policy can yield equilibrium mul-

tiplicity. We study how personalized pricing can be used to mitigate

this strategic uncertainty, guaranteeing a high revenue. An optimal

policy offers personalized discounts to successively insulate against low-

demand equilibria, and posts a high price to extract revenue from the

induced higher demand. The result is price dispersion and a higher

quantity of trade than would occur if the seller could choose her pre-

ferred equilibrium. We examine how the optimal policy changes with

the strength of externalities and heterogeneity across buyer groups.
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1. Introduction

We study a seller who sells a good to a population of buyers, with two key

features. First, there is incomplete information: a buyer’s value from purchas-

ing the good depends on some privately known characteristic, namely his type.

Second, there are network externalities: a buyer’s value from purchasing the

good increases with the number of other buyers who also purchase it.

There are many applications for this canonical setting. Incomplete infor-

mation is the quintessential feature of the monopoly problem, and network

externalities are prevalent across industries. For a classic example, take a

seller of a communications system (Rohlfs, 1974), say a messaging app. The

utility a buyer derives from the app depends on his privately known propen-

sity to communicate via messages, and also increases with the number of users

with whom he can exchange messages. Similar considerations apply to sellers

of file-sharing services, online social media platforms, and multiplayer game

websites, among others. In finance, these features are central to a firm raising

capital. An investor’s incentive to invest with the firm depends on his other

planned investments, which are his private information, and is higher if more

other investors invest, as the firm is then more likely to be successful.

The seller’s problem is to offer each buyer a price to maximize revenue.

Prices can be personalized—e.g., via discounts and promotional deals directed

to different buyers—but they cannot be conditioned on buyers’ types, which

are hidden. Buyers decide whether to purchase given the seller’s price offers

and their types, and given their expectations of other buyers’ purchasing de-

cisions. Due to the externalities in consumption, a pricing policy can yield

multiple outcomes, with a high total quantity of trade if buyers anticipate

that many others will purchase, or a low total quantity if buyers are less opti-

mistic about others’ purchases. Low-quantity outcomes are naturally bad for

revenue.

Our main result characterizes the optimal pricing policy that guarantees the

seller a high revenue, i.e. that maximizes revenue in her worst-case outcome.

This policy takes the form of a posted price with dispersed discounts. The
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seller offers personalized discounts to (some) buyers to successively insulate

against low-demand outcomes, and posts a high price to extract revenue from

the induced higher demand. Targeted discounts on a list price are common in

applications. Our analysis provides a rationale for these practices and sheds

light on their comparative statics.

To illustrate the seller’s problem and our main results, we next describe

an example that is a special case of our model. Suppose there is a unit mass

of ex-ante identical buyers with types drawn uniformly from Θ = [0, 1]. The

seller offers a price pi ∈ R+ to each buyer i, and then buyers simultaneously

decide whether to purchase. If a buyer of type θi ∈ Θ purchases at a price pi

and the total quantity demanded (i.e., the total mass of buyers who purchase)

is q ∈ [0, 1], then the buyer’s payoff is θiq − pi. The buyer purchases if, given

the total quantity he anticipates, this payoff is weakly greater than his payoff

from not purchasing, which is 0. Summarizing the seller’s price offers by their

distribution Π ∈ ∆(R+), a total quantity q is an equilibrium quantity given Π

if it is the quantity demanded when buyers anticipate it.1

Suppose first that the seller sets only one price. That is, Π is degenerate,

taking the form of a posted price. We show in Proposition 1 that this policy

is optimal under best-case selection, namely if the seller were able to pick the

equilibrium that buyers play whenever multiple equilibria arise. In this case,

the seller would post a price pB ≈ 0.22, yielding a best-case equilibrium with

total quantity qB ≈ 0.66 and revenue RB ≈ 0.148. However, given this or any

other strictly positive posted price, there is also an equilibrium with zero total

quantity—no buyer is willing to purchase at such a price if they anticipate

that no other buyer will purchase. This policy thus performs poorly under

worst-case selection: the seller’s guaranteed revenue is zero.

It is clear that the seller must offer some buyers a price of 0 to ensure a

positive demand. How about then just setting two prices? The seller can offer

a price 0 to a share π ∈ (0, 1) of the population and some price p∗ to the

remaining 1− π share. Buyers anticipate that at least π buyers will purchase,

1 Given Π, if buyers anticipate a total quantity q, then the quantity demanded isDq(Π) :=∫
(1− p/q) dΠ(p). The quantity q is an equilibrium quantity if Dq(Π) = q.
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Figure 1: Optimal price distribution in the example described in the Introduction.

so setting p∗ ∈ (0, π) guarantees a positive revenue. In fact, we can verify

that an optimal two-price distribution has π ≈ p∗ ≈ 0.25, yielding a worst-

case equilibrium quantity q ≈ 0.75 and revenue R ≈ 0.125. But why two

prices and not more? For example, the seller could choose a uniform price

distribution, Π(p) = p/p∗ for p ∈ [0, p∗] and some p∗ > 0 (perturbed to add

some small mass at price 0). The optimal such distribution has p∗ ≈ 0.41,

yielding a worst-case equilibrium quantity q ≈ 0.71 and revenue R ≈ 0.126.

Our results show that the seller’s optimal price distribution in this example

is indeed uniform, but only up to a mass point at the top. This distribution is

given by Π∗(p) = 2p for p ∈ [0, p∗) and Π∗(p) = 1 for p > p∗, where p∗ ≈ 0.28.

We provide an illustration in Figure 1. The worst-case equilibrium under Π∗

has total quantity q∗ ≈ 0.72 and revenue R∗ ≈ 0.133.

The shape of the optimal price distribution reflects two goals of the seller.

On the one hand, the seller wishes to ensure a high demand. We show that the

optimal way to do so is by using a greedy function that builds the demand from

the bottom, placing as little mass on low prices as is needed to iteratively rule

out low-demand outcomes. This greedy function is uniform in the example

above. On the other hand, the seller also wishes to extract revenue given the

induced demand. The optimal way to do so is with a posted price, hence the
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mass point at the highest supported price p∗.

Theorem 1 provides a characterization for our general model. The main

primitive of our model is the distribution over buyers’ willingness to pay given

an anticipated total quantity. We identify concavity conditions on this prim-

itive under which the seller’s optimal price distribution is greedy up to its

highest supported price, with a mass point at that price. A key point in

our proof is that contractions of the price distribution that preserve demand

given an anticipated quantity increase both demand and revenue given any

higher anticipated quantity. This is why a posted price obtains under best-

case selection, and why greediness pins down price dispersion under worst-case

selection. We prove that the greedy function—which corresponds to the so-

lution to an integral equation—is continuous and strictly increasing. Thus,

the seller’s optimal policy can be interpreted as a posted price with (fully)

dispersed discounts.

We use our characterization of the optimal policy to study the effects of ex-

ternalities. We show that the seller’s concern for strategic uncertainty in the

presence of externalities results in not only price dispersion but also a higher

total quantity of trade compared to the benchmark of best-case selection. The

example described above, where q∗ > qB, provides an illustration.2 Turning

to comparative statics, we find that the stronger the externalities between

buyers, the less weight the seller puts on low prices, and the higher the total

quantity that she induces. Our characterization also applies to a population

where buyers belong to (observable) groups of heterogeneous strength of ex-

ternalities. The seller’s optimal policy in this case offers larger discounts to

weak-externality buyers in order to build demand and extract higher revenue

from strong-externality buyers.

We conclude with a discussion of variants of our model and potential av-

enues for future research. In this paper, we focus on a simple model that

introduces externalities into an otherwise standard monopoly setting. We be-

lieve this framework can be enriched in a number of directions—for example,

2 We also show that the worst-case solution has a higher maximum price—observe p∗ > pB

in the example—yet it yields higher consumer surplus than the best-case benchmark.
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incorporating congestion, dynamics, and two-sided markets—to shed further

light on the use of pricing for coordination.

Literature. Our paper relates to three main literatures. First, there is a

sizable literature on monopoly pricing under incomplete information but in

the absence of externalities. Most useful to our analysis is Bulow and Roberts

(1989), which relates concepts from optimal auction design (as in Myerson,

1981) to the problem of third-degree price discrimination under capacity con-

straints. We build on their insights to solve our benchmark problem of best-

case selection in Section 3.

Second, there is also a large literature on markets with network externalities.

Classic references include Rohlfs (1974), which highlights the possibility of

multiple equilibria under a posted price, and Katz and Shapiro (1985, 1986)

and Ellison and Fudenberg (2000), which study models of technology adoption

with potentially incompatible products/upgrades. Oren, Smith and Wilson

(1982), Csorba (2008), Aoyagi (2013), and Veiga (2018) consider settings more

similar to ours, but the former two focus on second-degree price discrimination,

and the latter two allow for schemes that condition on the number of buyers.

We are not aware of work in this literature that studies optimal personalized

pricing (or more general bilateral contracts; see Section 6) under incomplete

information—neither with best-case nor with worst-case selection.

Third, our paper belongs to a growing literature on contracting with ex-

ternalities that focuses on worst-case selection (or unique implementation).

Following respectively the seminal contributions of Segal (2003) and Winter

(2004), one strand of this literature studies settings where agents’ actions are

bilaterally contractible, as in our model, while another strand examines moral

hazard problems with unobservable actions. Within the first strand, Halac,

Kremer and Winter (2020) consider agents with heterogeneous but observ-

able attributes.3,4 Our main departure from this literature is that we study a

3 Bernstein and Winter (2012) and Sákovics and Steiner (2012) examine related models
with observable heterogeneity. More broadly, there is related work on exclusionary con-
tracts; see, e.g., Rasmusen, Ramseyer and Wiley (1991); Innes and Sexton (1994); Segal
and Whinston (2000); Spiegler (2000); Genicot and Ray (2006).

4 Within the second strand, see, e.g., Eliaz and Spiegler (2015); Moriya and Yamashita
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monopoly setting in which agents’ attributes are hidden. We discuss how our

analysis would change under complete information in Section 6.

Finally, in addition to these literatures, we relate to papers that predict

pricing policies similar to the ones we characterize but in quite different en-

vironments. For example, Perry (1984) studies an incumbent firm that seeks

to prevent entry and can post different prices for different units of its total

supply. The firm uses a continuum of prices, with unlimited supply at the

top and just enough supply at each lower price to make entry unattractive. In

Heidhues and Kőszegi (2014), a monopolist sells to a loss-averse consumer who

forms expectations prior to purchasing based on the monopolist’s announced

price distribution. To lure the consumer and exploit his attachment, an opti-

mal distribution combines a continuum of sale prices with an atom at a high

price. Our paper provides a complementary theory that emphasizes the role of

externalities in consumption. These externalities and the strategic uncertainty

they generate determine the optimal form of price dispersion in our model.

2. Model

Our model introduces strategic complementarities into a canonical monopoly

setting. Below we describe the setup, the seller’s problem, and our assump-

tions. We also provide examples of special cases.

2.1. Setup

We study a seller who sells a good to a population of buyers, each with

a unit demand. Buyers’ identities i ∈ I := [0, 1] are uniformly distributed

and independent of their payoff types θ ∈ Θ. The seller makes a price offer

pi ∈ R+ to each buyer (i, θ) ∈ I×Θ. Prices are personalized, namely they can

depend on a buyer’s identity i. The offered price however cannot condition on

a buyer’s type θ, which is the buyer’s private information.5

(2020); Halac, Lipnowski and Rappoport (2021, 2022); Cusumano, Gan and Pieroth (2023);
Camboni and Porcellacchia (2024); Halac, Kremer and Winter (forthcoming).

5 Since a buyer’s type is independent of his identity, it is also independent of his price
offer. Using this fact, we show in Section 6 that our focus on personalized price offers is
without loss of generality within the class of public bilateral contracts.
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Given the price offers, the buyers simultaneously decide whether or not to

purchase from the seller. Denote the total quantity of purchases—i.e., the

total mass of buyers who purchase—by q ∈ [0, 1]. If a buyer of type θ ∈ Θ

purchases at a price pi and the total purchased quantity is q, the buyer gets a

payoff of

u(θ, q)− pi. (1)

The measurable function u : Θ × [0, 1] → R+ is increasing in its second ar-

gument, reflecting that buyers’ purchasing decisions are complementary. A

buyer who does not purchase gets a payoff of 0.

The random variable u(·, q) represents a buyer’s willingness to pay given

an anticipated total quantity q. Let Fq : R → [0, 1] denote its cumulative

distribution function. We assume Fq has support [0, v(q)] ⊂ R+ for q ∈ [0, 1],

where v is continuously differentiable with v′ > 0. This says that the lowest

value is zero, whereas the highest value is strictly increasing in anticipated

quantity. We further make the “cold-start” assumption that v(0) = 0, so

a buyer’s value is almost surely zero if he anticipates no other buyer will

purchase.6 For strictly positive anticipated quantity q ∈ (0, 1], we suppose

Fq admits a density fq which is strictly positive on (0, v(q)], and that fq(v)

is continuous in (q, v) where 0 ≤ v ≤ v(q), having a partial derivative with

respect to q that is also continuous in (q, v) over this domain.

Given a fixed anticipated quantity q ∈ [0, 1], the quantity that buyers de-

mand and the seller’s revenue can be easily computed. Assume that a buyer

who is indifferent over purchasing chooses to purchase.7 Then, given antic-

ipated quantity q, the quantity demanded from a price p is equal to the

mass of buyers whose willingness to pay is weakly greater than p, denoted

Dq(p) := 1 − Fq(p
−), and the quantity demanded from a price distribution

Π ∈ ∆(R+) is Dq(Π) :=
∫
Dq(p) dΠ(p). Similarly, the seller’s revenue from

a price p is Rq(p) := pDq(p), and her revenue from a price distribution Π is

6 We relax the zero-lowest-value and cold-start assumptions in Section 6.
7 Without this tie-breaking assumption, our results would remain unchanged if we allow

the seller to use (slightly) negative prices for a small fraction of the buyer population.
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Rq(Π) :=
∫
Rq(p) dΠ(p).8 By our assumptions on Fq, the demand function is

continuous in quantity, and demand and revenue are jointly continuous (see

Lemma 1 and Lemma 2 in the Appendix).

2.2. Seller’s problem

The seller’s price offers (pi)i∈I induce a game between the buyers. In this

game, each buyer (i, θ) simultaneously makes a decision of whether to purchase,

with his payoff from purchasing given by (1). Since a buyer’s identity conveys

no information about his type, we can summarize the seller’s price offers by

their distribution Π ∈ ∆(R+). Given such a price distribution Π, if all buyers

anticipate a total quantity q, the total quantity demanded is Dq(Π). Thus,

a total quantity q is an equilibrium quantity given Π if it is the quantity

demanded when buyers anticipate it: Dq(Π) = q.

Due to the complementarity in buyers’ purchasing decisions, multiple equi-

librium quantities may arise given a price distribution Π. The seller wishes to

guarantee a high revenue, and is therefore concerned with maximizing revenue

in the worst-case equilibrium. Formally, her optimal value is given by

sup
Π∈∆(R+)

min
q∈[0,1]

Rq(Π) (P)

subject to Dq(Π) = q.

By the continuity of revenue and demand, the objective is continuous and

the set of equilibrium quantities is closed and nonempty (see Lemma 3 in the

Appendix). We say that (Π∗, q∗) is optimal if there exists a sequence (Πk, qk)k

that converges to (Π∗, q∗) such that quantity qk is the worst-case equilibrium

quantity given price distribution Πk for every k and Rqk(Πk) converges to the

seller’s optimal value in (P).

Remark 1. The complementarity in buyers’ purchasing decisions implies that

the seller’s revenue Rq is increasing in q. Hence, a worst-case equilibrium

8 In a slight abuse of notation, we let Dq(Π) and Rq(Π) be similarly defined by such
integrals for any function Π : R+ → R such that the integral is well defined.
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and a best-case equilibrium for the seller are respectively a lowest-quantity

equilibrium and a highest-quantity equilibrium, and these equilibria exist for

a given price distribution (see Lemma 3 in the Appendix).

Remark 2. While we have stated the seller’s problem as maximizing revenue

in the worst-case equilibrium, in our setting this is equivalent to maximizing

revenue in the worst-case rationalizable outcome. The reason is that buy-

ers’ purchasing decisions are complementary, and thus the game they play

under any price distribution is supermodular. The equivalence then follows

from Guesnerie and Jara-Moroni (2011), who extend results of Milgrom and

Roberts (1990) to games with a continuum of players. Further building on

this observation and given Assumption 2 below, it will also turn out that the

seller’s worst-case problem is essentially equivalent to a more constrained one

that maximizes revenue subject to inducing a unique equilibrium.

Remark 3. We have set up the model as one with positive externalities (i.e.,

with buyers’ payoffs increasing in q). This implies that the worst-case equilib-

rium for the seller is also the worst-case equilibrium for the buyers. However,

virtually nothing in our analysis changes if we assume that a buyer’s payoff

from purchasing is 0 while that from not purchasing is −u(θ, q).9 In this case,

there are negative externalities on nontraders (cf. Segal, 1999), and the seller’s

worst-case equilibrium is the best-case equilibrium for the buyers.

2.3. Concavity assumptions

We make three assumptions that we maintain throughout our analysis.

Observe that while it is natural to describe our model in terms of the buyers’

willingness-to-pay function u(θ, q) and the distribution of buyers’ types θ ∈ Θ

(as we will do when providing examples in Section 2.4), there is a sense in

which this is over-specified. In fact, different pairs of function u(θ, q) and

distribution of θ map to the same distribution Fq over buyers’ willingness

to pay and therefore yield the same equilibrium conditions. Below, we thus

express our model assumptions in terms of our model primitive Fq.

9 The only result that changes in this case is the consumer surplus claim in Proposition 3.
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Our first two assumptions concern the shape of externalities in buyers’ pur-

chasing decisions. Our model is one in which externalities are positive (but

see Remark 3) and increasing (i.e., purchasing decisions are strategic comple-

ments).10 Our first assumption strengthens the sense in which externalities

are increasing by requiring a monotone likelihood ratio property (MLRP):

Assumption 1 (MLRP). For any 0 < q ≤ q̃ ≤ 1, the likelihood ratio

fq̃(v)/fq(v) is weakly increasing in v over (0, v(q)].

Our model assumption that u(·, q) is increasing in q says that the distribu-

tion of willingness to pay under an anticipated quantity q̃ first-order stochasti-

cally dominates that under any lower anticipated quantity q ≤ q̃, and MLRP

requires such dominance even when conditioning on any set of values. Us-

ing the Arrow-Pratt equivalence, this implies that for any price distribution

Π ∈ ∆(R+) and quantities 0 < q ≤ q̃ ≤ 1, the demand Dq̃(Π) is a concave

transformation of the demand Dq(Π) over the common support [0, v(q)].

Our second assumption requires the demand function to be strictly concave

in anticipated quantity.

Assumption 2 (Concave externalities). Wherever q ∈ [0, 1] and p ∈ R++

have p < v(q), the demand function Dq(p) is strictly concave in q.

This assumption can be interpreted as saying that externalities in our model

are concave: a buyer’s payoff from purchasing relative to not purchasing in-

creases with the anticipated total quantity demanded at a decreasing rate.

Finally, for our third assumption, we define the cross virtual value asso-

ciated with a buyer’s willingness to pay v. For any 0 < q ≤ q̃ ≤ 1, the cross

virtual value function ϕq,q̃ : (0, v(q)]→ R is given by

ϕq,q̃(v) :=
fq̃(v)

fq(v)

[
v − 1− Fq̃(v)

fq̃(v)

]
.

This function is exactly the Myerson virtual value function under total quantity

q̃ in the special case that q = q̃, and is otherwise the Myerson virtual value

10 This terminology follows Segal (2003).
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function under q̃ normalized by the likelihood ratio fq̃(v)/fq(v). Recall that

Myerson regularity says that the virtual value function ϕq̃,q̃ is increasing. We

make an analogous assumption on the cross virtual value function:

Assumption 3 (Cross regularity). For any 0 < q ≤ q̃ ≤ 1, the cross virtual

value function ϕq,q̃(v) is strictly increasing in v over (0, v(q)].

For intuition, fix an actual total quantity q̃. As noted by Bulow and Roberts

(1989), the Myerson virtual value function corresponds to the seller’s marginal

revenue, and thus Myerson regularity implies that the seller’s revenue is con-

cave in the quantity demanded. Cross regularity serves an analogous role, but

applies across different hypothetical anticipated quantities q ≤ q̃. In partic-

ular, it implies that for any price distribution Π ∈ ∆(R+) and anticipated

and actual total quantities 0 < q ≤ q̃ ≤ 1, the revenue Rq̃(Π) is a concave

transformation of the demand Dq(Π) over the common support [0, v(q)].

2.4. Examples

We will illustrate our results with the following special cases of our model.

Linear demand. Suppose a buyer’s willingness to pay given type θ ∈ Θ

and anticipated quantity q ∈ [0, 1] is u(θ, q) = θv(q) for v satisfying 1/v(q)

strictly convex in q over (0, 1] (as well as v(0) = 0 and v′ > 0), and let buyers’

types be drawn uniformly from Θ = [0, 1]. The condition on v is equivalent to

our concave externalities assumption; it holds, for example, if v is log-concave.

The demand function takes the linear form Dq(p) = 1 − p/v(q), and one can

verify that all of our model assumptions are satisfied. Our comparative-static

results in Section 5 will focus on this environment.

Proportional values. Suppose a buyer’s willingness to pay given type θ ∈
Θ and anticipated quantity q ∈ [0, 1] is u(θ, q) = θq. Denoting by G the

distribution of buyers’ types, with positive density g, we can then rewrite our

assumptions as follows. MLRP and cross regularity say, respectively, that for

all λ > 1, the ratio g(θ)/g(λθ) is weakly increasing in θ and the cross virtual

value function
g(θ)

g(λθ)

[
θ − 1−G(θ)

g(θ)

]
11



is strictly increasing in θ wherever g(λθ) is strictly positive. Concave externali-

ties says that G(p/q) is convex in q. An example that satisfies these conditions

is the power distribution with g(θ) = κθκ−1 for κ ≥ 1 and Θ = [0, 1].

Other examples. The examples described above take a willingness-to-pay

function of the form u(θ, q) = θv(q) for a buyer type θ ∈ Θ and anticipated

quantity q ∈ [0, 1]. Our model can also accommodate other formulations; for

example, u(θ, q) = eθq − 1 paired with a uniform distribution of types over

Θ = [0, 1] would satisfy all of our assumptions.

A natural setting that is outside our model as stated is one in which a

buyer’s willingness to pay takes an additive form, u(θ, q) = θ+ q. This formu-

lation does not satisfy our zero-lowest-value and cold-start assumptions. Both

of these assumptions however can be relaxed—see Section 6 for details—and

our main takeaways remain valid in settings like the additive one.

3. Benchmark: best-case selection

Before we solve the seller’s problem in (P), we consider a benchmark setting

in which the seller has no concern for strategic uncertainty. Suppose that for

any price distribution Π ∈ ∆(R+) that the seller chooses, she can select the

equilibrium that buyers play in the induced game if multiple equilibria arise.

Rather than being concerned with the worst case as in (P), such a seller

maximizes revenue in the best-case equilibrium:

sup
Π∈∆(R+)

max
q∈[0,1]

Rq(Π)

subject to Dq(Π) = q.

We find that the seller’s solution under best-case selection takes the form

of a posted price.

Proposition 1. Under best-case selection, some optimum exists, and any op-

timum has strictly positive revenue and degenerate price distribution.
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The argument builds on Bulow and Roberts (1989). Recall that by cross

regularity (Assumption 3)—in fact, by Myerson regularity, which is implied

by cross-regularity—the seller’s revenue is concave in the quantity demanded.

This means that revenue increases if price dispersion is reduced in a way that

keeps quantity unchanged. Hence, given any nondegenerate price distribution

Π and best-case equilibrium quantity q > 0 that it induces, the seller can

improve upon Π with a q-preserving posted price, namely by offering each

buyer a price p = D−1
q (q) ∈ [0, v(q)].

The posted-price mechanism is a familiar result in the monopoly setting, as

it is the one that obtains in the absence of externalities. If, for a fixed quantity

q ∈ (0, 1], our seller faced an exogenous distribution Fq of buyer values and

thus an exogenous demand curve Dq, she would maximize revenue by offering

the same price, call it pM(q), to each buyer. No equilibrium multiplicity would

arise in such a setting with no externalities, and by (cross) regularity, the

optimal posted price would be the unique pM ∈ (0, v(q)) with ϕq,q(p
M) = 0.

Proposition 1 tells us that the presence of externalities does not alter the

nature of the seller’s optimal mechanism provided that the seller can select

her preferred equilibrium. The seller uses a posted price as in a standard

monopoly setting, although naturally the externalities do affect the price she

chooses. The complementarity in buyers’ purchasing decisions implies that the

total quantity demanded is more responsive to price changes. Thus, letting pB

and qB be respectively an optimal price and equilibrium quantity that solve

the best-case problem above, one can show that pB ≤ pM(qB), with strict

inequality under sufficient smoothness conditions.

4. Optimal price distribution

We now return to the problem in (P), where the seller is concerned with

worst-case outcomes. The seller chooses a price distribution to maximize rev-

enue in her least preferred equilibrium of the induced game between the buy-

ers. In Section 4.1, we present an auxiliary program that clarifies the key

constraints that the worst-case focus introduces. We then use this auxiliary
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program in Section 4.2 to derive our main result on the seller’s optimal price

distribution. We provide intuition for the proof of this result in Section 4.3.

4.1. Which constraints matter?

Recall that (Π∗, q∗) is optimal if it is the limit of a sequence (Πk, qk)k of

price distributions and corresponding worst-case equilibrium quantities whose

revenue Rqk(Πk) converges to the seller’s optimal value in (P). The next

proposition establishes that (Π∗, q∗) can be computed as the solution to an

auxiliary program.

Proposition 2. (Π∗, q∗) is optimal if and only if it solves

max
Π∈∆(R+), q∈[0,1]

Rq(Π) (P∗)

subject to Dq̂(Π) ≥ q̂ ∀q̂ ∈ (0, q).

Moreover, this program has a maximizer, generating strictly positive revenue.

Proposition 2 elucidates the constraints that are introduced by the seller

having a concern for strategic uncertainty. Observe that as in the best-case

benchmark of Section 3, program (P∗) maximizes over both a price distribu-

tion Π ∈ ∆(R+) and an equilibrium quantity q ∈ [0, 1], and any optimum

(Π∗, q∗) in (P∗) satisfies the equilibrium condition Dq∗(Π
∗) = q∗ (for other-

wise raising q∗ would yield a strict improvement). However, there are ad-

ditional constraints that (P∗) imposes to guarantee that (Π∗, q∗) is optimal

under worst-case selection. Plainly, the seller’s price distribution cannot ad-

mit any lower-quantity equilibrium, and therefore the demand Dq̂(Π) at any

anticipated quantity q̂ < q∗ must exceed q̂. Program (P∗) imposes these de-

mand constraints as weak inequalities, with the solution being the limit of a

sequence (Πk, qk)k that satisfies the constraints strictly for every k.

To prove Proposition 2, we first show that the auxiliary program (P∗) is

a relaxation of the original program (P). In fact, any price distribution Π ∈
∆(R+) and its corresponding worst-case equilibrium quantity q are feasible in

(P∗): if q = 0, the program imposes no constraints, and if q > 0, then this
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being the lowest equilibrium quantity under Π implies that the constraints in

(P∗) hold strictly for all q̂ ∈ [0, q).11 Next, in the other direction, we show

that (P∗) cannot yield strictly higher revenue than (P). Given (Π, q) feasible

in (P∗), we construct a perturbed price distribution Πε which coincides with Π

except for a small fraction ε of buyers who are offered a zero price. For every

ε > 0, the price distribution Πε generates a worst-case equilibrium quantity

qε ≥ q. Hence, since revenue is increasing in the quantity demanded and Πε

converges to Π as ε→ 0, we obtain Rqε(Πε) ≥ Rq(Π) in this limit.

While program (P∗) clarifies which constraints are the relevant ones for

the seller under worst-case selection, it is not immediate what the solution to

this program looks like. The seller chooses a continuum of prices which must

satisfy a continuum of demand constraints. At each of these constraints, she

faces tradeoffs between increasing one price versus lowering another one to

preserve demand, and the tightness of the constraints depends on the relative

slopes of the demand function at different anticipated total quantities. It

might be intuitive to think that the solution to (P∗) should satisfy all the

demand constraints with equality—but this may not be feasible for a given

target quantity, and even when feasible, we will see that it is not optimal.

In the next two sections, we show that the principle that guides the solution

to program (P∗) is essentially the same principle behind the seller’s solution in

the benchmark of best-case selection. This principle is that price dispersion is

bad for revenue, so quantity-preserving contractions of the price distribution

benefit the seller. Of course, unlike under best-case selection, the result will

not be a degenerate price distribution; as discussed in the Introduction, price

dispersion is needed to generate strictly positive revenue under worst-case

selection. Instead, our analysis will show how this fact can be used to pin

down the optimal form of price dispersion.

11 In particular, note that D0(Π) ≥ 0 and the demand function is continuous in anticipated
quantity. Thus, if any q̂ ∈ (0, q) had Dq(Π) ≤ q, then some q̃ ∈ [0, q̂] would be an equilibrium
quantity, meaning q is not the worst equilibrium.
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4.2. Posted price with dispersed discounts

We define a class of functions that we will use in our characterization of the

seller’s optimal pricing policy.

Definition 1. Let Γ : R+ → R+ be right-continuous and nondecreasing. Given

p ∈ R+, say Γ is greedy up to p if it satisfies

Dq̂(Γ) = q̂

for all q̂ ∈ (0, 1) with v(q̂) ≤ p. Say Γ is greedy if it is greedy up to every

p ≥ 0.

A function Γ that is greedy up to p satisfies the demand constraints in

program (P∗) with equality for all anticipated quantities for which the highest

willingness to pay is no greater than p. This means that Γ iteratively sets

to zero the demand-constraint difference Dq̂(Γ) − q̂ starting from the lowest

anticipated quantity up to q(p) := v−1(p). Intuitively, a greedy function follows

a greedy procedure: for each anticipated quantity q̂ starting from 0, given a

measure over prices [0, v(q̂)), the seller pushes up the next prices as much

as possible subject to satisfying the demand constraint at q̂. Following this

greedy procedure up to q is equivalent to solving the Volterra integral equation∫ v(q̂)

0
Π(p)fq̂(p) dp = q̂ for all q̂ ∈ (0, q).

The next theorem presents our main result.

Theorem 1. Suppose (Π∗, q∗) is optimal, and let p∗ be the highest price in

the support of Π∗. Then p∗ ≤ pM(q∗), and Π∗ is greedy up to p∗, with a mass

point at p∗.

A seller’s optimal price distribution balances two goals. On the one hand,

being concerned with worst-case outcomes, the seller wishes to insulate against

low-quantity equilibria. She does so by using a greedy function that seeds the

demand from the bottom, placing as little mass on low prices as is needed to
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iteratively rule out low-demand outcomes.12 On the other hand, the seller also

wishes to extract revenue from the induced higher demand. This is achieved

with the mass point at the highest offered price p∗—such an extraction point

plays the same role as the seller’s posted price pM(q∗) in the standard monopoly

problem with exogenous demand Dq∗ . The resulting price distribution max-

imizes the seller’s worst-case revenue by minimizing the demand constraints

up to anticipated quantity q∗ := v−1(p∗) and satisfying with slack the demand

constraints for quantities in (q∗, q∗).

Theorem 1 suggests an appealing interpretation for the seller’s optimal

pricing policy: the seller posts a high price and simultaneously offers per-

sonalized discounts to some buyers to build a high demand. The use of list

prices together with promotions and special deals that vary across buyers is

common in applications. The shape of Π∗ tells us precisely how these per-

sonalized discounts are optimally distributed in the population. We show in

the Appendix that that any greedy function must be continuous and strictly

increasing. Hence, it follows from Theorem 1 that the seller’s optimal price

distribution has only one mass point, and personalized discounts are (fully)

dispersed across buyers.

Corollary 1. Any optimal price distribution is continuous and strictly in-

creasing up to a mass point at the top of its support. Said differently, the

seller’s policy is a posted price with dispersed discounts.

In many environments, one can verify directly that the seller’s problem

admits a unique greedy function Γ∗ over [0, v(1)). In such cases, Theorem 1

reduces the seller’s problem to a one-parameter optimization over q∗, as any

optimal (Π∗, q∗) must then have Π∗ coincide with the unique greedy function

Γ∗ up to its highest supported price p∗ ∈ (0, v(q∗)). This is the case in the

examples that we describe next, and more generally we show it is always true

in the linear demand environment—see Lemma 9 in the Appendix.

12 Recall that while the demand constraints in program (P∗) are weak inequalities, the
solution (Π∗, q∗) is the limit of a sequence (Πk, qk)k which, for every k, satisfies the demand
constraints strictly and thus rules out equilibrium quantities q̂ < qk.
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Figure 2 illustrates our results with three examples. Each graph depicts

the unique greedy function Γ∗(p) (gray dotted line) and the seller’s optimal

price distribution Π∗(p) (black solid line), which is also unique. The first two

examples, in the top panel, belong to the linear demand environment—with

a willingness-to-pay function u(θ, q) = θv(q) and a uniform distribution of

types. The first example on the left is the one discussed in the Introduction,

with v(q) = q. The second example on the right takes v(q) = q + q2. Finally,

the third example in the bottom panel belongs to the proportional values

environment, with u(θ, q) = θq and a power distribution of types.

Observe that the first and third examples in Figure 2 both have proportional

values, and while they assume different distributions of types, in both cases

the unique greedy function is uniform (and given by Γ∗(p) = p/E[θ]). This is

not a coincidence, as we report in the next corollary.

Corollary 2. In the proportional values environment, the seller’s policy is a

posted price with uniform discounts.

4.3. Intuition for proof of Theorem 1

We next provide intuition for the proof of Theorem 1. To highlight the

main ideas, we focus on the linear demand environment. We comment on the

differences with respect to our general proof in the Appendix at the end of

this section.

As a preliminary step, observe that under a linear demand, we can rewrite

the demand constraints in the auxiliary program (P∗) as follows:∫ v(q̂)

0

Π(p)dp ≥ q̂v(q̂) ∀q̂ ∈ (0, q). (2)

One can readily verify that all of these constraints are satisfied with equality

if Π agrees with the unique greedy function Γ∗ up until at least v(q), where

Γ∗(p) = q(p) + pq′(p). (3)

Suppose by contradiction that (Π∗, q∗) is optimal and Π∗ is not greedy up to
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Figure 2: Greedy function (gray dotted line) and optimal price distribution (black

solid line). The top-panel examples take a linear demand environment. The left

example takes v(q) = q, and has Γ∗(p) = 2p with p∗ ≈ 0.28 and q∗ ≈ 0.72. The

right example takes v(q) = q + q2, and has Γ∗(p) = (
√

1 + 4p − 1)/2 + p/
√

1 + 4p

with p∗ ≈ 0.51 and q∗ ≈ 0.76. The bottom-panel example takes proportional values

with g(θ) = 2θ over Θ = [0, 1], and has Γ∗(p) = (3/2)p with p∗ ≈ 0.56 and q∗ ≈ 0.76.

19



p′ p′′

1 Γ(p)

Π∗(p)

p p′′

1 Γ(p)

Π∗(p)

p

Figure 3: Illustration of arguments in Section 4.3. See the text for details.

its highest supported price p∗. Since we have shown in Proposition 2 that the

seller’s optimal value is strictly positive, we take q∗, p∗ > 0. By definition of

the greedy function Γ∗, and assuming here that Π∗−Γ∗ is piecewise monotone,

it follows that there exists some price p′ ∈ [0, v(q∗)) such that Π∗(p) = Γ∗(p)

for p ≤ p′ and Π∗(p) > Γ∗(p) right above p′. An illustration is provided in the

left panel of Figure 3, where we have drawn Γ∗(p) (gray dotted line) for the

same environment as in the top left example of Figure 2.

There are two scenarios to consider. First, suppose that there exists a price

p′′ ∈ (p′, v(q∗)) such that ∫ p′′

p′
[Π∗(p)− Γ∗(p)] dp = 0. (4)

Then we can take the lowest such price p′′, in which case∫ p̂

p′
[Π∗(p)− Γ∗(p)] dp > 0 ∀p̂ ∈ (p′, p′′), (5)

as illustrated in Figure 3.

Now let us define a new price distribution Π̃ which coincides with the greedy

20



function Γ∗ up to p′′ and is otherwise equal to Π∗:13

Π̃(p) =

Γ∗(p) for p < p′′

Π∗(p) otherwise.

The right panel of Figure 3 provides an illustration. By definition of Γ∗,

the price distribution Π̃ satisfies the demand constraints for all anticipated

quantities q̂ ∈ (0, q(p′′)). Moreover, observe that by (4) and (5), Π̃ is a

mean-preserving contraction of Π∗ below p′′. MLRP (Assumption 1) there-

fore implies Dq̂(Π̃) ≥ Dq̂(Π
∗) for all q̂ ∈ [q(p′′), 1], which means that Π̃ also

satisfies the demand constraints for all anticipated quantities q̂ ∈ [q(p′′), q∗).

Furthermore, cross regularity (Assumption 3) implies Rq̂(Π̃) > Rq̂(Π
∗) for all

q̂ ∈ [q(p′′), 1]. It follows that Π̃ yields strictly higher revenue than Π∗, contra-

dicting the assumption that Π∗ is optimal.

We are then left with the second scenario, in which no p′′ ∈ (p′, v(q∗)) exists

that satisfies equation (4). In this case, each p̂ ∈ (p′, v(q∗)) has∫ p̂

p′
[Π∗(p)− Γ∗(p)] dp > 0.

By (2), it follows that the corresponding demand constraints are satisfied

with slack; that is, Dq̂(Π
∗) > q̂ for all anticipated quantities q̂ ∈ (q(p′), q∗).

However, this means that if Π∗ puts any mass (strictly) above p′, then again

a strict improvement is feasible. Specifically, if Π∗ is supported on more than

one price above p′, we show that a small mean-preserving contraction above p′

preserves the demand constraints (by them being slack) and increases revenue

(by cross regularity). If Π∗ has only one mass point above p′, then satisfaction

of the demand constraints for quantities right above q(p′) requires a mass point

also at p′, and we show that revenue can be increased with a small contraction

that takes mass from these two points. We thus conclude that Π∗ cannot have

support above p′, i.e., p′ =: p∗. This contradicts the assumption that Π∗ is not

13 We can verify that the price p′′ satisfies p′′ < p∗ and Γ∗(p′′) ≤ Π∗(p′′), so Π̃ is a
distribution function.
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greedy up to p∗.

The steps above yield that any optimal price distribution Π∗ coincides with

the greedy function Γ∗ up to its highest supported price p∗. Theorem 1 also

states that p∗ is no greater than the monopoly price pM(q∗). This is intuitive:

by definition of pM(q∗), any price distribution with highest price p∗ > pM(q∗)

can be improved upon by lowering all prices above pM(q∗) to this level. Finally,

to prove that Π∗ has a mass point at p∗, observe that since pM(q∗) < v(q∗),

we have p∗ < v(q∗). Hence, while the greedy function Γ∗ up to p∗ satisfies

the demand constraints up to q∗ = q(p∗), there must be a mass point at p∗ to

satisfy the demand constraints over (q∗, q∗).

The proof of Theorem 1 in the Appendix proceeds via perturbations as

we did here: taking a price distribution Π∗ that is not greedy up to the top

of its support, and showing how it can be improved while preserving the de-

mand constraints. However, we do not build on a fixed greedy function Γ∗,

nor do we rely on Π∗ − Γ∗ being well-behaved. Instead, we show that given

Π∗, we can locate an interval of anticipated quantities where the demand con-

straints are slack, and where we can apply contraction arguments analogous

to those used in the second scenario above. For locating such an interval, con-

cave externalities (Assumption 2) is important. For arguing that contractions

improve revenue while satisfying the demand constraints, a difficulty is that

these constraints do not take the form of majorization as in (2) outside the

linear demand environment. While this means that we cannot use off-the-shelf

comparative statics on mean-preserving contractions as we did above, we show

that similar comparative statics can be derived for our general model. This

step extends results from Rappoport (2024); see Lemma 4 in the Appendix.

5. The effects of externalities

We use our characterization of the seller’s optimal pricing policy to study

the effects of externalities. In Section 5.1, we compare the seller’s solution

under worst-case selection to the best-case benchmark of Section 3. In Sec-

tion 5.2, we examine how the solution changes as the externalities in buyers’

purchasing decisions become stronger. Finally, in Section 5.3, we consider a
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setting where buyers belong to groups with heterogeneous strength of exter-

nalities, and the seller’s price offers can condition on buyer group. Throughout

this section, we focus on the linear demand environment.

5.1. Worst-case versus best-case

The seller’s optimal pricing policy in Theorem 1 is shaped by her con-

cern for strategic uncertainty. Recall from Proposition 1 that under best-case

selection—i.e., if the seller could choose the equilibrium that buyers play given

her price offers—a posted price mechanism would be optimal. Instead, when

concerned with worst-case outcomes, Theorem 1 says that the seller uses a

posted price together with personalized discounts. An immediate consequence

of the seller’s worst-case focus is thus price dispersion. But, what does this

imply for price levels and for the induced total quantity of trade? And how

does the resulting consumer surplus compare under worst-case versus best-

case selection? The next proposition provides answers to these questions. We

denote the consumer surplus associated with anticipated quantity q ∈ [0, 1]

and price p ∈ R+ by

CSq(p) :=

∫ v(q)

p

Dq(v) dv,

and let CSq(Π) :=
∫

CSq(p) dΠ(p) for any price distribution Π ∈ ∆(R+).

Proposition 3. Take the linear demand environment. Relative to the best-

case benchmark, the seller’s worst-case solution has a higher maximum offered

price p∗ > pB, induces a higher total quantity q∗ > qB, and yields a higher

consumer surplus CSq∗(Π
∗) > CSqB(pB).

This result reveals that not all buyers benefit from lower prices when the

seller is concerned with worst-case outcomes. Some buyers receive generous

discounts as the seller seeks to ensure a high demand, but others receive price

offers strictly higher than the seller’s best-case posted price. At the same time,

Proposition 3 tells us that buyers on average do purchase at a lower price

in the worst-case solution, and thus the total quantity demanded is higher

than in the best-case benchmark. Interestingly, while the seller is concerned
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with ruling out low-quantity equilibria—and must therefore offer discounts and

sacrifice revenue to ensure any quantity as a worst-case equilibrium—she ends

up inducing a higher quantity of trade than in the absence of this concern.

Proposition 3 further establishes that, as a consequence, consumer surplus

increases due to the seller’s worst-case focus.

The linear-demand example discussed in the Introduction (with v(q) = q)

provides an illustration of the comparisons reported in Proposition 3. As

noted, the seller’s worst-case and best-case solutions in that setting have max-

imum prices p∗ ≈ 0.28 > 0.22 ≈ pB and total quantities q∗ ≈ 0.72 > 0.66 ≈ qB.

The resulting consumer surpluses are CSq∗(Π
∗) ≈ 0.19 > 0.15 ≈ CSqB(pB).

To prove Proposition 3, we use our characterizations of the seller’s worst-

case and best-case optima. By Theorem 1, any optimal worst-case price dis-

tribution is a function Π(·|p̂) that coincides with the greedy function—unique

in the linear demand environment—up to a highest supported price p̂. De-

fine R(p̂, q̂) as the seller’s worst-case revenue given such a price distribution

Π(·|p̂) and a buyers’ anticipated quantity q̂. In a worst-case equilibrium, q̂ is

equal to the lowest quantity demanded given that Π(·|p̂) is the limit worst-case

price distribution; call it Q(p̂). Then R(p̂,Q(p̂)) gives the seller’s worst-case

revenue parametrized by p̂. We define analogous objects for the best-case prob-

lem, with RB(p̂, q̂) being the seller’s best-case revenue given a posted price p̂

and anticipated quantity q̂, and RB(p̂,QB(p̂)) taking q̂ to equal the highest

equilibrium quantity QB(p̂) under p̂.

Our analysis is facilitated by the fact that, in the linear demand environ-

ment, these worst-case and best-case revenue functions are strictly quasicon-

cave, with unique interior optima p∗ and pB given by

dR(p̂,Q(p̂))

dp̂

∣∣∣∣
p̂=p∗

= 0 and
dRB(p̂,QB(p̂))

dp̂

∣∣∣∣
p̂=pB

= 0. (6)
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Hence, to establish the ranking between p∗ and pB, it suffices to sign

dR
dp̂

=
∂R
∂p̂︸︷︷︸

monopoly
effect

+
∂R
∂q̂

dQ
dp̂︸ ︷︷ ︸

externality
effect

(7)

at p̂ = pB. We call the first term on the right-hand side the monopoly effect.

This effect tells us how revenue changes with p̂ while keeping the anticipated

quantity q̂, and thus the demand function Dq̂, fixed. As is familiar, raising

p̂ increases revenue from inframarginal buyers via a higher price, but reduces

revenue from marginal buyers via a lower quantity. Note that if p̂ = pB, the

quantity demanded at the worst-case highest price p̂ is larger than the quantity

demanded at the best-case posted price pB. A comparison of the monopoly

effects then follows from (cross) regularity (Assumption 3): conditional on

pricing at p̂, the worst-case monopoly effect of raising p̂ starting from p̂ = pB

is higher (i.e., more positive) than the analog best-case monopoly effect.

The second term on the right-hand side of (7) is the externality effect.

This effect tells us how revenue changes as the demand function Dq̂ shifts

towards the new equilibrium—that is, given that the anticipated quantity q̂

must adjust to match the quantity demanded Q(p̂) following an increase in p̂.

We show that conditional on pricing at p̂, the worst-case externality effect of

raising p̂ starting from p̂ = pB is higher than the analog best-case externality

effect. Hence, given the definition of pB in (6), the monopoly and externality

effects imply dR(p̂,Q(p̂))/dp̂ > 0 at p̂ = pB. We conclude that the worst-case

highest price p∗ is strictly higher than the best-case posted price pB.

The idea behind the ranking of the worst-case and best-case quantities, q∗

and qB, is similar. We show that R(p̂,Q(p̂)) increases as p̂ is reduced from a

level that makes the worst-case equilibrium quantity equal to qB, and therefore

the optimal such quantity must satisfy q∗ > qB. Finally, this result allows us

to prove the ranking on consumer surplus. In particular, using q∗ > qB, we

show that the average price offered under a price distribution Π(·|v(qB)) is no

greater than pB.14 Since consumer surplus is decreasing in average price, and

14 This follows from the fact that, given q∗ > qB , the demand constraint in program (P∗)
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is strictly increasing in price dispersion due to buyer option value, it follows

that CSqB(Π(·|v(qB))) > CSqB(pB). Moreover, since consumer surplus is also

increasing in quantity, we obtain

CSq∗(Π(·|p∗)) ≥ CSqB(Π(·|p∗)) = CSqB(Π(·|v(qB))) > CSqB(pB).

5.2. Strength of externalities

The externalities in buyers’ purchasing decisions are a key novel ingredient

of our seller’s problem. We next study how the seller’s solution in Theo-

rem 1 changes as these externalities become stronger. Recall that in the linear

demand environment, a buyer’s willingness to pay given type θ ∈ Θ and an-

ticipated quantity q ∈ [0, 1] is u(θ, q) = θv(q). The strength of externalities is

reflected in the function v.

Definition 2. In the linear demand environment, say v1 has stronger ex-

ternalities than v0 if, for all q ∈ (0, 1],

(i) v1(q) > v0(q), and

(ii) v1(q)/v0(q) is strictly increasing in q.

Intuitively, buyers’ purchasing decisions are more complementary if their

willingness to pay grows with the anticipated total quantity demanded at a

higher rate, as captured by (ii).15 Since our model assumes v(0) = 0, it is then

also natural that buyers’ willingness to pay under any given anticipated total

quantity will be higher when externalities are stronger, as captured by (i).

Proposition 4. Take the linear demand environment. Suppose v1 has stronger

externalities than v0, with corresponding optimal price distributions Π∗1 and Π∗0.

Relative to Π∗0, then Π∗1 induces a higher total quantity q∗1 > q∗0. Moreover, Π∗1

puts lower weight on low prices: Π∗1(p) < Π∗0(p) for all p < min{p∗1, p∗0}.

is satisfied at anticipated quantity q̂ = qB .
15 Observe that taking v′1(·) > v′0(·) would not yield the desired externality order: mul-

tiplying v by a constant κ > 0 has no effect on the seller’s solution up to a change of
numeraire.
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An increase in the strength of externalities makes it less costly for the seller

to insulate against low-demand equilibria. Specifically, take any anticipated

quantity q̂ ∈ (0, 1) and greedy prices over [0, v(q̂)) that satisfy the demand

constraints in program (P∗) up to q̂. Under stronger externalities, because the

demand is more responsive to anticipated quantity, the seller can then satisfy

the demand constraint at q̂ without the need to offer price v(q̂) to such a large

mass of buyers. As a result, the optimal price distribution places relatively less

weight on discounted prices below a given posted price. Moreover, because the

seller can guarantee a given equilibrium quantity while charging higher prices,

it is optimal for her to induce a higher quantity when externalities are stronger.

These price and quantity effects combined explain why Proposition 4 does not

pin down how the posted price itself changes with the externalities.

For illustration, we can compare the linear-demand examples shown in the

top panel of Figure 2. The second example on the right (with v(q) = q + q2)

has stronger externalities than the first example on the left (with v(q) = q),

and accordingly induces a higher total quantity of trade (as reported in the

figure caption). The second example also exhibits a higher posted price and

lower weight on discounted prices below the first-example posted price.

The proof of the comparative static concerning the seller’s optimal price

distribution follows directly from equation (3), which defines the unique greedy

function in the linear demand environment. If v1 has stronger externalities

than v0, then the greedy function under v1 is lower than that under v0 in the

first-order stochastic dominance (FOSD) sense.

To prove the comparative static on the optimal total quantity, we use

arguments similar to those described in Section 5.1. Given v1 and v0, let

R1(p̂,Q1(p̂)) andR0(p̂,Q0(p̂)) be the respective revenue functions parametrized

by the highest offered price p̂. We study how the strong-externality revenue

R1 changes as we increase the highest price p̂, starting from a level that makes

the induced strong-externality quantity equal to the optimal weak-externality

quantity q∗0. By the FOSD ranking of the greedy functions, such a starting

level for p̂ is strictly higher than p∗0. We then show that increasing p̂ from that

level causes strong-externality monopoly and externality effects, as defined in
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equation (7), which are both lower (i.e., more negative) than the correspond-

ing weak-externality effects caused by increasing p̂ from p∗0.16 Since the latter

weak-externality effects add to zero by definition of p∗0, this means that the

strong-externality revenue R1 can be increased by lowering p̂. Thus, we obtain

that the optimal total quantities satisfy q∗1 > q∗0, as stated in Proposition 4.

5.3. Heterogeneity

In the previous section, we studied how the seller’s pricing policy changes

as the externalities in buyers’ purchasing decisions become stronger. A related

but distinct question is how the seller’s policy changes if the strength of exter-

nalities varies across buyers. For example, take a seller of file sharing services.

Because these services are more heavily used in the corporate sector, corporate

buyers’ willingness to pay would tend to be higher and to grow at a faster rate

with the total number of subscribers compared to that of retail buyers. How

should the seller’s price offers take this heterogeneity into account?

We consider N > 1 buyer groups indexed by n ∈ {1, . . . , N}, each making

up a proportion λn of the population, with
∑

n λn = 1. A buyer’s willingness

to pay is increasing in the anticipated quantity q demanded by all buyers, but

this externality is stronger on buyers in higher-indexed groups. Specifically,

in the linear demand environment with u(θ, q) = θv(q), and consistent with

Definition 2, we assume that for all q ∈ [0, 1] and all n ∈ {1, . . . , N − 1}:
(i) vn+1(q) > vn(q), and (ii) vn+1(q)/vn(q) is strictly increasing in q.

The seller’s price offers can condition on both a buyer’s identity i and the

group n to which the buyer belongs (but not on the buyer’s private type

θ). The seller’s problem thus amounts to choosing a price distribution Πn ∈
∆(R+) for each buyer group n ∈ {1, . . . , N}, with the objective of maximizing

her total worst-case revenue. Given an anticipated total quantity q ∈ [0, 1]

and a price p ∈ R+, denote the quantity demanded by group-n buyers by

Dn,q(p) := 1− p/vn(q), and let Dn,q(Πn) :=
∫
Dn,q(p) dΠn(p) and Rn,q(Πn) :=

16 The monopoly effect is lower under stronger externalities because marginal buyers are
located at a higher price point, so the loss in revenue from their quantity going down is more
pronounced. The externality effect is lower because the feedback effects of a lower quantity
are larger under stronger externalities.
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∫
pDn,q(p) dΠn(p) for any Πn ∈ ∆(R+). Applying the logic of Proposition 2,

we can write the seller’s problem analogously as we did in program (P∗) for

our baseline model:

max
{Πn∈∆(R+)}n,q∈[0,1]

∑
n

λnRn,q(Πn) (P∗N)

subject to
∑
n

λnDn,q̂(Πn) ≥ q̂ ∀q̂ ∈ (0, q).

As in (P∗), the demand constraints in (P∗N) say that to implement an equi-

librium total quantity q ∈ [0, 1], the seller must rule out any lower quantity as

an equilibrium. That requires that for each anticipated quantity q̂ ∈ (0, q), the

total quantity demanded exceed q̂.17 Now, in this setting, the total quantity

demanded is the sum of the demands from each of the N buyer groups. The

seller thus makes a choice on how to use the different groups to build the de-

mand up to q. The following definition introduces a class of price distributions

that build the demand in an ordered manner. We let q
n

:= v−1
n .

Definition 3. Given prices p1 < · · · < pN , say price distributions (Πn)Nn=1 are

residual greedy up to (pn)Nn=1 if each n ∈ {1, . . . , N} has

Supp(Πn) ⊆ [min{vn(qn−1), pn}, pn] ,
n∑

m=1

λmDm,q̂(Πm) = q̂ ∀q̂ ∈ (qn−1, qn(pn)),

where qn := max {q ∈ [0, 1] :
∑n

m=1 λmDm,q(Πm) = q}.

Price distributions (Πn)n that are residual greedy up to (pn)n have two key

properties. First, since the quantities (qn)n as defined must satisfy pn ≤ vn(qn)

and q1 < q2 < . . . < qN , the supports of the price distributions are ordered.18

This means that all buyers in group n are offered lower prices than any buyer

17 As in (P∗), we impose the demand constraints as weak inequalities, with the solution
being the limit of a sequence ({Πnk}n, qk)k that satisfies them strictly for every k.

18 Observe that there is no circularity in Definition 3 since Πn depends on (q1, . . . , qn−1)
while qn depends on Πn.
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in group n+1, and the seller uses buyers only from groups {1, . . . , n} to satisfy

the demand constraints up to anticipated quantity qn. Second, given the price

distributions for groups {1, . . . , n−1}, the price distribution for group n makes

the demand constraints for anticipated quantities q̂ ∈ (qn−1, qn(pn)) hold with

equality. Intuitively, the seller follows a greedy procedure as in our main model,

but because these demand constraints aggregate the quantity demanded by

buyers in all groups (1, . . . , n), the prices are greedy in a residual sense: the

seller offers discounts to group-n buyers only as much as is needed to build the

residual demand not fulfilled by lower-index-group buyers.

We show that the seller’s optimal pricing policy consists of price distribu-

tions that are residual greedy up to their highest supported prices.

Proposition 5. Take the linear demand environment with buyer groups n ∈
{1, . . . , N} indexed by increasing strength of externalities. Suppose ((Π∗n)Nn=1, q

∗)

is optimal, and let p∗n be the highest price in the support of Π∗n. Then the price

distributions (Π∗n)Nn=1 are residual greedy up to (p∗n)Nn=1, and Π∗N has a mass

point at p∗N < vN(q∗). Therefore, for each n ∈ {1, . . . , N − 1},

max Supp(Π∗n) < min Supp(Π∗n+1).

This result sheds light on how the seller optimally builds the demand to-

wards an equilibrium total quantity. Buyers from strong-externality groups are

more responsive to the anticipated quantity of trade than those from weak-

externality groups. Hence, the seller benefits from offering lower prices to

weak-externality buyers in order to provide assurance of a higher total quan-

tity to strong-externality buyers; this allows her to extract higher revenue

from the latter. Going back to the example of corporate and retail buyers of

file sharing services, Proposition 5 says that all retail buyers will enjoy larger

discounts than any corporate buyer.

The proposition further shows that the methodology from our main model

extends to the setting with heterogeneous buyer groups. Once we estab-

lish that the optimal price distributions (Π∗n)n have ordered supports—more

specifically, that any prices (pn)n respectively in the supports of (Π∗n)n have
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p∗1 p∗2

1
Π∗1(p)

Π∗2(p)

p

Figure 4: Optimal price distributions for a population with 2 buyer groups with

equal weights, where group-1 and group-2 buyers have willingness to pay as in the

first and second examples of Figure 2 respectively. For group 1 (light gray line),

we obtain Π∗1(p) = 4p for p < p∗1 and Π∗1(p) = 1 for p ≥ p∗1, with p∗1 ≈ 0.17

and q1 ≈ 0.33. For group 2 (black line), we obtain Π∗2(p) = 0 for p < v2(q1),

Π∗2(p) = (1 + 6p − 2
√

1 + 4p + p∗1(1 − 2p∗1))/
√

1 + 4p for v2(q1) ≤ p < p∗2, and

Π∗2(p) = 1 for p ≥ p∗2, where p∗2 ≈ 0.48 and q2 = q∗ ≈ 0.74.

q
n
(pn) ≤ q

n+1
(pn+1)—then we are able to apply the arguments of Theorem 1

to each of the N buyer groups. This yields the characterization in Propo-

sition 5, with price distributions that are residual greedy up to the top of

their supports, and a mass point at p∗N , as well as possibly mass at other

points in (p∗1, . . . , p
∗
N−1).19 The interpretation is intuitive: the seller sets a

high posted price together with group-exclusive discounts and personalized

discounts within each group.

Figure 4 provides an illustration. We take a population with N = 2 buyer

groups with equal weights. Group-1 and group-2 buyers have willingness to

pay as given respectively in the first and second examples of Figure 2. We can

interpret the seller’s solution as posting a price of p∗2 and offering all buyers in

the weak-externality group 1 a group-exclusive discount of p∗2−p∗1, in addition

19 Observe that residual greediness can be consistent with a price distribution Π∗n also
having a mass point at the lower limit of its support. An example is shown in Figure 4.
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to offering personalized discounts to some buyers in this group and some buyers

in the strong-externality group 2. In this way, the seller builds the demand

with group-1 buyers up to a quantity q1, and then extracts higher revenue

from group-2 buyers as she continues to grow the demand with buyers from

both groups up to the equilibrium quantity q∗ > q1.

6. Discussion

In this section, we describe different variants of our model, discuss how our

analysis and results would (or not) change, and offer some concluding remarks.

Complete information. Our seller’s problem has two key features: ex-

ternalities in consumption and unobservable buyer types. In Section 3, we

studied a benchmark describing what happens when either the externalities

are absent or the strategic uncertainty they generate is not a concern for the

seller. That benchmark placed our analysis within the literature on monopoly

pricing. We next consider the other natural benchmark for our problem, in

which the externalities and the concern for strategic uncertainty are present,

but buyer types are observable. This benchmark connects our analysis to the

literature on contracting with externalities, which until now had focused on

complete-information settings.

Take our baseline model but suppose the seller can make price offers that

condition on both a buyer’s identity i and his type θ. Since the seller knows

exactly how much each buyer (i, θ) is willing to pay for each anticipated total

quantity, her problem simplifies significantly. Given the increasing externali-

ties, it is easy to see that the seller will want to ensure that all buyers purchase.

This means that all buyers purchasing must be the unique equilibrium, and

thus the unique rationalizable outcome. Therefore, the seller’s problem re-

duces to choosing an order in which buyers iteratively delete the no-purchase

action as being dominated, together with revenue-maximizing price offers that

implement this iterated deletion. The solution prescribes a permutation of

buyers, such that each buyer in the permutation is indifferent over purchasing
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if all buyers preceding him purchase and the rest do not.20 If u(θ, q) is su-

permodular (as in our linear-demand and proportional-values environments),

then an optimal permutation orders buyers in increasing type order.21

This approach is the same as used in other papers on contracting with

externalities. However, this methodology is not available to us in our model

with incomplete information. Plainly, the fact that types are unobservable

means that the seller cannot control the order in which buyers iteratively

delete the no-purchase action. Our analysis develops a new methodology that

excludes low-revenue outcomes by working not through the buyer types but

through the anticipated quantities of trade. The seller’s solution iteratively

deletes anticipated quantities as candidates for equilibrium quantities. Observe

that, in this solution, the order in which buyers delete the no-purchase action

in not necessarily monotonic, neither in their types nor in their price offers.

In addition to requiring a new methodology, our incomplete-information

problem yields results that are qualitatively different from those obtained un-

der complete information. As noted, when types are observable, the seller

induces the whole population of buyers to purchase. Moreover, except in spe-

cial cases, no two buyers receive the same price offer.22 Instead, our model

with unobservable types yields exclusion and comparative statics on the total

quantity of trade, as well as the result that any optimal price distribution is

continuous and strictly increasing up to a mass point at the top. The latter

allows us to interpret the seller’s solution as a posted price with dispersed dis-

counts, and thus to relate our findings to pricing policies used in applications.

Screening menus. We have phrased our model with the seller choosing

personalized price offers. Since buyers have private information about their

payoff types, it is natural to ask whether the seller could do better with more

20 Recall that we have assumed that buyers purchase under indifference.
21 The intuition for this order is similar to that in Section 5.3: the seller benefits from

building the demand with lower types so that she can extract more value from higher types.
22 This is always true if u(θ, q) is supermodular. In our Introduction example, where

u(θ, q) = θq and types are drawn uniformly from Θ = [0, 1], the optimal price distribution
under complete information is ΠC(p) =

√
p for p ∈ [0, 1].
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sophisticated mechanisms. In this section, we argue that our focus on price

offers is without loss of generality within the class of public bilateral contracts.

LetM denote the set of all compact subsets of [0, 1]×R+ that contain (0, 0).

We consider a general contracting environment in which the seller offers a menu

Mi ∈M to each buyer (i, θ) ∈ I ×Θ, and buyers then simultaneously choose

an option from their offered menus. Each menu option specifies a probability

of trade x ∈ [0, 1] and a transfer t ∈ R+ from the buyer to the seller, with

(0, 0) corresponding to a buyer’s option of not purchasing the good and not

making any transfer. Clearly, this is a generalization of our main model, as

menus inMP := {{(0, 0), (1, p)} : p ∈ R+} correspond exactly to price offers.

For any menu M ∈ M and willingness to pay v ∈ R+, let (xM(v), tM(v))

be the element of arg max(x,t)∈M(xv − t) with highest x. If a buyer antici-

pates total quantity of trade q and faces menu offer M , his expected quantity

demanded is Dq(M) :=
∫ v(q)

0
xM(v)fq(v) dv, and the expected revenue he gen-

erates is Rq(M) :=
∫ v(q)

0
tM(v)fq(v) dv.23 Analogous to our main model, we

can summarize the seller’s mechanism choice via a distribution—here, a dis-

tribution µ ∈ ∆M over menu offers. Given such a µ, a total quantity q is an

equilibrium quantity if and only if q = Dq(µ) :=
∫
Dq(M) dµ(M), and the

resulting revenue is Rq(µ) :=
∫
Rq(M) dµ(M).

We argue that any menu distribution µ ∈ ∆M admits some price distri-

bution Πµ ∈ ∆(R+) with the same set of equilibrium quantities q ∈ [0, 1]

and generating the same revenue for every equilibrium quantity. The idea

is simple. First, it follows by standard arguments (Myerson, 1981) that any

menu M ∈ M can be replaced by a revenue-equivalent random posted price.

That is, given M , we can define a distribution ΠM such that a buyer who has

willingness to pay v ∈ [0, v(1)] and faces a random posted price with distri-

bution ΠM (and purchases whenever doing so is weakly optimal) would then

purchase with probability xM(v) and generate an expected transfer of tM(v).24

Thus, for any q ∈ [0, 1], we obtain Dq(ΠM) = Dq(M) and Rq(ΠM) = Rq(M).

23 The assumption that buyers choose the highest-x option among their preferred menu
options corresponds to our main model’s assumption that buyers purchase when indifferent.

24 Taking ν > 0, we can let ΠM (v) = xM (v) for v < v(1) + ν, and ΠM (v) = 1 otherwise.
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Next, because there is a continuum of buyers, we can take the distribution

of prices that the individual random posted prices generate in the population

and implement it directly as a distribution of price offers. That is, we can

define Πµ to be the barycenter
∫

ΠM dµ(M), yielding Dq(Πµ) = Dq(µ) and

Rq(Πµ) = Rq(µ) for every q ∈ [0, 1].

The implication is that our focus on price offers rather than menu offers

is without loss. Instead, what matters for our analysis is our maintained

assumption that contracts are bilateral and public. Bilateral contracts means

that the contract offered to a buyer cannot directly condition on the purchasing

decisions of other buyers. If such multilateral contract offers were feasible,

the seller’s concern for strategic uncertainty would be mute.25 Multilateral

contracts are difficult to verify and enforce in practice, and for this reason

they are commonly ruled out in the contracting-with-externalities literature.26

Finally, public contracts means that buyers know the realized distribution of

prices offered in the population. Whether revenue can be improved in a setting

with private contracts—as is the case in the moral-hazard problem of Halac

et al. (2021)—is an open question.

Warm start. Our model assumes a cold-start problem: no buyer is willing

to purchase at a strictly positive price if he anticipates that no other buyer

will purchase. Formally, we assumed that the highest willingness to pay as a

function of the anticipated quantity of trade, v(q), satisfies v(0) = 0. In this

section, we discuss how our results change if we relax this assumption and

consider a “warm-start” model where v(0) > 0. We maintain all of our other

assumptions, including that v is continuously differentiable with v′ > 0.

Conceptually, our analysis can be extended to the warm-start model with

little modification. Both our restatement of the seller’s problem in Proposi-

tion 2 and our characterization of the seller’s solution in Theorem 1 continue

to apply. The latter in particular says that any optimal (Π∗, q∗) has Π∗ greedy

25 The seller would be able to guarantee the best-case outcome by offering each buyer a
contract that specifies the best-case price pB conditional on total quantity q ≥ qB , and a
zero price otherwise.

26 See, e.g., Innes and Sexton (1994), Segal (2003), and Halac et al. (2020).
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up to its highest supported price p∗, and thus that our definition of greediness

remains useful for describing the seller’s optimal price distribution. A key dif-

ference, however, is that greediness now implies zero mass on prices strictly

below v(0), so we must have Π∗(p) = 0 for all p < min{p∗, v(0)}. Therefore,

Theorem 1 in the warm-start model says that Π∗ takes one of two forms: either

Π∗ has no supported prices strictly below v(0)—in which case it takes the form

of a posted price with dispersed discounts, as in our cold-start model—or Π∗

is degenerate on p∗ < v(0)—in which case it is simply a posted price.

The intuition for why a degenerate price distribution could be optimal for

the seller under warm start can be seen immediately by taking v(0) to be high

enough. Indeed, observe that by (the application of) Theorem 1, any optimal

(Π∗, q∗) has Π∗ with highest supported price p∗ ≤ pM(q∗), where pM(q∗) is

the monopoly price that obtains under an exogenous demand Dq∗ . Hence,

a sufficient condition for the seller to choose a degenerate price distribution

in the warm-start model is v(0) > pM(1). In this case, the externalities in

consumption operate in a region of highest values that is above the highest

price the seller could ever want to offer. The seller cannot gain from setting

prices above v(0), and thus she cannot gain from price dispersion.

Low-value externalities. We have assumed that the lowest buyer value

is zero for all anticipated quantities; i.e., that Fq has support [0, v(q)] for all

q ∈ [0, 1]. Suppose instead that the support of Fq is [v(q), v(q)], where v is con-

tinuously differentiable with v′ ≥ 0. Adapting our concavity assumptions to

this more general setting, we can show that our main results in Proposition 2

and Theorem 1 go through essentially unchanged. The proof of Theorem 1

would combine demand-preserving contractions as the ones we use in our base-

line model together with some price increases below v(q∗), namely in a price

range where all buyers are willing to purchase in equilibrium.

Concluding remarks. We have presented a framework for studying per-

sonalized pricing in markets with network externalities. Our analysis provides

an explanation for the use of posted prices together with discounts that are

dispersed across buyers. We showed how the seller’s solution is shaped by
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her concern for strategic uncertainty, and how it changes with the strength of

externalities and with heterogeneity across buyer groups.

We believe there are several potentially fruitful directions for future re-

search. For example, one could build on our model to examine the possibility

of congestion in consumption; this could be introduced by assuming that buy-

ers’ highest-value function v(q) is inverse-U-shaped in the anticipated quantity

of trade q. Another interesting direction would be to extend our analysis to

a two-sided platform, say with sellers on one side and buyers on the other.27

Unlike in our heterogeneous-groups setting of Section 5.3, here participants on

each side would have a value of participating that is increasing in the number

of participants on the other side but (weakly) decreasing in the number of

participants on their same side.

Finally, another possible direction would be to introduce dynamics. Sup-

pose buyers receive offers from the seller and can hold onto them, so they

decide not only whether to purchase but also when to purchase. Taking oth-

ers’ decisions to be independent of his own, assume a buyer purchases at a

time t ≥ 0 if and only if it is dominant for him to do so given the publicly

observed quantity of purchases up until time t− 1.28 If the seller offers a con-

stant price to each buyer, then her solution coincides with that in our static

model. In fact, this dynamic setting offers a transparent dynamic implemen-

tation of our seller’s solution that requires buyers to know neither the seller’s

price distribution nor the distribution of other buyers’ types. In future work,

we are interested in studying the conditions under which this solution remains

optimal even when the seller can commit to prices that change over time.
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A. Preliminaries

Lemma 1. The map taking anticipated quantity q ∈ (0, 1] to its demand func-

tion Dq is continuous (with respect to the supremum norm).

Proof. Fix q ∈ (0, 1] and consider q̃ ∈ (0, 1]. We want to show Dq̃
‖·‖∞−−→ Dq

as q̃ → q. To that end, define

β(q̃) :=

∣∣∣∣‖fq‖∞ − ‖fq̃‖∞∣∣∣∣ and γ(q̃) :=

∥∥∥∥(fq − fq̃)|[0, min{v(q),v(q̃)}]

∥∥∥∥
∞
.

Now, every p ∈ R+ has

|Dq(p)−Dq̃(p)| =

∣∣∣∣(∫
[p,∞)∩[0,v(q)]∩[0,v(q̃)]

+

∫
[p,∞)∩co{v(q),v(q̃)}

)
(fq − fq̃)

∣∣∣∣
≤ γ(q̃)v(1) + |v(q)− v(q̃)| [‖fq‖∞ + β(q̃)] .

Because v is continuous and the right-hand side of the above inequality is

independent of p, the lemma will follow if we establish that β(q̃) and γ(q̃)

both converge to zero as q̃ → q. So given any ε > 0, we want to show q̃ ∈ (0, 1]

close enough to q has β(q̃), γ(q̃) < ε.

Let Q := [1
2
q, 1], a compact neighborhood of q in (0, 1]. Because a con-

tinuous function on a compact space is uniformly continuous, some δ > 0

exists such that any q1, q2 ∈ Q and v1 ∈ [0, v(q1)], v2 ∈ [0, v(q2)] such that

|q1 − q2|, |v1 − v2| < δ have |fq1(v1)− fq2(v2)| < ε
2
. But then, consider any

q̃ ∈ Q with |q̃− q|, |v(q̃)− v(q)| < δ—close enough q̃ satisfies these inequalities

because v is continuous. Clearly, γ(q̃) ≤ ε
2
< ε, so it remains to show β(q̃) < ε.

Take any {q1, q2} = {q, q̃}. Some v1 ∈ [0, v(q1)] exists such that fq1(v1) =

‖fq1‖∞. But then, because v2 := min{v1, v(q2)} has |v1 − v2| < δ, we have

‖fq1‖∞ = fq1(v1) ≤ |fq1(v1)− fq1(v2)|+|fq1(v2)− fq2(v2)|+fq2(v2) < 2 ε
2
+‖fq2‖∞.

Hence, β(q̃) < ε, as required. Q.E.D.

Lemma 2. The functions ∆[0, v(1)] × (0, 1] → R taking a pair (Π, q) to its
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quantity demanded Dq(Π) and revenue Rq(Π) are continuous (when ∆[0, v(1)]

is endowed with its weak* topology).

Proof. Given a continuous function ψ : [0, v(1)]→ R+, we will show (Π, q) 7→∫
ψDq dΠ is continuous. The demand and revenue results will follow by, re-

spectively, setting ψ(p) := 1 and ψ(p) := p. Now, fix any (Π, q) ∈ ∆[0, v(1)]×
(0, 1]. Then, any (Π̃, q̃) ∈ ∆[0, v(1)]× (0, 1] has∣∣∣∣∫ ψDq dΠ−

∫
ψDq̃ dΠ̃

∣∣∣∣ ≤ ∣∣∣∣∫ ψDq d(Π− Π̃)

∣∣∣∣+

∫
ψ |Dq −Dq̃| dΠ̃

≤
∣∣∣∣∫ ψDq d(Π− Π̃)

∣∣∣∣+ ‖ψ‖∞‖Dq −Dq̃‖∞,

which converges to zero as Π̃ → Π and q̃ → q by Lemma 1 and because ψDq

is continuous and bounded on [0, v(1)]. Q.E.D.

Lemma 3. For any given price distribution Π ∈ ∆(R+), the seller’s revenue is

weakly increasing in the anticipated quantity, strictly so wherever the revenue is

strictly positive. Moreover, the induced set of equilibrium quantities is closed

and nonempty. Hence, a least-quantity equilibrium exists and is the unique

worst-case equilibrium.

Proof. By Lemma 2, the set of equilibrium quantities in (0, 1] is closed in

(0, 1]. To see it is closed in R, then, it remains to show 0 is an equilibrium

quantity if it is a limit of them. To that end, suppose some sequence {qn}∞n=1 ⊂
(0, 1] of equilibrium quantities converges to zero. Because Π(0) ≤ Dqn(Π) = qn

for each n ∈ N, we have Π(0) ≤ limn→∞ qn = 0. Thus 0 is an equilibrium

quantity in this case, as desired.

Let us establish that an equilibrium exists. If D0(Π) = 0, then 0 is an

equilibrium quantity, so focus on the case in which D0(Π) > 0. For suffi-

ciently small q0 (e.g., those strictly below D0(Π)), we then have Dq0(Π) ≥ q0.

Meanwhile, D1(Π) ≤ 1. It follows from Lemma 2 and the intermediate value

theorem that some equilibrium quantity in [q0, 1] exists.
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Toward the payoff ranking, note an anticipated quantity q generates revenue

Rq(Π) =

∫ ∞
0

pDq(p) dΠ(p).

Because the integrand weakly increases with Dq(p) at every p ≥ 0, it weakly

increases (given monotonicity of u) with q.

Now we pursue the strict revenue ranking. Suppose two quantities q̃, q ∈
[0, 1] have q̃ < q and Rq(Π) > 0. We want to show Rq(Π) > Rq̃(Π). The

claim holds if q̃ = 0 because then Rq̃(Π) = 0; so focus on the alternative case.

In this case, we can pair Assumption 1 with the fact that (given v′ > 0) the

distributions Fq and Fq̃ are not identical, to deduce Dq(p) > Dq̃(p) for every

p ∈ (0, v(q)). That Rq(Π) > 0 implies Π puts positive mass on such prices

then implies
∫∞

0
pDq(p) dΠ(p) >

∫∞
0
pDq̃(p) dΠ(p), as desired.

Having shown the set of equilibrium quantities is closed in the compact

set [0, 1], a lowest equilibrium quantity q exists. We also know q is a worst-

case equilibrium quantity, uniquely so if Rq(Π) > 0. Finally, if q is a zero-

revenue equilibrium quantity, then our tie-breaking assumption implies q =

Π(0), and so q is the unique zero-revenue equilibrium quantity. The lemma

follows. Q.E.D.

B. Proofs for Section 3 and Section 4

B.1. Proof of Proposition 1

First, let us show that a best degenerate-price equilibrium exists and gen-

erates strictly positive revenue. To that end, consider the program

max(p,q)∈[0,v(1)]×[0,1] pq

s.t. q [Dq(p)− q] = 0.

First, let us observe the program admits some optimal solution (pB, qB) with

strictly positive value. Indeed, notice the constraint function (p, q) 7→ q [Dq(p)− q]
is continuous wherever the quantity is strictly positive by Lemma 2, and it is
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continuous at zero quantity because (p, q) 7→ Dq(p) is bounded. Therefore,

the program has continuous objective on a compact domain and so admits an

optimal solution (pB, qB). Moreover, because (D−1
q (q), q) is feasible and yields

strictly positive value in the program for q ∈ (0, 1), it follows that pBqB > 0.

Let us now see (pB, qB) is a best degenerate-price equilibrium. First, be-

cause qB > 0, we know DqB(pB) − qB = 0, so qB is an equilibrium quantity

for the degenerate price distribution on pB. Next, any alternative degenerate-

price equilibrium (p, q) would either have p > v(1) and hence generate zero

revenue, or would be feasible in the above program and so generate a weakly

lower revenue.

It remains to show any nondegenerate price distribution Π ∈ ∆(R+), with

any equilibrium quantity q it generates, does strictly worse than some degenerate-

price equilibrium. If q is zero (and so too is revenue), then we have nothing

to show because we have already shown a degenerate-price equilibrium can

yield strictly positive revenue. So focus on the case of q ∈ (0, 1]. In this case,

some uniform price—specifically p = D−1
q (q) ∈ [0, v(q)]—exists for which q is

an equilibrium quantity. Moreover, because ϕq,q is strictly increasing (given

Assumption 3), the degenerate price yields a strictly higher revenue. Q.E.D.

B.2. Proof of Proposition 2

Toward showing this program’s solutions are exactly the optimal pairs

(Π∗, q∗), let us invest in some terminology. Say a pair (Π, q) ∈ ∆(R+) ×
[0, 1] is worst-feasible if q is a worst equilibrium for the principal given price

distribution Π. Say a pair (Π∗, q∗) ∈ ∆(R+) × [0, 1] is limit-worst-feasible

(LWF) if it is a limit of a sequence of worst-feasible pairs. Finally, let R∗ :=

sup(Π,q) worst-feasibleRq(Π) denote the principal’s optimal value.

Let us make three preliminary observations. First, any convergent sequence

(Πn, qn)∞n=1 of worst-feasible pairs has

lim
n→∞

Rqn(Πn) = Rq∞(Π∞), where (Π∞, q∞) = lim
n→∞

(Πn, qn). (8)

This result follows immediately from Lemma 2 for the case of q∞ > 0, and in
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the case of q∞ = 0 it follows from 0 ≤ Rqn(Πn) ≤ v(1)Dqn(Πn) = v(1)qn → 0.

Second, observe that some LWF pair (Π̂, q̂) has Rq̂(Π̂) = R∗. Indeed, to

find such a pair, take some sequence of worst-feasible pairs (qn,Πn)∞n=1 with

limn→∞Rqn(Πn) = R∗, which exists by definition of R∗. Because all prices in

[v(1),∞) yield the same revenue (zero), we can assume without loss that Πn ∈
∆[0, v(1)]. Then, by compactness, we can (dropping to a subsequence) assume

without loss that (Πn, qn)∞n=1 converges to some (Π̂, q̂)—which is then as desired

by (8). Third, some worst-feasible pair (hence some LWF pair) generates

strictly positive revenue. Indeed, given p ∈ (0, v1/2), Lemma 3 implies one

can pair Π = 1
2
1[0,∞) + 1

2
1[p,∞) with its (strictly positive) lowest equilibrium

quantity.

Let us now establish, given (Π∗, q∗) ∈ [0, 1]×∆(R+), a four-way equivalence:

(i) The pair (Π∗, q∗) is optimal, in the sense defined in the main text.

(ii) The pair (Π∗, q∗) is LWF and has Rq∗(Π
∗) = R∗.

(iii) The pair (Π∗, q∗) solves the program max(Π,q) LWF Rq(Π).

(iv) The pair (Π∗, q∗) solves program (P∗).

Because we have noted above that some LWF pair (Π̂, q̂) has Rq̂(Π̂) = R∗, and

because we have noted that some LWF pair generates strictly positive revenue,

proving this four-way equivalence will prove the proposition. We will prove

that (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv). First, note that (i) ⇐⇒ (ii) follows

immediately from (8).

Now, let us see that (ii) ⇐⇒ (iii). Recall that some some LWF pair (q̂, Π̂)

has Rq̂(Π̂) = R∗. This equivalence will therefore follow if every LWF (Π, q) has

Rq(Π) ≤ R∗. And indeed, taking some sequence (Πn, qn)∞n=1 of worst-feasible

pairs converging to it, every n has Rqn(Πn) ≤ R∗ by definition of R∗—but

then Rq(Π) ≤ R∗ by (8).

Finally, toward showing (iii) ⇐⇒ (iv), note that the two programs have

the same objective, but different constraint sets. We will first show that any

LWF (Π, q) satisfies the constraints of program (P∗). Then, we will show that

any (Π, q) satisfying the constraints of program (P∗) is either LWF or admits

an alternative LWF pair (Π̃, q̃) that generates strictly higher revenue. This
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will imply the equivalence.

Take any LWF (Π, q), as witnessed by (Πn, qn)n. Toward showing (Π, q)

satisfies the constraints of program (P∗), suppose q̂ ∈ (0, q). For sufficiently

large n, we have qn > q̂; let us argue that Dq̂(Πn) > q̂ for such n, which will

then imply Dq̂(Π) ≥ q̂ by Lemma 2. To show it, assume Dq̂(Πn) ≤ q̂ for

a contradiction. Now, a worst equilibrium for price distribution Πn is qn >

q̂ > 0. Hence, either no zero-quantity equilibrium exists, or the equilibrium

quantity qn > 0 also generates zero revenue: in either case, Πn(0) > 0. But

then, some small enough q̃n ∈ (0, qn)—for instance, any one below Πn(0)—has

Dq̃(Πn) > q̃n, so that the intermediate value theorem delivers (given Lemma 2)

some equilibrium quantity in [q̃n, qn] for Πn, a contradiction.

Finally, consider any (Π, q) satisfying the constraints of program (P∗). We

want to show either that (Π, q) is LWF or that an alternative LWF pair (Π̃, q̃)

is a LWF generating strictly higher revenue. Because we know some LWF

pair generates strictly positive revenue, the conclusion follows immediately if

Rq(Π) = 0; so focus on the case of Rq(Π) > 0 from now on. Now, for any

ε ∈ (0, 1), define the price distribution Πε := (1− ε)Π + ε1[0,∞). Then, every

quantity q̂ ∈ (0, q) has Dq̂(Πε) = (1 − ε)Dq̂(Π) + ε ≥ (1 − ε)q̂ + ε > q̂, and

D0(Πε) ≥ ε > 0. In particular, the worst equilibrium for price distribution

Πε is at least q. Now, considering some sequence (εn)n from (0, 1) converging

to zero, the sequence (Πεn)n of price distributions converges to Π, and has

the property that the worst equilibrium quantity qn for each price distribution

Πεn has qn ≥ q. Dropping to a subsequence if necessary, we may without

loss assume qn converges to some q̃ ∈ [q, 1] as n → ∞. By construction, the

pair (Π, q̃) is a LWF. If q̃ = q then (Π, q) is a LWF, and if q̃ > q then the

LWF (Π, q̃) generates strictly higher revenue than (Π, q) by Lemma 3. The

proposition follows. Q.E.D.

B.3. Inputs for the proof of Theorem 1

The following lemma records a useful technical result that generalizes Propo-

sition 4 of Rappoport (2024).
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Lemma 4. Suppose [v, v] ⊂ R is a nondegenerate interval; f, g : [v, v] → R
are absolutely integrable functions; and ψ : [v, v]→ R is a function of bounded

variation.29

(i) Suppose g is zero wherever f is zero on [v, v], and the ratio g
f

is weakly

increasing where its denominator is nonzero. If
∫ v
v
ψf ≥ 0 for every

v ∈ [v, v], with equality at v = v, then
∫ v
v
ψg ≤ 0.

(ii) Suppose g is zero wherever f is zero on [v, v], and the ratio g
f

is weakly

increasing where its denominator is nonzero. If
∫ v
v
ψf ≥ 0 for every

v ∈ [v, v], with equality at v = v, and some v ∈ [v, v] exists such that∫ v
v
ψf > 0 and g

f
is not constant on any neighborhood of v, then

∫ v
v
ψg <

0.

(iii) Suppose f is zero wherever g is zero on [v, v], and the ratio f
g

is weakly

decreasing where its denominator is nonzero. If f(v), g(v) ≥ 0 and∫ v
v
ψg ≥ 0 for every v ∈ [v, v], then

∫ v
v
ψf ≥ 0.

Proof. First, we prove parts (i) and (ii). To that end, suppose the hypothe-

ses of part (i) are satisfied. In what follows, we interpret g
f

as an arbitrary

nondecreasing function [v, v] → R that agrees with g
f

wherever f is nonzero.

Now, define the absolutely continuous function Ψ : [v, v] → R by letting

Ψ(v) :=
∫ v
v
ψf . Then,

∫ v

v

ψg =

∫ v

v

g
f
Ψ′

=
[
Ψ g
f

]v
v
−
∫ v

v

Ψ d g
f

(by integration by parts)

= 0−
∫ v

v

Ψ d g
f

(since Ψ(v) = Ψ(v) = 0)

≤ 0 (since Ψ ≥ 0 and g
f

is weakly increasing),

establishing part (i). Now, suppose in addition that some v ∈ [v, v] exists such

that Ψ(v) > 0 and g
f

is not constant on any neighborhood of v. By continuity,

29 Throughout, for any interval [v, v] ⊆ R and any Lebesgue integrable function h : [v, v]→
R, we let

∫ v

v
h denote the Lebesgue integral

∫ v

v
h(v) dv.
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Ψ is strictly positive on some some nondegenerate interval of v. Because
g
f

is not constant on this interval, it follows that
∫ v
v
ψg = −

∫ v
v

Ψ d g
f
< 0,

delivering (ii).

Next, we prove part (iii); suppose its hypotheses are satisfied. In what

follows, we interpret f
g

as an arbitrary nonincreasing function [v, v]→ R that

agrees with f
g

wherever g is nonzero.

Now, define the absolutely continuous functions Φ : [v, v] → R by letting

Φ(v) :=
∫ v
v
ψg. Then,

∫ v

v

ψf =

∫ v

v

f
g
Φ′

=
[
Φf
g

]v
v
−
∫ v

v

Φ df
g

(by integration by parts)

= Φ(v)f(v)
g(v)
−
∫ v

v

Φ df
g

(since Φ(v) = 0)

≥ Φ(v)f(v)
g(v)

(since Φ ≥ 0 and f
g

is weakly decreasing)

≥ 0 (since Φ(v), f(v), g(v) ≥ 0),

as required. Q.E.D.

The following lemma is a comparative statics result for comparing different

price distributions: if a reduction in price dispersion preserves aggregate de-

mand under a low anticipated quantity (and the only modified prices are those

that will sometimes be exercised), then the reduction increases both demand

and revenue when the anticipated quantity is higher.

Lemma 5. Given q ∈ (0, 1], suppose distinct price distributions Π, Π̃ ∈ ∆(R+)

are such that Π|(v(q),∞) = Π̃|(v(q),∞), and∫ v

0

(Π− Π̃)fq ≥ 0
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for every v ∈ [0, v(q)], with equality at v = v(q).30 Then, any q̃ ∈ [q, 1] has

Dq̃(Π̃) ≥ Dq̃(Π) and Rq̃(Π̃) > Rq̃(Π).

Proof. Both rankings can be derived as applications of Lemma 4, with (v, v, f, ψ) =

(0, vq, fq,Π− Π̃) and different choices of g.

First, consider g := fq̃|[0,v(q)], and apply Assumption 1. By Lemma 4(i),31

0 ≤
∫ v(q)

0

(Π̃− Π)fq̃

=

∫ v(q̃)

0

(Π̃− Π)fq̃

= Dq̃(Π̃)−Dq̃(Π).

Next, consider g := ϕq,q̃fq. As Assumption 3 holds, Lemma 4(ii) tells us

0 <

∫ v(q)

0

(Π̃− Π)ϕq,q̃fq

=

∫ v(q̃)

0

(Π̃− Π)ϕq̃,q̃ dFq̃

=

∫ v(q̃)

0

(Π− Π̃) dRq̃

= 0−
∫
Rq̃ d(Π− Π̃)

= Rq̃(Π̃)−Rq̃(Π).

Q.E.D.

The following lemma extends our concave externalities assumption to price

distributions rather than just prices.

Lemma 6. Suppose Π ∈ ∆(R+) and 0 ≤ q0 < q1 ≤ 1 have Π (v(q0)) =

Π (v(q1)−). Then q 7→ Dq(Π) is concave on [q0, q1], strictly so if Π (v(q0)) > 0.

30 Note, the equality at v(q) says exactly that Dq(Π̃) = Dq(Π).
31 One can alternatively prove this ranking by using the fact that Fq̃ ◦F−1q is convex under

Assumption 1.
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Proof. For any price p ≤ v(q0), the function q 7→ Dq(p) is strictly concave on

(q0, q1) by Assumption 2, hence on [q0, q1] by Lemma 2. For any price p ≥ v(q1),

the function q 7→ Dq(p) is zero on [q0, q1]. Because a pointwise weighted average

of concave functions is concave, strictly so if this average puts strictly positive

weight on strictly concave functions, the lemma follows. Q.E.D.

To state the next lemma, we invest in some notation.

Notation 1.

• Let ḟq(v) denote the partial derivative of fq(v) with respect to q, which

exists wherever q ∈ (0, 1] and 0 ≤ v ≤ v(q).

• Let ∂Dq(Π) [resp. ∂−Dq(Π) or ∂+Dq(Π)] denote the partial derivative

[resp. left derivative or right derivative] of Dq(Π) with respect to q, if it

exists.

The following lemma establishes that one-sided derivatives of demand with

respect to anticipated quantity are finite, and that the demand function is

kinked if and only if the price distribution has a mass point.

Lemma 7. Suppose Γ : [0, v(1)) → R+ is increasing and right continuous,

and q ∈ (0, 1]. Then:

• ∂−Dq(Γ) =
∫ v(q)

0
Γḟq + v′(q)Γ (v(q)−) fq (v(q)) ∈ R.

• If q < 1, then ∂+Dq(Π) =
∫ v(q)

0
Γḟq + v′(q)Γ (v(q)) fq (v(q)) ∈ R.

• If Γ is continuous at v(q), then q̃ 7→ Dq̃(Γ) is differentiable at q.

• If q < 1 and Γ is discontinuous at v(q), then q̃ 7→ Dq̃(Γ) has a convex

kink at q.

Proof. Whenever 0 ≤ q0 < q1 ≤ 1, we have

Dq1 (Γ)−Dq0 (Γ)

q1−q0 = 1
q1−q0

[∫ v(q1)

0

Γfq1 −
∫ v(q0)

0

Γfq0

]

=

∫ v(q0)

0

Γ
fq1−fq0

q1−q0 + v(q1)−v(q0)
q1−q0

1
v(q1)−v(q0)

∫ v(q1)

v(q0)

Γfq1 .
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Given the Lebesgue dominated convergence theorem, the first two points come

from applying this expression as q0 ↗ q = q1 and as q1 ↘ q = q0, respectively.

Then, combine the first two points for q ∈ (0, 1) to obtain

∂+Dq(Γ)− ∂−Dq(Γ) = v′(q)fq(v(q))
[
Γ (v(q))− Γ

(
v(q)−

)]
,

directly implying the last two points. Q.E.D.

B.4. Proof of Theorem 1

We begin with some useful terminology.

Definition 4. Consider any price distribution Π. Given q ∈ [0, 1]:

• Say Π has mass at q++ if Π(p) > Π (v(q)) for every p > v(q).

• Say Π has mass at q−− if Π(p) < Π (v(q)−) for every p < v(q).

• Say Π has mass at q+ [resp. q−] if it has a mass at q++ [resp. at q−−]

or has a mass point at v(q).

Given q0, q1 ∈ [0, 1] with q0 < q1, say Π is degenerate on [q0, q1] if some

p ∈ [v(q0), v(q1)] exists such that Π (p−) = Π (v(q0)−) and Π (p) = Π (v(q1)).

The following claim shows any optimal price distribution in the subproblem

associated with any targeted quantity uses only prices below the monopoly

price for that anticipated quantity’s demand curve.

Claim 1. Suppose Π ∈ ∆(R+) and q̂ ∈ (0, 1] have Π
(
pM(q̂)

)
< 1. Then,

some Π̃ ∈ ∆(R+) exists such that Dq(Π̃) ≥ Dq(Π) for every q ∈ [0, 1], and

Rq̂(Π̃) > Rq̂(Π).

Proof. Let p∗ := pM(q̂), and let Π̃ := Π|[0,p∗) ∪ 1|[p∗,∞). The distribution Π̃

is below Π in the sense of first-order stochastic dominance, so that Dq(Π̃) ≥
Dq(Π) for every q ∈ [0, 1]. Moreover, Assumption 3 implies any price p 6= p∗

has Rq̂(p) < Rq̂(p
∗). Therefore, given that Π(p∗) < 1, we have

Rq̂(Π̃)−Rq̂(Π) =

∫ ∞
p∗

[R(p∗)−R(p)] dΠ(p) > 0,
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as desired. Q.E.D.

The following claim uses concave externalities to establish that the slack on

the demand constraint is first-order wherever the price distribution has a gap

at the edge of a slack region.

Claim 2. Suppose Π ∈ ∆(R+) and q ∈ [0, 1] have Dq(Π) = q.

• If q < 1, every q̃ > q close enough to q has Dq̃(Π) > q̃, and Π has no

mass at q++, then ∂+Dq(Π) > 1.

• If q > 0, every q̃ < q close enough to q has Dq̃(Π) > q̃, and Π has no

mass at q−−, then ∂−Dq(Π) < 1.

Proof. Define the function ψ : [0, 1] → R via ψ(q̃) := Dq̃(Π) − q̃, which is

continuous by Lemma 2. By Lemma 6, we know ψ is concave in an interval

to the right [left] of q if q < 1 [resp. q > 0] and Π has no mass at q++ [resp.

q−−].

Now, if ψ is zero at q and concave and strictly positive in a right [resp. left]

neighborhood of q, it follows that its right [resp. left] derivative at q is strictly

positive [resp. strictly negative], delivering the claim. Q.E.D.

The following claim shows that a feasible price distribution is always non-

degenerate over (the closure of) any slack region in the range of its support.

Claim 3. Suppose Π ∈ ∆(R+) and p∗ := max Supp Π has Dq(Π) ≥ q for

every q ∈ (0, q̂), for some q̂ ∈ (0, 1] with v(q̂) > p∗. If (q0, q1) is a connected

component of {
q ∈

(
0, q(p∗)

)
: Dq(Π) > q

}
,

then Π is nondegenerate on [q0, q1].

Proof. The claim holds vacuously if p∗ = 0, so focus on the case in which

p∗ > 0.

If Π has mass at q++
0 or at q−−1 , it is clearly nondegenerate on [q0, q1]. So

now, focus on the case in which Π has mass neither at q++
0 nor at q−−1 . The

claim will now follow if we establish that Π has mass points both at v(q0) and

at v(q1).
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Observe first that min Supp Π = 0, for otherwise small enough q ∈
(
0, q(p∗)

)
will have Dq(Π) = 0 < q. Then, by definition of the support (and the hypoth-

esis that Π has mass neither at q++
0 nor at q−−1 ), we know that Π has a mass

point at 0 = v(q0) if q0 = 0, and has a mass point at p∗ = v(q1) if q1 = q(p∗).

It remains now to show that Π has a mass point at v(q0) if q0 > 0, and has

a mass point at v(q1) if q1 < q(p∗). So suppose q0 > 0 [resp. q1 < q(p∗)]. By

definition of (q0, q1), no q̃0 < q0 [resp. q̃1 > q1] exists such that every q ∈ [q̃0, q0]

[resp. every q ∈ [q1, q̃1]] has Dq(Π) > q. But then, by Lemma 2—which applies

given that Dq ≥ q for every q in a neighborhood of (0, q(p∗)]—we in fact have

that Dq0(Π) = q0 [resp. Dq1(Π) = q1]. Claim 2 thus implies ∂+Dq0(Π) > 1

[resp. ∂−Dq1(Π) < 1]. Meanwhile, that q 7→ Dq(Π)− q is zero at q0 [resp. q1]

and nonnegative just to the left [resp. right] of it implies ∂−Dq0(Π) ≤ 1 [resp.

∂+Dq1(Π) ≥ 1]. Thus, q 7→ Dq(Π) has a convex kink at q0 [resp. q1], and so

Lemma 7 tells us Π has a mass point at v(q0) [resp. v(q1)] as desired. Q.E.D.

The following claim says that whenever the price distribution is nondegen-

erate over some interval, a smaller such interval can be found on which the

price distribution is also well-behaved.

Claim 4. Suppose Π ∈ ∆(R+) and 0 ≤ q0 < q1 ≤ 1 are such that Π is

nondegenerate on [q0, q1]. Then some q̃0, q̃1 ∈ [q0, q1] with q̃0 < q̃1 such that:

• Π is nondegenerate on [q̃0, q̃1];

• either q̃0 ∈ (q0, q1) or Π has no mass at q++
0 ;

• either q̃1 ∈ (q0, q1) or Π has no mass at q−−1 .

Proof. If Π has mass at q−−1 , then any q̃0 ∈ (q0, q1), paired with any q̃1 ∈
(q̃0, q1) close enough to q1, is as desired. If Π has mass at q++

0 , then any

q̃1 ∈ (q0, q1), paired with any q̃0 ∈ (q0, q̃1) close enough to q0, is as desired. If Π

has no mass at q−−1 or at q++
0 , then q̃0 = q0 and q̃1 = q1 are as desired. Q.E.D.

The following claim shows that small enough perturbations preserve the

demand constraint on any interval where it is slack (with first-order slack at

the edges).
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Claim 5. Suppose Π, Π̃ ∈ ∆(R+) and 0 ≤ q0 < q1 ≤ 1 are such that:

• Every q ∈ (q0, q1) has Dq(Π) > q, and each q ∈ {q0, q1} has Dq(Π̃) ≥ q;

• Either Dq0(Π) > q0 or ∂+Dq0(Π) > 1, with the former case if q0 = 0;

and

• Either Dq1(Π) > q1 or ∂−Dq1(Π) < 1.

Then, letting Πε := (1− ε)Π + εΠ̃, any small enough ε ∈ (0, 1) has

Dq(Πε) ≥ q, ∀q ∈ [q0, q1].

Proof. First, for either q ∈ {q0, q1}, ifDq(Π) > q, then (given thatDq(Π̃) ≥ q)

every ε ∈ (0, 1) has Dq(Πε) > q. Next, if either q ∈ {q0, q1} has Dq(Π) = q

(which in particular means q > 0 given our hypotheses), then Lemma 7 tells

us one-sided derivatives of q̃ 7→ Dq̃(Π̃) are finite there. So, for small enough

ε ∈ (0, 1):

• Each q ∈ {q0, q1} has Dq(Πε) ≥ q;

• Either Dq0(Πε) > q0 or ∂+Dq0(Πε) > 1; and

• Either Dq1(Πε) > q1 or ∂−Dq1(Πε) < 1.

Fixing such an ε, some q̃0, q̃1 ∈ (q0, q1) exist such that every q ∈ (q0, q̃0]∪[q̃1, q1)

has Dq(Πε) > q. Hence, because ε 7→ Dq(Πε) is affine for every q, it follows

that every q ∈ (q0, q̃0] ∪ [q̃1, q1) and ε ∈ (0, ε] have Dq(Πε) ≥ q.

Hence, all that remains is to see (focusing on the nontrivial case that q0 <

q1) that sufficiently small ε ∈ (0, ε] have Dq(Πε) ≥ q for every (q̃0, q̃1). And

indeed, given Lemma 2, Berge’s theorem tells us the function [0, ε]→ R given

by ε 7→ minq∈[q̃0,q̃1] [Dq(Πε)] is well-defined and continuous. Because [q̃0, q̃1] ⊂
(q0, q1), this function is strictly positive at ε = 0, and so is strictly positive for

small enough ε ∈ (0, ε], delivering the claim. Q.E.D.

Now, with these claims in hand, we pursue the proof of the theorem.

Proof of Theorem 1. First, given Claim 1, any optimal (Π∗, q∗) must have

max Supp Π∗ ≤ pM(q∗).
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Now, we show that any optimal (Π∗, q∗) has Π∗ greedy up to the top of its

support. To that end, consider q∗ ∈ [0, 1] and Π ∈ ∆(R+) such that Dq(Π) ≥ q

for every q ∈ (0, q∗), and Π is not greedy up to p∗ := max Supp Π. We want to

show (Π, q∗) cannot be optimal. We have nothing to show (given the previous

paragraph) if p∗ ≥ v(q∗), so without loss say p∗ < v(q∗). Now, by hypothesis,

the set {
q ∈

(
0, q(p∗)

)
: Dq(Π) > q

}
is nonempty. Meanwhile, Lemma 2 implies this set is open in R, and so

every connected component of it is an open interval. Let (q0, q1) be such a

connected component. Claim 3 (which applies because p∗ < v(q∗)) tells us

Π is nondegenerate on [q0, q1]. Hence, Claim 4 delivers some q̃0, q̃1 ∈ [q0, q1]

with q̃0 < q̃1 such that Π is nondegenerate on [q̃0, q̃1]; either q̃0 ∈ (q0, q1) or

Π has no mass at q++
0 ; and either q̃1 ∈ (q0, q1) or Π has no mass at q−−1 .

Moreover, by Lemma 2, we know Dq0(Π) ≥ q0 and Dq1(Π) ≥ q1. Hence,

applying Claim 2, we therefore have that either Dq̃0(Π) > q̃0 or ∂+Dq̃0(Π) > 1;

and either Dq̃1(Π) > q̃1 or ∂−Dq̃1(Π) < 1. So given any Π̃ ∈ ∆(R+) with

Dq̃0(Π̃) ≥ q̃0 and Dq̃1(Π̃) ≥ q̃1, Claim 5 tells us sufficiently small ε ∈ (0, 1) has

Dq

(
(1− ε)Π + εΠ̃

)
≥ q for every q ∈ [q̃0, q̃1].

We are now equipped to show (Π, q∗) is suboptimal. For any p ∈ [v(q̃0), v(q̃1)],

consider the price distribution Πp which coincides with Π on [0, v(q̃0))∪[v(q̃1),∞),

takes value Π (v(q̃0)−) on [v(q̃0), p), and takes value Π (v(q̃1)) on [p, v(q̃1)). Ob-

serve that p 7→ Dq1(p) is decreasing, Π lies between Πv(q̃0) and Πv(q̃1) (in the

sense of first-order stochastic dominance), and p 7→ Dq1(Πp) is continuous by

Lemma 2. Hence, the intermediate value function yields some p ∈ [v(q̃0), v(q̃1)]

such that Dq1(Πp) = Dq1(Π). For any ε ∈ (0, 1), let Πε := (1− ε)Π + εΠp. By

construction, every q ∈ (0, q0] has Dq(Π
p) = Dq(Π) ≥ q. Meanwhile Lemma 5

tells us Rq∗(Π
p) > Rq∗(Π) and every q ∈ [q1, q

∗) has Dq(Π
p) ≥ Dq(Π) ≥ q.

Therefore, for any ε ∈ (0, 1), we have Rq∗(Πε) > Rq∗(Π) and Dq(Π
p) ≥ q

for every q ∈ (0, q0] ∪ [q1, q
∗). Finally, as noted in the previous paragraph,

sufficiently small ε ∈ (0, 1) has Dq(Π
p) ≥ q for every q ∈ [q̃0, q̃1]. So (Πε, q∗)

witnesses that (Π, q∗) is suboptimal, as claimed above.

Now, letting (Π∗, q∗) be optimal and p∗ := max Supp Π∗, we have estab-
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lished that Π∗ is greedy up to p∗ and p∗ ≤ pM(q∗). All that remains is to see

Π∗ has a mass point at p∗. To that end, note that p∗ ≤ pM(q∗) < v(q∗) implies

q(p∗) < q∗. We can therefore apply Claim 2 to learn ∂+Dq(p∗)(Π
∗) > 1. But

greediness up to p∗ directly tells us ∂−Dq(p∗)(Π
∗) = 1, and so Lemma 7 implies

Π∗ has a mass point at q(p∗). Q.E.D.

B.5. Proof of Corollary 1

Corollary 1 follows directly from Theorem 1 and the next Lemma 8, which

shows that greediness rules out mass points and gaps in a price distribution.

Lemma 8. Suppose q̂ ∈ (0, 1] and Γ : [0, v(q̂)) → R+ is increasing and right

continuous with Dq(Γ) = q for every q ∈ (0, q̂). Then Γ is strictly increasing

and continuous on [0, v(q̂)) with Γ(0) = 0.

Proof. By hypothesis, q 7→ Dq(Γ) is differentiable on (0, q̂), and so Lemma 7

tells us Γ has no discontinuities in (0, v(q̂)). Moreover, Γ(0) = D0(Γ) = 0.

To show Γ is strictly increasing on [0, v(q̂)), it suffices to show (given that

it is weakly increasing by definition) that it is not constant over any interval.

So suppose 0 < q0 < q1 < v(q̂). Because Γ(q0) = q0 > 0, Lemma 6 would

imply q 7→ Dq(Γ) is strictly concave if Γ ◦ v were constant on (q0, q1). But this

function is linear by hypothesis, hence not strictly concave. It follows that

Γ ◦ v is constant on (q0, q1), delivering the claim. Q.E.D.

C. Proofs for Section 5

C.1. Preliminaries

Lemma 9. In the linear demand environment, define Γ∗ : [0, v(1)]→ R by

Γ∗(v) := q(v) +
v

v′(q(v))
.

(i) The function Γ∗ is continuous and strictly increasing, and every q ∈ [0, 1]

has

v(q)Dq(Γ
∗) =

∫ v(q)

0

Γ∗ = qv(q).
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(ii) The function Γ∗ is greedy.32 Conversely, if q̂ ∈ [0, 1] and Γ is greedy up

to v(q̂), then Γ agrees with Γ∗ on [0, v(q̂)).

(iii) A unique p∗ ∈ (0, v(1)) exists with Γ∗(p∗) = 1.

(iv) Every p̂ ∈ [0, p∗] admits a unique q̂ ∈ [q(p∗), 1] such that
∫ v(q̂)

p̂
(1−Γ∗) = 0,

and this q̂ strictly decreases as p̂ increases.

Proof. First, let us observe that Γ∗ is continuous and weakly increasing. It is

continuous because v is continuously differentiable and v′ is strictly positive.

To see it is weakly increasing (or equivalently, that Γ∗◦v is) we apply convexity

of v. First, consider the case in which v is twice differentiable. In this case,

on (0, 1] (where v, v′ are both strictly positive), we have33

(Γ ◦ v)′ = 1 +
(
v
v′

)′
= 1 + (v′)2−v v′′

(v′)2 = 2(v′)2−v v′′

(v′)2

= v3

(v′)2

2(v′)2−v v′′

v3 = v3

(v′)2
2v v′v′−v2v′′

v4 = v3

(v′)2

(−v′
v2

)′
= v3

(v′)2

(
1
v

)′′
≥ 0,

where the last inequality holds because 1
v

is convex. The general case—in

which v : [0, 1]→ R is an arbitrary continuously differentiable function that is

zero at zero, has strictly positive derivative, and has 1
v

convex on (0, 1]—follows

from an approximation argument.34

Now, let Γ : R+ → R+ be any increasing and right-continuous function,

and note that v(q)Dq(Γ) =
∫ v(q)

0
Γ for every q ∈ [0, 1]. Given q̂ ∈ [0, 1], let

us now show Γ is greedy up to v(q̂)—or equivalently, has
∫ v(q)

0
Γ = qv(q) for

every q ∈ [0, q̂]—if and only if Γ agrees with Γ∗ on [0, v(q̂)). To that end, note

Lemma 8 tells us Γ can be greedy up to v(q̂) only if it is continuous on [0, v(q̂))

with Γ(0) = 0, so we can focus on such Γ. Because the equality
∫ v(q)

0
Γ = qv(q)

holds for q = 0 and both sides are differentiable in q, it holds for every q ∈ (0, q̂)

32 Our main text defines greediness only for (increasing and right-continuous) functions
R+ → R+, but the definition can be applied verbatim to a function defined on [0, v(1)].

33 This argument is substantively the same as the observation (?, footnote 11) that a type
distribution is regular if and only if the inverse of its survival function is convex.

34 Any such function is easily seen to be a limit in C1[0, 1] of such functions that are also
twice differentiable, and the induced Γ∗ ◦ v is then a limit of those for the approximating
models, hence is weakly increasing.
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if and only if the derivatives coincide at every q ∈ (0, q̂)—that is

qv′(q) + v(q) = v′(q)Γ (v(q)) .

Rearranging, Γ is greedy if and only if it agrees with Γ∗ on [0, v(q̂)).

In particular, the equivalence of the previous paragraph tells us Γ∗ is greedy,

and Lemma 8 says it is strictly increasing on [0, v(1)). Now, because Γ∗ is

strictly increasing, at most one p∗ ∈ (0, v(1)) can exist with Γ∗(p∗) = 1.

Because Γ∗ is continuous and

Γ∗(0) = 0 < 1 < 1 + v(1)
v′(1)

= Γ∗(v(1)),

the intermediate value theorem tells us some such p∗ exists.

Observe next, because Γ∗ is strictly increasing, it follows that the function

[0, v(1)]→ R given by p 7→
∫ p

0
(1− Γ∗) is continuous and strictly concave and

is maximized at p∗. Moreover, its value at the right endpoint of its domain is∫ v(1)

0
(1−Γ∗) = v(1)−

∫ v(1)

0
Γ∗ = v(1)− 1v(1) = 0, the same as its value at the

left endpoint. Therefore, every p̂ ∈ [0, p∗] admits a unique p̂′ ∈ [p∗, v(1)] such

that
∫ p̂′

0
(1−Γ∗) =

∫ p̂
0

(1−Γ∗)—hence a unique q̂ ∈ [q(p∗), 1] such that
∫ v(q̂)

p̂
(1−

Γ∗) = 0. Moreover, this p̂′ continuously strictly decreases as p̂ increases, and

so too does q̂. Q.E.D.

In line with the previous lemma, we can introduce the following notations:

Notation 2. In the linear demand environment:

(i) Define Q : [0, p∗] → [q(p∗), 1] to be the unique function mapping any

p̂ ∈ [0, p∗] to the unique q̂ ∈ [q(p∗), 1] such that
∫ v(q̂)

p̂
(1− Γ∗) = 0.

(ii) Define P := Q−1 : [q(p∗), 1]→ [0, p∗] and V := v ◦Q : [0, p∗]→ [p∗, v(1)].

(iii) For each p̂ ∈ [0, p∗], define Π(·|p̂) ∈ ∆(R+) via

Π(p|p̂) :=

Γ∗(p) : p < p̂

1 : p ≥ p̂.
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(iv) Define R : [0, p∗]× [q(p∗), 1]→ R by R(p̂, q̂) := Rq̂(Πp̂).

Now, let us record some useful computations about these objects.

Lemma 10. In the linear demand environment:

(i) The functions V and Q are continuously differentiable on [0, p∗), and

P is continuously differentiable on (q(p∗), 1]. Any p̂ ∈ [0, p∗) and q̂ =

Q(p̂) ∈ (q(p∗), 1] have

V ′(p̂) = − 1− Γ∗(p̂)

Γ∗(v(q̂))− 1
, Q′(p̂) =

V ′(p̂)
v′(q̂)

, and P ′(q̂) =
1

Q′(p̂)
,

which are all strictly negative.

(ii) Any p̂ ∈ [0, p∗] has∫ ∞
0

p2 dΠ(p|p̂) = 2

∫ p̂

0

p[1− Γ∗(p)] dp = p̂2
[
1− q(p̂)

]
−
∫ q(p̂)

0

v2.

(iii) Any p̂ ∈ [0, p∗] and q̂ ∈ [q(p∗), 1] have

R(p̂, q̂) =

∫ p̂

0

[
1− 2p

v(q̂)

]
[1− Γ∗(p)] dp.

(iv) Any p̂ ∈ [0, p∗) has d
dp̂
R (p̂,Q(p̂)) = 1−Γ∗(p̂)

V(p̂)
r(p̂), where

r(p̂) := [V(p̂)− 2p̂]− 2

V(p̂) [Γ∗(V(p̂))− 1]

∫ p̂

0

p [1− Γ∗(p)] dp.

(v) The function r : [0, p∗) → R is continuously differentiable with strictly

negative derivative.

(vi) The function [0, p∗] → R given by p̂ 7→ R (p̂,Q(p̂)) is strictly quasicon-

cave with interior maximum.

Proof. We first establish the derivative computations for V , Q, and P . We

need only show the given properties for V , and then those for Q and P follow

directly from the chain rule. At any p̂ ∈ [0, p∗), that Q(p̂) > q(p∗) implies the
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second partial derivative of the continuously differentiable function (p, v) 7→∫ v
p

(1 − Γ∗) is nonzero at (p̂,V(p̂)). The implicit function theorem therefore

implies V is differentiable at p̂ with

0 =
d

dp̂

∫ V(p̂)

p̂

(1− Γ∗) = V ′(p̂) [1− Γ∗(V(p̂))]− [1− Γ∗(p̂)] .

Thus, V ′ is as desired.

Next, observe that the expectation of the squared price given Π(·|p̂) is∫ ∞
0

p2 dΠ(p|p̂) = [1− Γ∗(p̂)]p̂2 +

∫ p̂

0

p2 dΓ∗(p)

= p̂2 − p̂2Γ∗(p̂) +
[
p2Γ∗(p)

]p̂
p=0
−
∫ p̂

0

2pΓ∗(p) dp

= p̂2 − 2

∫ p̂

0

pΓ∗(p) dp

= 2

∫ p̂

0

p [1− Γ∗(p)] dp,

which is in turn equal to p̂2
[
1− q(p̂)

]
−
∫ q(p̂)

0
v2 because the two expressions

are both zero for p̂ = 0 and have the same derivative with respect to p̂.

Toward computing R(p̂, q̂), note that∫ ∞
0

p dΠ(p|p̂) =

∫ ∞
0

[1− Π(·|p̂)] =

∫ p̂

0

(1− Γ∗).

Moreover, that p̂ ∈ [0, p∗] and q̂ ∈ [q(p∗), 1] implies p̂ ≤ v(q̂). Thus,

v(q̂)R(p̂, q̂) = v(q̂)

∫ ∞
0

p
[
1− p

v(q̂)

]
dΠ(p|p̂)

= v(q̂)

∫ ∞
0

p dΠ(p|p̂)−
∫ ∞

0

p2 dΠ(p|p̂)

= v(q̂)

∫ p̂

0

(1− Γ∗)− 2

∫ p̂

0

p [1− Γ∗(p)] dp.

Hence, R(p̂, q̂) =
∫ p̂

0

[
1− 2p

v(q̂)

]
[1− Γ∗(p)] dp.
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Now, because

∂

∂q̂

∣∣∣∣
q̂=Q(p̂)

R (p̂, q̂) =

{∫ p̂

0

2p [1− Γ∗(p)] dp

}
∂

∂q̂

∣∣∣∣
q̂=Q(p̂)

[
−1

v(q̂)

]
=

2v′(q̂)

v(q̂)2

∫ p̂

0

p [1− Γ∗(p)] dp,

the chain rule yields

d

dp̂
R (p̂,Q(p̂)) =

∂

∂p̂
R (p̂,Q(p̂)) +Q′(p̂) ∂

∂q̂

∣∣∣∣
q̂=Q(p̂)

R (p̂, q̂)

=

[
1− 2p̂

v(Q(p̂))

]
[1− Γ∗(p̂)] +

V ′(p̂)
v′(Q(p̂))

2v′(Q(p̂))

v(Q(p̂))2

∫ p̂

0

p [1− Γ∗(p)] dp

=
1− Γ∗(p̂)

v(Q(p̂))

{
[v(Q(p̂))− 2p̂] +

2V ′(p̂)
v(Q(p̂)) [1− Γ∗(p̂)]

∫ p̂

0

p [1− Γ∗(p)] dp

}
=

1− Γ∗(p̂)

v(Q(p̂))
r(p̂).

Next, that r is continuously differentiable on [0, p∗) follows directly from

V being so and Γ∗ being continuous. To see r has strictly negative derivative

on [0, p∗), it suffices to see that r(p̂) + 2p̂ is decreasing on this range. And

indeed, because V is decreasing there, it follows that p̂ 7→ r(p̂) + 2p̂ is a de-

creasing function minus the ratio of a positive increasing function to a positive

decreasing function—and hence is decreasing as desired.

Finally, because d
dp̂
R (p̂,Q(p̂)) is a strictly positive multiple of r(p̂), which is

strictly decreasing in p̂ ∈ [0, p∗), it follows that p̂ 7→ R (p̂,Q(p̂)) is strictly qua-

siconcave on [0, p∗)—hence on [0, p∗] by continuity. Moreover, p̂ 7→ R (p̂,Q(p̂))

is maximized on the interior of its domain if r has an interior root. And indeed,

r(0) = v(1) > 0, whereas any p̂ ∈ [0, p∗) close enough to p∗ has V(p̂) < 2p̂

and so r(p̂) < 0. Therefore, r has an interior root by the intermediate value

theorem. Q.E.D.

Lemma 11. In the linear demand environment, (Π∗, q∗) is optimal if and only

if Π∗ = Π(·|p∗) and q∗ = Q(p∗) for the unique p∗ ∈ (0, p∗) satisfying r(p∗) = 0.

Proof. First, we observe any optimal (Π∗, q∗) must have Π∗ = Π(·|p̂) for some
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p̂ ∈ [0, p∗]. To see this, note that Theorem 1 tells us Π∗ is greedy up to the

top of its support p∗. But then Lemma 9 tells us Π∗ agrees with Γ∗ on [0, p∗),

and so fact that Π∗ is in ∆(R+) tells us Π∗ = Π(·|p∗) and p∗ ≤ p∗.

Now we argue that, given p̂ ∈ [0, p∗], the set of all q ∈ (0, 1] withDq(Π(·|p̂)) ≥
q is equal to [0,Q(p̂)]. Toward this characterization, first note (given Lemma 9)

any q ∈ [0, q(p̂)] has Dq(Π(·|p̂)) =
∫ v(q)

0
Π(·|p̂)fq =

∫ v(q)

0
Γ∗fq = Dq(Γ

∗) = q.

Next observe, any q ∈ [q(p̂), 1] has (again by Lemma 9)

v(q)Dq(Π(·|p̂)) = v(q)

∫ v(q)

0

Π(·|p̂)fq =

∫ v(q)

0

Π(·|p̂) =

∫ p̂

0

Γ∗ +

∫ v(q)

p̂

1,

and so v(q) [Dq(Π(·|p̂))− q] =
∫ p̂

0
Γ∗ +

∫ v(q)

p̂
1 −

∫ v(q)

0
Γ∗ =

∫ v(q)

p̂
(1 − Γ∗).

Therefore, because Lemma 9 says Γ∗ is strictly increasing, the function q 7→
v(q) [Dq(Π(·|p̂))− q] is strictly quasiconcave on [q(p̂), 1] and zero at q(p̂). Be-

cause the function also takes value zero at Q(p̂), it is then nonnegative up to

Q(p̂) and strictly negative to the right. Thus, {q ∈ (0, 1] : Dq(Π(·|p̂)) ≥ q} =

[0,Q(p̂)], as desired.

By the previous two paragraphs, we can write the seller’s problem (P∗) as

max
p̂∈[0,p∗], q̂∈[0,1]

Rq̂(Π(·|p̂)) s.t. q̂ ≤ Q(p̂).

Because Lemma 3 tells us the objective is strictly increasing (wherever strictly

positive, as the optimal revenue is) in the quantity, the seller optimally sets

q̂ = Q(p̂), and so her problem can be written as

max
p̂∈[0,p∗]

R(p̂,Q(p̂)).

By Lemma 10, this objective is strictly quasiconcave with interior optimum,

and the optimum p∗ is characterized by r(p∗) = 0. Q.E.D.

C.2. Proof of Proposition 3

We begin by proving the following Lemma 12, which we will then use in

the proof of Proposition 3.
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Lemma 12. Take the linear demand environment.

(i) If the seller posts a price strictly greater than pB :=
∫ p∗

0
(1−Γ∗) ∈ (0, p∗),

then the highest equilibrium quantity is zero.

(ii) If the seller posts a price p̂ ∈ [0, pB], then a given q̂ is an equilibrium

quantity if and only if p̂ = PB(q̂), where PB(q̂) :=
∫ v(q̂)

0
(1 − Γ∗). In

particular, the highest such quantity is the unique QB(p̂) ∈ [q(p∗), 1] such

that PB(QB(p̂)) = p̂.

(iii) The functions PB and QB are continuously differentiable on [0, pB) and

(q(p∗), 1], respectively. Any p̂ ∈ [0, p∗) and q̂ = Q(p̂) ∈ (q(p∗), 1] have

d

dq̂
PB(q̂) = −v′(q̂) [Γ∗(v(q̂))− 1] and

d

dp̂
QB(p̂) =

1
d
dq̂

∣∣
q̂=QB(p̂)

PB(q̂)
,

which are both strictly negative.

(iv) Letting RB(p̂, q̂) := Rq̂(p̂), any p̂ ∈ [0, pB) has d
dp̂
RB

(
p̂,QB(p̂)

)
=

1
v(QB(p̂))

rB(p̂), where

rB(p̂) :=
[
v(QB(p̂))− 2p̂

]
− 1

v(QB(p̂)) [Γ∗(v(QB(p̂)))− 1]
p̂2.

(v) The function rB : [0, pB)→ R is continuously differentiable with strictly

negative derivative.

(vi) The function [0, pB] → R given by p̂ 7→ RB
(
p̂,QB(p̂)

)
is strictly quasi-

concave with interior maximum.

(vii) Under best-case equilibrium selection, the unique optimal price distribu-

tion is degenerate at the unique price pB ∈ (0, p∗) with rB(pB) = 0, and

the unique best equilibrium quantity at that price is qB := QB(pB).

Proof. By Proposition 1, the seller optimally chooses a deterministic price

and so solves

max
p̂∈R+, q̂∈[0,1]

RB(p̂, q̂) s.t. Dq̂(p̂) = q̂.

By the same proposition, an optimum exists and has both price and quantity

being strictly positive. Now, let us rewrite the equilibrium constraint. Any
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quantity q̂ ∈ (0, 1] and price p̂ ∈ R+ have

Dq̂(p̂) = q̂ ⇐⇒ 1− p̂
v(q̂)

= q̂ ⇐⇒ p̂ = (1− q̂)v(q̂) ⇐⇒ p̂ =

∫ v(q̂)

0

(1− Γ∗),

where the last equivalence follows from Lemma 9. Now, defining PB : [0, 1]→
R given by PB(q̂) :=

∫ v(q̂)

0
(1 − Γ∗), Lemma 9 tells us PB is continuous and

strictly quasiconcave with PB(0) = PB(1) = 0 and maximizer q(p∗). There-

fore, the range of PB is [0, pB] for pB :=
∫ p∗

0
(1 − Γ∗) ∈ (0, p∗), and every

p̂ ∈ [0, pB] has one solution in [0, q(p∗)] and one solution in [q(p∗), 1] to

PB(·) = p̂. So let QB : [0, pB] → [q(p∗), 1] be such that PB(QB(p̂)) = p̂

for every p̂ ∈ [0, pB]; Lemma 3 tells us seller revenue is strictly increasing

(wherever strictly positive, as the optimal revenue is) in the quantity, and so

the best equilibrium quantity if the seller set price p̂ is q̂ = QB(p̂). We can

thus write the seller’s problem under best case selection as

max
p̂∈[0,pB ]

RB(p̂,QB(p̂)).

Now, the function QB is continuous and strictly decreasing by construc-

tion. Moreover, because d
dq̂
PB(q̂) = −v′(q̂) [Γ∗(v(q̂))− 1], which is contin-

uous and strictly negative for q̂ ∈ [0, q(pB)), the inverse function theorem

tells us QB is continuously differentiable on (0, pB] with derivative d
dp̂
QB(p̂) =

1
v′(QB(p̂))[Γ∗◦v◦QB(p̂)−1]

there. We are now equipped to compute the seller’s first-

order condition under best-case selection. For any p̂ ∈ (0, pB), at q̂ = QB(p̂)
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and v̂ = v(q̂) we have

v(QB(p̂))
d

dp̂
RB(p̂,QB(p̂)) = v̂

[
∂

∂p̂
RB(p̂, q̂) + (QB)′(p̂)

∂

∂q̂
RB(p̂, q̂)

]
= v̂

{
∂

∂p̂

[
p̂

(
1− p̂

v(q̂)

)]
+ (QB)′(p̂)

∂

∂q̂

[
p̂

(
1− p̂

v(q̂)

)]}
= v̂

{[
1− 2p̂

v̂

]
+

−1

v′(q̂) [Γ∗(v̂)− 1]

p̂2

v̂2
v′(q̂)

}
= [v̂ − 2p̂]− 1

v̂ [Γ∗(v̂)− 1]
p̂2

=
[
v(QB(p̂))− 2p̂

]
− 1

v(QB(p̂)) [Γ∗(v(QB(p̂)))− 1]
p̂2,

which is rB(p̂). Because the denominator v(QB(p̂))
[
Γ∗(v(QB(p̂)))− 1

]
is pos-

itive and decreasing in p̂ ∈ (0, pB), it follows that the decreasing rB has strictly

negative derivative on (0, pB)—hence the seller’s problem under best-case se-

lection is strictly quasiconcave in the choice of posted price. To see an interior

root of rB exists, note that r(0) = v(1) > 0, whereas any p̂ ∈ (0, pB) close

enough to pB has v(QB(p̂)) < 2p̂ and so rB(p̂) < 0; thus the intermediate

value theorem applies. Q.E.D.

Proof of Proposition 3. Given Lemma 12, we know the strictly positive

price pB < pB < p∗ is the unique price such that rB(pB) = 0, and qB =

QB(pB). We will use these facts to compare with worst-case selection.

Let p∗ and q∗ be the highest supported price and equilibrium quantity as

described in Lemma 11. We want to show that p∗ > pB and q∗ > qB. Because

Q is strictly decreasing, we can equivalently show that P(qB) > p∗ > pB. By

Lemma 10, we can rewrite this condition as the requirement that r(P(qB)) <

0 < r(pB). Toward both of these rankings, observe that any p̂ ∈ (0, p∗) has

r(p̂) = r(p̂)− rB(pB)

= [V(p̂)− 2p̂]−
[
v(qB)− 2pB

]
− 1
V(p̂)[Γ∗(V(p̂))−1]

∫ ∞
0

p2 dΠ(p|p̂) + 1
v(qB)[Γ∗(v(qB))−1]

(pB)2

65



Toward the price ranking, note that specializing the above calculation yields

r(pB) = V(pB)−v(qB)− 1
V(pB)[Γ∗(V(pB))−1]

∫ ∞
0

p2 dΠ(p|pB)+ 1
v(qB)[Γ∗(v(qB))−1]

(pB)2.

That Π(pB|pB) = 1 implies
∫∞

0
p2 dΠ(p|pB) ≤ (pB)2; and that Γ∗ is increasing

(Lemma 9) and V decreasing implies 1
V·[Γ∗◦V−1]

is increasing on [0, p∗). Hence,

r(pB) > 0 will follow if we show V(pB) > v(qB). And indeed,

∫ V(pB)

v(qB)

(Γ∗ − 1) =

(∫ v(qB)

0

−
∫ V(pB)

pB
−
∫ pB

0

)
(1− Γ∗)

= pB − 0−
∫ pB

0

(1− Γ∗)

=

∫ pB

0

Γ∗ > 0,

delivering V(pB) > v(qB) because Γ∗ > 1 between them. The price ranking

follows.

Toward the quantity ranking, observe that

r(P(qB)) =
[
V(P(qB))− 2P(qB)

]
−
[
v(qB)− 2pB

]
− 1
V(P(qB))[Γ∗(V(P(qB)))−1]

∫ ∞
0

p2 dΠ(p|P(qB)) + 1
v(qB)[Γ∗(v(qB))−1]

(pB)2

= −2
[
P(qB)− pB

]
− 1

v(qB)[Γ∗(v(qB))−1]

[∫ ∞
0

p2 dΠ(p|P(qB))− (pB)2

]
.

So r(P(qB)) < 0 would follow if we knew P(qB) > pB and
∫∞

0
p2 dΠ(p|P(qB)) ≥

(pB)2. To establish both inequalities, observe that

pB = pB − 0 =

(∫ v(qB)

0

−
∫ V(P(qB))

P(qB)

)
(1− Γ∗) =

∫ P(qB)

0

(1− Γ∗).

This identity first implies P(qB) > pB because
∫ P(qB)

0
(1−Γ∗) < P(qB). Then,

to show
∫∞

0
p2 dΠ(p|P(qB)) ≥ (pB)2, it suffices to show

∫∞
0
p2 dΠ(p|p̂) −[∫ p̂

0
(1− Γ∗)

]2

is nonnegative for any p̂ ∈ [0, p∗]. And indeed, the expression is
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obviously zero for p̂ = 0, and it satisfies

d

dp̂

{∫ ∞
0

p2 dΠ(p|p̂)−
[∫ p̂

0

(1− Γ∗)

]2
}

=
d

dp̂

{
2

∫ p̂

0

p [1− Γ∗(p)] dp−
[∫ p̂

0

(1− Γ∗)

]2
}

= 2p̂ [1− Γ∗(p̂)]− 2

[∫ p̂

0

(1− Γ∗)

]
[1− Γ∗(p̂)]

= 2 [1− Γ∗(p̂)]

∫ p̂

0

Γ∗ ≥ 0.

The quantity ranking follows.

Finally, we turn to the consumer surplus ranking. Let Π∗ := Π(·|p∗) be

the optimal (under worst-case selection) price distribution, and let Π be the

modified price distribution given by capping the price at v(qB)—that is Π(p)

is equal to Π∗(p) for p < v(qB), and is equal to 1 for p ≥ v(qB). Observe, any

p ∈ R+ has

1
v(qB)

[
pB −min{p, v(qB)}

]
= DqB(min{p, v(qB)})−DqB(pB)

= DqB(p)− qB,

and so 1
v(qB)

[
pB −

∫∞
0
p dΠ(p)

]
= DqB(Π∗)−qB, which is nonnegative because

qB < q∗ and (Π∗, q∗) satisfies the demand constraints. Having established

pB ≥
∫∞

0
p dΠ(p), we now pursue the surplus ranking. To that end, define

CSq(p) :=

∫
(v − p)+ dFq(v) =

∫ ∞
p

Dq

the consumer surplus associated with anticipated quantity q (hence demand

curve Dq) and a price offer of p; and let CSq(Π̂) :=
∫

CSq(p) dΠ̂(p) for any

price distribution Π̂. Observe that CSq(p) is decreasing in p, strictly convex

in p (because Dq is strictly decreasing) wherever 0 ≤ p ≤ v(q), and (because

u(θ, ·) is increasing) increasing in q. Moreover, the price distribution Π is

nondegenerate because pB > 0 and Π∗ has nondegenerate convex support
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including zero. Therefore,

CSqB(pB) ≤ CSqB

(∫
p dΠ(p)

)
< CSqB(Π) = CSqB(Π∗) ≤ CSq∗(Π

∗),

where the last inequality holds because q∗ ≥ qB. Q.E.D.

C.3. Proof of Proposition 4

For any ω ∈ [0, 1], define vω : [0, 1]→ R by letting vω(q) := 1

(1−ω)
1

v0(q)
+ω

1
v1(q)

for q ∈ (0, 1], and vω(0) := 0; this vω is also an instance of the linear demand

environment. In particular, 1
vω

inherits strict convexity from 1
v0

and 1
v1

. Ob-

serve that any q ∈ (0, 1] has

∂

∂ω
log vω(q) = − ∂

∂ω
log

1

vω(q)
= −

1
v1(q)
− 1

v0(q)

1
vω(q)

=

v1(q)
v0(q)
− 1

(1− ω)v1(q)
v0(q)

+ ω
,

which is strictly increasing in q because v1(q)
v0(q)

is. Equivalently, whenever 0 <

q < q̃ ≤ 1, we have ∂
∂ω

[
vω(q̃)
vω(q)

]
> 0, a log-supermodularity property that will

be useful in establishing the quantity ranking.

First, we pursue the price distribution ranking. That v1

v0
has nonnegative

derivative on (0, 1] means v1

v′1
≤ v0

v′0
, and so Γ∗1 ◦ v1 ≤ Γ∗0 ◦ v0. Using this fact, let

us see that Γ∗1(p) < Γ∗0(p) for any price p with 0 < p ≤ min{v0(1), v1(1)}. To

see it, let qω := v−1
ω (p) ∈ (0, 1] for each ω ∈ {0, 1}. That v1 exhibits stronger

externalities than v0 implies q1 < q0—since the strictly increasing function v1

v0

is above 1 on (0, 1], it is in fact strictly above 1 there.35 It follows that

Γ∗0(p) = Γ∗0(v0(q0)) ≥ Γ∗1(v1(q0)) > Γ∗1(v1(q1)) = Γ∗1(p).

Therefore, given Lemma 11, any p with 0 < p < min{p∗1, p∗0} has Π∗0(p) =

Γ∗0(p) < Γ∗1(p) = Π∗1(p).

Next, we turn to the quantity ranking. Define r̃(q̂, ω) := rω(Pω(q̂))
Pω(q̂)

for any

35 This observation is the only part of the proposition that uses the condition that v1 ≥ v0.
In particular, the quantity ranking follows only from v1

v0
being strictly increasing on (0, 1].
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(q̂, ω) ∈ [0, 1)× [0, 1] with vω(q̂) > p∗ω. Below, we will show that the function

r̃ has strictly negative partial derivative with respect to its second argument

at (q∗ω, ω) for any ω ∈ [0, 1]; let us now see that doing so would establish the

result. First, an application of the implicit function theorem tells us (q̂, ω) 7→
Pω(q̂) is continuously differentiable on the range of (q̂, ω) ∈ [0, 1)× [0, 1] with

vω(q̂) > p∗ω, and that Pω is strictly decreasing (Lemma 10) tells us it is strictly

positive there. Because (p̂, ω) 7→ rω(p̂) is continuously differentiable on the

range of (p̂, ω) ∈ R+ × [0, 1] with p̂ < p∗ω, it follows that r̃ is continuously

differentiable on its domain. Next, observe, any ω ∈ [0, 1] has

∂

∂q̂

∣∣∣∣
q̂=q∗ω

r̃(q̂, ω) =
p∗ωr

′
ω(p∗ω)− 1rω(p∗ω)

(p∗ω)2
P ′ω(q∗ω) =

P ′ω(q∗ω)

p∗ω
r′ω(p∗ω) > 0,

where the second equality holds by Lemma 10 and Lemma 11 and the strict

inequality follows from Lemma 10. Because q∗ω is the unique solution q̂ to

r̃(q̂, ω) = 0 for each ω ∈ [0, 1], it follows that ω 7→ q∗ω is continuously differen-

tiable. Therefore, at any ω ∈ [0, 1] and q̂ = q∗ω, we have

0 =
d

dω
0 =

d

dω
r̃(q∗ω, ω) =

[
∂

∂ω
r̃(q̂, ω)

]
+

[
∂

∂q̂
r̃(q̂, ω)

] [
∂

∂ω
q∗ω

]
.

Because we have shown ∂
∂q̂

∣∣
q̂=q∗ω

r̃(q̂, ω) > 0, the hypothesis that ∂
∂ω

∣∣
q̂=q∗ω

r̃(q̂, ω) <

0 therefore implies ∂
∂ω
q∗ω > 0; hence, ω 7→ q∗ω is strictly increasing, and so

q∗1 > q∗0.

Thus, all that remains is to show is that ∂
∂ω
r̃(q̂, ω) < 0 wherever r̃(q̂, ω) is

zero. To that end, fix any q∗ ∈ (0, 1) for the remainder of our analysis. Define

now the continuously differentiable (by Lemma 9 and Lemma 10) functions

r∗ : (0, 1)× [0, 1] → R

(q, ω) 7→ 1− q
1− q∗

− 2− 2(1− q∗)
vω(q)2(1− q) [Γ∗ω(vω(q∗))− 1]

∫ vω(q)

0

p [1− Γ∗ω(p)] dp

=
1− q
1− q∗

− 2− 1− q∗

Γ∗ω(vω(q∗))− 1

[
1− 1

vω(q)2(1− q)

∫ q

0

v2
ω

]
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and

q∗ : {ω ∈ [0, 1] : vω(q∗) > p∗ω} → (0, 1)

ω 7→ v−1
ω (Pω(q∗)) .

Now, for any ω in the domain of q∗, the definition of Pω implies

0 =

∫ vω(q∗)

vω(q∗(ω))

(1−Γ∗) =

∫ vω(q∗)

0

(1−Γ∗)−
∫ vω(q∗(ω))

0

(1−Γ∗) = (1−q∗)vω(q∗)−[1− q∗(ω)] vω(q∗(ω)),

where the last identity follows from Lemma 9. It follows that every such ω has

r̃(q∗, ω) = r∗(q∗(ω), ω). Therefore,

∂

∂ω
r̃(q∗, ω) =

[
∂

∂q

∣∣∣∣
q=q∗(ω)

r∗(q, ω)

]
q′∗(ω) +

[
∂

∂ω

∣∣∣∣
q=q∗(ω)

r∗(q, ω)

]
.

To show ∂
∂ω
r̃(q∗, ω) < 0, it thus suffices to show ∂

∂q

∣∣
q=q∗(ω)

r∗(q, ω) and ∂
∂ω

∣∣
q=q∗(ω)

r∗(q, ω)

are both strictly negative and q′∗(ω) is strictly positive. We pursue each of these

three inequalities.

Toward signing q′∗(ω), observe the definition of q∗(·) and Lemma 9 imply

0 =

∫ vω(q∗)

vω(q∗(ω))

(1− Γ∗) = (1− q∗)vω(q∗)− [1− q∗(ω)] vω(q∗(ω)),

which rearranges to

1− q∗ = [1− q∗(ω)]
vω(q∗(ω))

vω(q∗)
.

70



Differentiating the above equation tells us

0 = [1− q∗(ω)]
∂

∂ω

∣∣∣∣
q=q∗(ω)

[
vω(q)

vω(q∗)

]
+ q′∗(ω)

∂

∂q

∣∣∣∣
q=q∗(ω)

[
(1− q) vω(q)

vω(q∗)

]
< q′∗(ω)

∂

∂q

∣∣∣∣
q=q∗(ω)

[
(1− q) vω(q)

vω(q∗)

]
= q′∗(ω)

v′ω(q∗(ω))

vω(q∗)
[1− Γ∗(vω(q∗(ω)))] .

Hence, q′∗(ω) is strictly positive.

Now, to sign ∂
∂ω
r∗(q, ω), it suffices to show

1− 1
vω(q)2(1−q)

∫ q
0
v2
ω

Γ∗ω(vω(q∗))− 1

has strictly positive partial derivative with respect to ω at q = q∗(ω). Because

both the numerator and denominator are strictly positive there, it suffices to

show the numerator is has positive partial derivative and denominator has

negative partial derivative with respect to ω, at least one of them strictly so.

First, the numerator’s partial derivative is a strictly negative multiple of

∂

∂ω

[ ∫ q
0
v2
ω

vω(q)2

]
=

∂

∂ω

∫ q

0

[
vω(q̂)

vω(q)

]2

dq̂ = 2

∫ q

0

vω(q̂)

vω(q)

∂

∂ω

[
vω(q̂)

vω(q)

]
dq̂,

which is strictly negative. Second, the denominator’s partial derivative is

∂

∂ω
[Γ∗ω(vω(q∗))− 1] =

∂

∂ω

[
vω(q∗)

v′ω(q∗)

]
=

∂

∂ω

{
1

∂
∂q

∣∣
q=q∗

log vω(q)

}
,

which is nonpositive by log-supermodularity. So ∂
∂ω
r∗(q, ω) < 0.

Finally, we turn to signing ∂
∂q
r∗(q, ω). To that end, let q := q∗(ω), let v :=

vω(q), and let v′ := v′ω(q). Then, that Γ∗ω(v) < 1 rearranges to (1 − q)v′ > v.
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Hence,

∂

∂q

[ ∫ q
0
v2
ω

vω(q)2(1− q)

]
=

v2(1− q)v2 − [2(1− q)vv′ − v2]
∫ q

0
v2
ω

v4(1− q)2

<
v2(1− q)v2 − (2v2 − v2)

∫ q
0
v2
ω

v4(1− q)2

=
1

1− q

[
1− 1

(1− q)v2

∫ q

0

v2
ω

]
.

Therefore, at such q we have

∂

∂q
r∗(q, ω) =

−1

1− q∗
+

1− q∗

Γ∗ω(vω(q∗))− 1
· ∂
∂q

[ ∫ q
0
v2
ω

vω(q)2(1− q)

]
<

−1

1− q∗
+

1− q∗

Γ∗ω(vω(q∗))− 1

{
1

1− q

[
1− 1

(1− q)v2

∫ q

0

v2
ω

]}
=

−1

1− q
[r∗(q, ω) + 2]

=
−2

1− q
< 0.

The quantity ranking follows. Q.E.D.

C.4. Proof of Proposition 5

To be added.
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