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Abstract

An expert advises a decision maker over time. With both the quality of advice and the extent to which it is 
followed remaining private, the players have limited information with which to discipline each other. Even 
so, communication in and of itself facilitates cooperation, the relationship evolving based on the expert’s 
advice. We show a formal equivalence between our setting and one of cheap talk with capped money 
burning, enabling an exact characterization (at fixed discounting) of the expert’s attainable payoffs. While 
an ongoing relationship often helps, our characterization implies that, absent feedback, relational incentives 
can never restore commitment.
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In many economic relationships, those with authority over a decision differ from those with 
the relevant expertise to make that decision, and their interests may differ. A sensible means to 
informed decision-making is for the parties to communicate, as in the model of Crawford and 
Sobel (1982) (hereafter CS). However, conflicting interests hinder communication: when infor-
mation transmission is strategic and unverifiable (i.e., “cheap talk”) the expert cannot commit 
to convey her information truthfully and the decision maker cannot commit to how he will use 
the advice. For instance, when a policy analyst with domain-specific expertise advises a policy-
maker, the latter has little means to assess the quality of the advice before acting; and when a 
financial analyst advises a client on investment decisions, the client retains authority over how to 
actually invest the funds.

A hallmark feature of advisory relationships is that they are often dynamic, enabling the 
players to provide incentives via future rewards to discipline today’s behavior. To provide such 
incentives, the parties might rely on feedback concerning others’ past behavior. For example, to 
punish advice not given in good faith, the policymaker might use some ex-post feedback about 
the information on which the analyst based her advice. Similarly, to know whether her advice 
was followed, the analyst might use some feedback about the policymaker’s choices following 
her advice.

The premise that motivates this study is that the above feedback may not always be readily 
available. Feedback about contemporaneous information and play could be too noisy, delayed, 
or complex to be meaningfully relied upon for sustaining cooperation. Stepping further outside 
the model, the exact nature of what an expert knows or what options a decision maker faces may 
be prohibitively difficult for others to assess. Nevertheless, an ongoing advice-based relationship 
is still an inherently dynamic relationship, because the advice itself serves as a shared history 
between the players. With this perspective, as a theoretical benchmark, we study a repeated 
game between a sender and a receiver in which the only source of feedback to the players is the 
sender’s advice.

We observe in this paper that communication in and of itself facilitates cooperation. The key 
observation is that some advice (when expected to be followed) is inherently more tempting for 
some types of experts to give. Accordingly, by varying the terms of the relationship based on 
what the expert suggests, different forms of advice can be priced. We formalize this intuition and 
characterize the limits of this channel.

Formally, we study an infinite-horizon discounted repeated game between an expert and a 
decision maker. Each period, an independent payoff state is drawn and privately observed by 
the expert. The expert sends a message to the decision maker who, upon hearing the message, 
privately chooses an action. As the decision maker never observes the (current or past) state, and 
the expert never observes the decision maker’s (current or past) action, neither is used to vary 
the future terms of the relationship. Even so, we show that conditioning future play on today’s 
communication can aid cooperation. To trace the limits of such cooperation, we ask which expert 
payoffs can arise in equilibrium.

In order to characterize equilibrium outcomes, we consider two auxiliary static games. First, 
we consider our stage game (with identical action space for the decision maker, state distribution, 
and payoffs for both players), further endowing the expert with the ability to observably burn 
money along with any message, up to an exogenously specified cap M ≥ 0. The expert’s highest 
equilibrium payoff in the auxiliary game is weakly higher than in our true stage game and, as 
Austen-Smith and Banks (2000) demonstrated for the leading example of CS, can be strictly 
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higher. Dually, we consider our stage game with the expert further allowed to observably collect 
bonuses along with her sent message, up to a cap.1

Our main result is that the set of expert equilibrium payoffs in our repeated game exactly 
coincides with those attainable in these auxiliary static games (with the cap being the largest one 
compatible with a dynamic enforcement constraint). This theorem, which is nearly an immediate 
consequence of the standard recursive toolbox (e.g. Abreu et al., 1990, hereafter APS),2 still 
provides new insights for long-run advisory relationships. First, conceptually, we formalize a 
sense in which the future relationship can be used to price an expert’s various recommendations. 
Next, we make progress toward the question of which types of advisory relationships are served 
by relational incentives; in particular, the theorem readily implies that repetition can never help 
an expert whose preferences are independent of the state. Further, our main result implies that 
a very patient expert’s best equilibrium payoff is her best payoff from static cheap talk with 
(uncapped) money burning; repetition can therefore never restore her “Bayesian persuasion” 
value. Finally, we apply our characterization to a repeated game of project funding, solving 
for the expert’s equilibrium payoff set at every discount factor by analyzing a textbook, static 
mechanism problem.

Related literature

Since CS and Green and Stokey (2007), sender-receiver games featuring “cheap talk” com-
munication have been a canonical framework for studying information transmission between 
an informed expert and an uninformed decision maker. More broadly, a large literature stud-
ies communication games with other protocols, including mediated communication (e.g. Forges, 
1986; Salamanca, 2021), back-and-forth communication (e.g. Forges, 1990; Krishna and Mor-
gan, 2004; Aumann and Hart, 2003), communication with evidence (e.g. Glazer and Rubinstein, 
2006; Hart et al., 2017; Rappoport, 2021), flexible communication with commitment (e.g. Au-
mann and Maschler, 1966; Kamenica and Gentzkow, 2011), and more. Our work, of course, 
belongs to this broader literature.

More specifically, we join a very active literature on strategic communication in long-run re-
lationships, asking to what extent dynamics enable effective communication.3 The literature has 
studied the possibilities for effective advisory relationships when the advice of the expert can 
be assessed after the fact (Best and Quigley, 2020; Mathevet et al., 2019); when the decision 
maker’s behavior can be observed and disciplined (Alonso and Matouschek, 2008; Renault et al., 
2013; Margaria and Smolin, 2018; Kolotilin and Li, 2021), and when decisions are interspersed 
with advice about a persistent state (Golosov et al., 2014). We study a model in which the re-
lationship is ongoing but, even with patient players, the core tension of a cheap talk interaction 
remains: The expert faces no dynamic consequences from being caught lying—for she is never 
caught—and the decision maker faces no dynamic consequences from acting to his own myopic 
benefit.

1 Formally, we consider attainable payoffs from cheap talk with capped bonuses, as we range over all positive caps 
M̃ ≤ M .

2 The only technical hurdles to the analysis concern properties of the auxiliary static communication game. Once these 
properties are proven, the equivalence result follows immediately from APS’s arguments. We refer the reader to the 
discussion in section 2.2 for more details.

3 Less directly related is work that studies how communication can help sustain cooperation in long-run relationships 
facing no asymmetric information about payoff-relevant parameters (e.g. Compte, 1998; Kandori and Matsushima, 1998).
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Our central result is that a repeated cheap talk game is, in terms of expert equilibrium payoffs, 
formally equivalent to a conceptually simpler class of games: static cheap talk games with money 
burning or bonuses. Static cheap talk games with the sender burning money have received some 
attention in the context of the one-dimensional CS model, starting with the important observa-
tion (Austen-Smith and Banks, 2000) that the possibility of burning money can strictly expand 
the scope for equilibrium communication; relatedly, Krishna and Morgan (2008) discuss how 
transfers should optimally be used to elicit information in the same setting. Capped money burn-
ing makes an appearance in this literature as well, with Kartik (2007) showing that equilibrium 
communication with severely capped money burning is very close to equilibrium communication 
with cheap talk alone. More recently, Karamychev and Visser (2017) study the sender-optimal 
equilibrium of the leading example of CS with money burning; their work is (given our results) 
an important input to the computation of the expert’s equilibrium payoff set in the repeated ver-
sion of this canonical example. At the end of Section 2, we explain how to use their solution to 
build such an optimal equilibrium in the associated repeated game.

A key ingredient of our analysis is the standard recursive toolbox for repeated games, à la 
APS.4 As we recursively study the payoffs of one player when our other player cannot be pro-
vided dynamic incentives, a central pair of references is Fudenberg et al. (1990) and Fudenberg 
and Levine (1994), which study repeated games with a mix of long- and short-run players. While 
their chief focus is on the limit as long-run players become patient, our analysis is still indebted 
to their crucial observation that the long-run players’ payoffs are amenable to recursive analysis.

Our main theorem is reminiscent of results in the literature on relational contracts with trans-
fers, (e.g. Levin, 2003). In that literature, transferable utility typically makes it tractable to 
quantify the extent to which the future value of the relationship enables cooperation—through a 
so-called dynamic enforcement constraint (a.k.a. self-enforcement constraint). Kolotilin and Li 
(2021) use the same to shed light on relational communication with transfers, when the decision 
maker’s play can be perfectly monitored. The presence of transfers and the observability of the 
decision maker’s actions enable the expert to reward the decision maker for compliant decisions 
and also allows her to credibly signal her private information. While the players in our repeated 
game do not have access to transfers, money burning, or any other kind of monetary incentives, 
we show how the expert’s payoffs from our repeated game are tightly linked to her payoffs from 
auxiliary static games with monetary incentives.

1. Model

We consider an infinite-horizon game played between an expert (the sender, S, she), and a 
decision maker (the receiver, R, he). Time is discrete and indexed by t ∈ {0, 1, 2, . . .}. Players S 
and R play the same stage game in every period, and each player i ∈ {S, R} discounts the future 
at the rate δi ∈ [0, 1); let δ := δS .

Each period t , players first observe a sunspot (i.e. a public randomizing device) with uniformly 
distributed outcome ωt ∈ [0, 1]. Then, a state θt ∈ � is realized, following full-support prior 
μ0 ∈ ��—and is observed privately by S. Following this, S sends a public message zt ∈ Z to R. 
Having received the message, R privately chooses an action at ∈ A, and each player i ∈ {S, R}
accrues flow payoff ui(at , θt ). Crucially, at the end of the period, the only public information 

4 Our work is therefore also related to the vast literature in repeated games that applies said recursive toolbox, some 
of which is surveyed in Mailath and Samuelson (2006). Many such studies also draw an analogy between monetary 
incentives and variation in continuation payoffs, Fudenberg et al. (1994) being a prominent example.
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available is the message that was sent (together with the public sunspot).5 The family {ωt , θt }∞t=0
of random variables are all independently distributed. Each player i ∈ {S, R} seeks to maximize 
E 
∑

t (1 − δi)δ
t
i ui(at , θt ), which we spell out more formally below.

Finally, we make some technical assumptions. The spaces �, A, and Z are assumed compact 
metrizable, and the objectives uS, uR : A ×� →R continuous.6 Moreover, to rule out exogenous 
(i.e., non-incentive-based) frictions to communication, we assume Z is uncountable.7

1.1. Histories, strategies, and equilibrium

For any t ∈Z+, a time-t history is an element of Ht := ([0,1] × � × Z × A)t × [0, 1]. Thus, 
a history records each past period’s sunspot, state, message, and action, in addition to the current 
period’s sunspot. Let H :=⋃∞

t=0 Ht denote the set of all histories. For each history h ∈Ht ⊆ H, 
the induced private histories for S and R are given by its projections onto HS

t := ([0, 1] × � ×
Z)t × [0, 1] and HR

t := ([0, 1] × Z × A)t × [0, 1], respectively. Defining HS :=⋃∞
t=0 HS

t and 
HR :=⋃∞

t=0 HR
t , we are now equipped to define the ingredients of an equilibrium. A strategy for 

S is a measurable map σ : HS × � → �Z; a strategy for R is a measurable map ρ : HR × Z →
�A; and a belief map for R is a measurable map β : HR × Z → ��. The interpretation is that 
(following history h): S [resp. R] will use contemporaneous message [resp. action] distribution 
σ(·|hS, θ) [resp. ρ(·|hR, z)] if the current state [resp. message] is θ [resp. z]; and R will have 
belief β(·|hR, z) if the current message is z.8

For any time t ∈ Z+, current history h ∈ Ht , and current state θ = θt ∈ �, a strategy profile 
(σ, ρ) defines a distribution over (ωτ , θτ , zτ , aτ )

∞
τ=t ∈ ([0,1] × � × Z × A)∞.9 Letting Eh,θ,σ,ρ

denote expectation with respect to this law, player i ∈ {S, R} has continuation payoff given by

�i(σ,ρ|hi, θ) = (1 − δi)

∞∑
τ=t

δτ−t
i Eh,θ,σ,ρ

[
ui(aτ , θτ )

∣∣∣∣hi, θ

]
.

Definition 1. A (perfect Bayesian) equilibrium is a triple 〈σ, β, ρ〉 such that, ∀h ∈H:

(1) S rationality: Every θ ∈ � has σ ∈ argmaxσ̃ �S(σ̃ , ρ|hS, θ);
(2) R rationality: Every z ∈ Z has ρ ∈ argmaxρ̃

∫
�

�R(σ, ρ̃|hR, ·) dβ(·|hR, z);
(3) Bayes: Any two hR, h̃R ∈HR that differ only in the past actions chosen by R have β(hR, z) =

β(h̃R, z); and every Borel �̂ ⊆ �, Ẑ ⊆ Z have

5 In particular, we make the extreme assumption that players do not observe their payoffs in real time. This assumption 
is common in the repeated games literature (e.g. some examples focusing on the communication of private information 
are Aumann et al., 1995; Renault et al., 2013; Kolotilin and Li, 2021). One interpretation is that realized payoffs are too 
noisy or delayed to be useful on a realistic timescale.

6 In this paper, we endow every compact metrizable space Y with the Borel algebra, and endow the space �Y = �(Y)

of Borel probability measures on Y with the weak*-topology.
7 In the case that � is finite, the S equilibrium payoff set would be the same under the weaker assumption that |Z| ≥ |�|.
8 For a given history h ∈ H and player i ∈ {S, R}, let hi denote the projection of h onto Hi . In a mild abuse of 

notation, any of σ, ρ, β can take an argument from H rather than HS or HR, with the measurability restriction that it be 
measurable with respect to the projection.

9 Formally, one can recursively define the law for times t ≤ τ ≤ T for each T , and then apply Kolmogorov’s extension 
theorem.
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∫
�̂

σ (Ẑ|hS, θ) dμ0(θ) =
∫
�

∫
Ẑ

β(�̂|hR, z) dσ(z|hS, θ) dμ0(θ).

In such an equilibrium, the induced S payoff is v = ∫ 1
0

∫
�

�S(σ, ρ|ω, ·) dμ0 dω.

For the remainder of the paper, our primary object of interest will be the set Vδ of equilibrium 
S payoffs (as will become apparent later, Vδ depends on δ but not on δR , hence the notational 
choice). We will give an interpretable characterization of Vδ , and then go on to show that this 
characterization yields new insights for the theory of advisory relationships.

Remark 1. Notice that R’s action is completely private. Hence, repeated interaction cannot be 
used to discipline R, and he will always choose the myopically optimal action. Our model is 
therefore equivalent to one with a long-run sender and an infinite sequence of short-lived re-
ceivers, in which receivers see the entire history of past messages. Interpreting receivers as 
short-lived may be better-suited to some applications. For example, it may be natural to study a 
game of repeated mass-communication to a population of receivers. Given the strategic equiva-
lence, we do not take a strong stance, though our language will reflect the one-receiver model in 
what follows.

Remark 2. If we augmented our game with any sort of feedback—public or private, immediate or 
delayed, perfect or imperfect—about past states or actions between periods, the strategies in the 
present model could naturally be viewed as special strategies in the richer game, namely, those in 
which players choose not to condition on this additional feedback. Following standard reasoning 
(analogous to repeating a stage-game equilibrium being an equilibrium in a repeated game), our 
equilibria would remain equilibria in the augmented game. For this reason, our analysis and 
results admit an alternative interpretation: We characterize the set of sender payoffs that can 
be attained in a way that is robust to the form and quality of feedback players receive as their 
relationship progresses.

Remark 3. Our results focus on the set Vδ of attainable S payoffs in our game. Especially since 
only S can be provided with dynamic incentives, we see this set as the most natural target to 
assess the scope for dynamic incentives in the repeated communication game. Having said that, 
attainable R payoffs may be of further interest. Our results speak to this question in two ways. 
First, natural examples exist for which the set of equilibrium payoff profiles is one-dimensional. 
For example, with symmetric discounting in the quadratic-loss, constant-bias specification of 
CS, it is straightforward to deduce that the sender’s and the receiver’s payoff differ by a constant. 
Hence, characterizing S equilibrium payoffs in the repeated game serves to characterize the entire 
set of equilibrium payoff profiles. Second, more generally, characterizing Vδ is a natural first step 
toward characterizing the entire set of equilibrium payoff profiles. Indeed, standard reasoning 
à la Spear and Srivastava (1987) delivers a recursive characterization of the upper and lower 
boundaries of the set of payoff profiles, both of which are functions with domain Vδ.

2. Pricing advice

Our main theorem is an equivalence result between our repeated game and an interpretable 
class of one-shot games related to our stage game. In this section, we define the latter class of 
games more formally, and then state and provide intuition for the equivalence result.
6
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2.1. Money burning and bonuses

The key ingredients of our characterization are one-shot games of cheap talk with money 
burning and bonuses. The parameters of these static games are those of our original stage game, 
together with a cap M ≥ 0. S learns the state θ ∈ � drawn according to μ0, S sends a message 
z ∈ Z and chooses an amount of money y ∈ R subject to a restriction, and R (having seen y
and z) chooses action a ∈ A; the resulting payoffs to S and R are uS(a, θ) − y and uR(a, θ). 
Here, y must lie in [0, M] in the case of M-capped money burning and in [−M, 0] in the case of 
M-capped bonuses.

We should emphasize that S has no technology to burn money or collect bonuses in our 
repeated model. Rather, these auxiliary games serve as a solution method for our discounted 
repeated game. We use money burning to investigate whether S can achieve a higher payoff in 
equilibrium than what she could in the stage game. Analogously, we can use bonuses to look for 
equilibria in which S suffers worse equilibrium outcomes than he could in the one-shot game 
alone.10

Definition 2. Given closed Y ⊆ R, say v ∈ R is attainable with Y -monetary signals if there 
exist measurable maps σ : � → �(Y × Z), ρ : Y × Z → �A, and β : Y × Z → �� such that:

• S rationality: ∀θ ∈ �,

σ

⎛
⎝argmax(y,z)∈Y×Z

⎡
⎣∫

A

uS(·, θ) dρ(·|y, z) − y

⎤
⎦∣∣∣∣∣ θ

⎞
⎠= 1;

• R rationality: ∀y ∈ Y , z ∈ Z,

ρ
(

arg max
a∈A

∫
�

uR(a, ·) dβ(·|y, z)

∣∣∣y, z
)

= 1;

• Bayes: ∀ Borel �̂ ⊆ �, Ẑ ⊆ Z, Ŷ ⊆ Y ,∫
�̂

σ (Ŷ × Ẑ|·) dμ0 =
∫
�

∫
Ŷ×Ẑ

β(�̂|·)dσ (·|θ) dμ0(θ);

• Value v:∫
�

∫
Y×Z

⎡
⎣∫

A

uS(·, θ) dρ(·|y, z) − y

⎤
⎦ dσ(y, z|·) dμ0 = v.

In particular, given M ≥ 0, say v is attainable with M-capped money burning [resp. at-
tainable with M-capped bonuses] if it is attainable with [0, M]-monetary [resp. with [−M, 0]-
monetary] signals. We say v is attainable with (uncapped) money burning if it is attainable 
with R+-monetary signals.

10 See Appendix A.4 for an example in which an equilibrium of a game with capped bonuses is worse for S than any 
equilibrium of our stage game. Thus, given our equivalence theorem, repetition can also expand the scope for low S 
payoffs in our class of games.
7
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Finally, say an interval [v0, v1] ⊂ R is attainable with cap M if some v ≥ v1 is attainable 
with M1-capped money burning for some M1 ∈ [0, M], and some v ≤ v0 is attainable with M0-
capped bonuses for some M0 ∈ [0, M].

Three observations are immediate concerning the last part of the above definition. First, raising 
the cap will obviously preserve attainability of a given interval. Second, there is a sufficiently 
large cap M̄ such that the exact same payoff intervals are attainable for all caps above M̄. Indeed, 
this follows because the payoffs in our game (gross of money burnt or bonuses collected) are 
bounded, which readily delivers (by S incentives) a bound on the amount of money burned or 
bonuses forgone in an equilibrium.11 Third, it is always without loss to take M1 = M . Indeed, 
from any equilibrium with M1-capped money burning, an outcome-equivalent equilibrium can 
be constructed in which any amount above M1 that S burns is ignored.12

2.2. Main characterization

Our main result details how analyzing the one-shot game with capped money burning and 
bonuses enables a characterization of the S payoff set in our repeated game. One looks for the 
largest interval which is attainable with cap M , letting the cap be the largest one compatible with 
a dynamic enforcement constraint.

Theorem 1 (Equivalence theorem). The equilibrium payoff set Vδ is the largest interval [vδ, v̄δ]
such that [vδ, v̄δ] is attainable with cap δ

1−δ
(v̄δ − vδ).

The reasoning behind the theorem, formally proven in the appendix, is simple. First, because 
R acts privately, the repeated interaction cannot be used to provide him with dynamic incentives. 
S’s equilibrium payoff set is therefore identical to what it would be if R were myopic. One can 
then recursively characterize the set of S equilibrium payoffs, with no need to track the value 
delivered to R.13 Next, given public randomization, we need only characterize the best and worst 
equilibrium payoffs for S. Consider a best equilibrium payoff for S. Each message she sends on 
path will result in some continuation value that is, by fiat, weakly less than her total equilibrium 
value. Relabeling this payoff loss as an amount of money that S burns while sending said message 
(renormalized to account for discounting), all S incentive constraints in the repeated game are 
identical to those in the stage game augmented with money burning, and S attains the exact same 
payoff. Finally, the boundedness of the payoff set from below puts a cap on how much money 
can be burned under this relabeling. Analogous reasoning ties S’s lowest equilibrium payoff to 
one from a one-shot game with bonuses, and the theorem follows. At the end of this section, 
we return to more explicitly describe an equilibrium construction that generates a best and worst 
equilibrium for the S in the repeated game.

As mentioned above, the proof of our main result is, conceptually, a direct descendent of 
classic results of APS. We should note, however, that some new arguments are required along 

11 For instance, M̄ := maxa,a′∈A, θ∈�[uS(a, θ) − uS(a′, θ)] would have this feature.
12 In contrast, it is not without loss to take M0 = M . For example, in the range where M > M̄ , a strictly worse sender 
payoff can arise in equilibrium of the game with M̄ -capped bonuses than with M-capped bonuses. The reason for the 
asymmetry is that superfluous money burning that R ignores is never profitable to S, whereas choosing a higher bonus 
can serve as a profitable deviation for S if R ignores it.
13 This observation is identical to that in Fudenberg et al. (1990).
8



A. Kuvalekar, E. Lipnowski and J. Ramos Journal of Economic Theory 203 (2022) 105467
two dimensions. First, one must show that the appropriate set operator—which maps a set of at-
tainable continuation values for an expert from tomorrow onward to a resulting set of attainable 
continuation values from today onward—takes compact sets to compact sets (which is imme-
diate in the finite-state, finite-action case). Having established said closure property, a recursive 
characterization à la APS is obtained with no conceptual novelty whatsoever. The upshot is an 
equivalence between the repeated game and a one-shot game with communication and contract-
ing, in which each message entails an amount money that will be automatically burned once said 
message is sent.

The second new argument one requires, therefore, is that such commitment power does not ex-
pand the scope for profitable communication, i.e. that communication with discretionary money 
burning (or bonuses) is payoff-equivalent to communication with contractually burned money.

The key machinery that enables us to complete these two steps is a novel characterization of 
equilibrium outcomes in static communication games (see Appendix A.1), somewhat analogous 
to the equivalence between direct mechanisms and delegated sets in the literature on optimal 
delegation (e.g. Holmström, 1982). In short, we directly characterize which sets of interim out-
comes (i.e. triples of burned money, decision maker belief, and mixed action) arise as the set 
of inducible-on-path interim outcomes for some equilibrium, and further show how the expert’s 
equilibrium payoff can be directly computed from such a set.14 This characterization of attain-
able static outcomes, which we believe to be new, may be of broader interest for the theory of 
strategic information transmission.

Adapting the APS argument in the obvious way, Theorem 1 also yields an “algorithmic” char-
acterization of Vδ . More importantly, though, this simple result yields new qualitative insights on 
the nature of advisory relationships, and provides a conceptual simplification that allows us to 
study concrete examples.

Equilibrium construction. To conclude the section, let us briefly describe the S-optimal equilib-
rium behavior implicit in the constructive proof of Theorem 1. Let v1 and v0 denote the highest 
and lowest equilibrium S payoff, respectively, and let M := δ

1−δ
(v1 − v0). Let us informally 

describe a two-state automaton equilibrium in which S obtains a payoff vξ when play starts in 
ξ ∈ {0, 1}; in particular, starting in state ξ = 1 will yield an S-optimal equilibrium. In order to 
describe the equilibrium, it suffices to describe the current play in each state, along with the rule 
for (stochastically) switching between the two states.

To construct the stage play in state 1, note (by Theorem 1) that some equilibrium of the 
static game with M-capped money burning yields an S payoff of v1. Moreover, as we show, the 
equilibrium can be chosen so that every message z admits a unique amount m(z) of money that S 
chooses to burn whenever sending message z. Let us construct the stage play in state 1 from the 
equilibrium of the auxiliary game. Let the S strategy send the same message distribution in each 
state as the S strategy did from the auxiliary game; and let R’s beliefs and behavior in response 
to a message z be exactly what it would have been in the auxiliary game had S sent message z
and additionally burned m(z). Finally, the switching rule from state 1 is also constructed from 
the auxiliary game’s equilibrium. Specifically, whenever a message z is sent, the state switches 
with probability m(z)

M
, and remains in state 1 with complementary probability. The construction 

14 While our characterization, when specialized to the case of finitely many states and actions, is not identically the 
one-shot analysis in Aumann and Hart (2003), the resulting characterization of sender payoff vectors is readily derived 
from theirs in this simpler special case of the model.
9
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of the stage play and switching probabilities in state 0 is analogously built from an equilibrium 
of the auxiliary static game with capped bonuses.

An important special case of our model is one in which allowing for bonuses cannot hurt 
S—that is, in which every equilibrium of a static game with capped bonuses is weakly better 
for S than some equilibrium of the pure cheap talk game. For example, this class of games 
includes every example (like that of Section 4) in which R has some best response to the prior 
that gives S her minimum payoff in every state, and includes every example (like the quadratic 
CS specification) in which S has Blackwell-increasing preferences over how informed R is. In 
this special case of the model, because no bonuses are used in the auxiliary static game for state 
0, it follows that the latter is absorbing in the automaton we construct. Hence, in our constructed 
S-optimal equilibrium, some (almost-surely finite) time τ exists such that the same stage-game 
equilibrium is played indefinitely from period τ onward.

As an example, consider the quadratic-uniform specification of CS. In this example, Karamy-
chev and Visser (2017) provide an explicit characterization of an S-optimal equilibrium of the 
game with uncapped money burning; let v1 denote the associated S payoff, which is strictly 
larger than her payoff v0 from a babbling equilibrium. The amount of money burned in their 
constructed equilibrium is bounded above, and so lies below M = δ

1−δ
(v1 − v0) for large enough 

δ. For such δ, an S-optimal equilibrium is simple to describe. Players begin in state 1, wherein 
play corresponds to that of Karamychev and Visser’s (2017) equilibrium period by period, and 
the hazard rate of switching to state 0 is proportional to the amount of money that would have 
been burned in the auxiliary static game; then, once in state 0, a permanent babbling equilib-
rium is played. Finally, in light of Remark 3, this equilibrium is in fact Pareto dominant when 
discounting is symmetric. In this constructed equilibrium, the quality of information provided 
stochastically degrades over time as S depletes R’s goodwill toward her.

3. Consequences for advisory relationships

In the previous section, we developed a mathematical link between our discounted repeated 
advisory game and static games. One purpose of that exercise was to formalize how an expert’s 
future goodwill can be used to price today’s advice. As an additional benefit, we show how this 
formal link delivers new, general lessons about the nature of repeated communication games.

For each of the formal results in this section—all easy corollaries of our main theorem—we 
provide only a sketch of the straightforward proof.

3.1. Patient experts

Our focus has been on how much cooperation can be sustained on the back of S’s evolving 
goodwill at fixed discounting, and on how this varies with the discount factor. However, it is 
worth noting a simple consequence of the result: an interpretable description of the limit as 
players become patient (or interact frequently).

Corollary 1 (No cap for patient experts). There exists δ̄ ∈ [0, 1) such that, whenever δ ≥ δ̄, the 
highest equilibrium S payoff v̄δ is equal to the highest S payoff attainable with uncapped money 
burning.

It is immediate from our theorem that the highest S payoff v̄1 from uncapped money burning is 
an upper bound on v̄δ for every δ ∈ (0, 1), so we need only argue that v̄1 is an equilibrium value 
10
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for sufficiently high discount factors. There is nothing to show if v̄1 = v̄0, since repeating an 
equilibrium from the stage game is always an equilibrium of the repeated game; so assume now 
that v̄1 > v̄0. Consider an S-preferred equilibrium with money burning (which our analysis in the 
appendix shows to exist), and recall that S incentives imply the same is in fact an equilibrium with 
M̄-capped money burning for some finite M̄ . The corollary follows from noting that δ

1−δ
(v̄1 −

v̄0) ≥ M̄ when δ is sufficiently close to 1.
Observe, Corollary 1 is not a folk theorem. The corollary states that S’s equilibrium payoff 

set exactly attains its asymptotic limit for some sufficiently large δ < 1, which folk theorems 
with imperfect monitoring (e.g. Fudenberg et al., 1994) do not generally guarantee. Moreover, 
the corollary delivers a specific interpretable form of this limit set, which is not generally equal 
to the set of feasible and individually rational payoffs. Indeed, Corollary 3 below implies that, in 
most interesting cases, these two sets differ.

We note here an important consequence for the applied literature on strategic communication. 
Models of static cheap talk have been used to study organizational decision making (e.g. Des-
sein, 2002; Che et al., 2013), legislative bargaining (e.g. Gilligan and Krehbiel, 1989), electoral 
competition (e.g. Kartik and Van Weelden, 2018), and more. In parallel, the theoretical literature 
has studied the ways in which the ability to burn money expands the scope for credible commu-
nication. Given the above corollary, to the extent that we think relationships between employees, 
legislators, or politicians are typically ongoing with frequent interactions, the model of cheap talk 
with money burning might be a more appropriate static model to employ—with money burning 
serving as a reduced form for degradation of the future relationship. Further, given our conserva-
tive model of goodwill evolving solely based on what advice is communicated, this claim should 
stand no matter what feedback one thinks actors will receive ex-post about past interactions in 
such relationships (see Remark 2).

3.2. Senders with transparent motives

Because money burning and bonuses can expand the set of possible equilibrium payoffs for 
S, repetition can do the same. However, this is not so for every sort of expert. One strand of 
the cheap talk literature (e.g. Chakraborty and Harbaugh, 2010; Lipnowski and Ravid, 2020) 
has focused on the case in which experts have transparent motives—modeled by uS(a, θ) being 
constant in its second argument. Pairing results from that literature with our theorem yields the 
following immediate consequence.

Corollary 2 (Irrelevance under transparency). Suppose S’s objective uS is state-independent. 
Then Vδ = V0.

The corollary follows from the securability theorem (Theorem 1 from Lipnowski and Ravid, 
2020) in the theory of cheap talk games with state-independent S preferences. Say a payoff v is 
securable if S has some way of communicating such that a Bayesian R will, message by mes-
sage, have some incentive-compatible action that gives S a payoff of at least v. The securability 
theorem says that, if a payoff v is securable and higher than the payoff S obtains in a babbling 
equilibrium, then some equilibrium of the cheap talk game delivers S a payoff of v. Loosely, if 
some messages are “too persuasive” and so give S a payoff strictly higher than v, communica-
tion can be made noisier in such a way that every message ensures some incentive-compatible 
R (mixed) action gives S a payoff of exactly v—which implies v is an equilibrium payoff for S 
because her preferences are state independent.
11



A. Kuvalekar, E. Lipnowski and J. Ramos Journal of Economic Theory 203 (2022) 105467
Let us observe that the securability theorem can be reinterpreted as a result about money 
burning, and so (given Theorem 1) can be applied to the repeated game. Indeed, suppose some 
S payoff v is attainable in an equilibrium of an auxiliary game with (capped) money burning. 
Because S has state-independent preferences, incentive compatibility means every on-path choice 
(of message and burned money) she makes must lead her to a payoff of exactly v. But then, 
whatever R behavior she induces gives her a payoff of at least v when we ignore the money she 
has burned. Hence, v is securable: the securability theorem says v is an equilibrium S payoff of 
the cheap talk game without money burning if it is higher than her babbling payoff. In light of 
Theorem 1, the payoff in v̄δ belongs to V0. An analogue of the securability theorem for S payoffs 
below her babbling payoff (Lipnowski and Ravid, 2020, footnote 15) can similarly be applied to 
the auxiliary game with bonuses, and so analogously tells us vδ ∈ V0; thus, Vδ = V0.

3.3. Repetition as commitment

An easy corollary of our theorem is a form of anti-folk theorem. Indeed, define the commit-
ment (a.k.a. Bayesian persuasion) value,

vBP := max
p∈���: ∫ μ dp(μ)=μ0

∫
��

maxa∗(μ)∈A

∫
uS (a∗(μ), ·) dμ dp(μ)

s.t. a∗(μ) ∈ argmaxa∈A

∫
uR(a, ·) dμ

Since Kamenica and Gentzkow (2011), a large active literature has studied optimal infor-
mation structures by an expert who can commit in order to persuade a decision maker; such 
an expert’s optimal value is given by vBP.15 A natural question is whether relational incentives 
suffice to generate commitment power.

Given that R myopically best responds in any equilibrium, it is immediate that the sender 
payoff is bounded above by vBP in our model. But can this value be obtained? In a model with 
short-run receivers (which is strategically equivalent to our assumption of R being unmonitored) 
but perfect ex-post feedback about S’s information, Best and Quigley (2020) fully settle this 
question when S has transparent motives (and the state space is finite): Repetition restores the 
Bayesian persuasion value to S if and only if vBP can be attained with partitional information, 
that is, with S partitioning the set of states and reporting to which partition element the true state 
belongs.

The next corollary gives a general, definitive answer for our setting, with no economic as-
sumptions on players’ objectives. Specifically, it says that varying S’s goodwill based solely on 
what advice she gives can never fully bridge a commitment gap. More formally, if all equilibria 
from the one-shot game with static cheap talk are strictly worse for S than the Bayesian persua-
sion value, then all equilibria from the repeated cheap talk game are strictly worse for S than the 
Bayesian persuasion value as well.

Corollary 3 (Anti-folk theorem). If v̄0 < vBP, then supδ∈[0,1) v̄δ < vBP too.

15 Prior work in the theory of undiscounted repeated zero-sum games (Aumann et al., 1995; Aumann and Maschler, 
1966) has shown that such commitment power can naturally arise in long-run relationships—although that work proceeds 
with a perfectly persistent state.
12
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This result is immediate from the first corollary. Indeed, consider again an S-preferred equi-
librium of the game of cheap talk with money burning. There are two cases. First, if no money 
is burned on path, then the theorem implies that repetition does not raise S’s highest equilibrium 
value relative to one-shot cheap talk. If, conversely, money is burned on path, then the expected 
amount of money burned is a lower bound on the residual commitment gap. Indeed, if S could 
commit to a communication rule, she could always provide exactly the same information as in 
the money-burning game, without incurring the cost of burned money.

We should emphasize that the above corollary relies (as do all of our results) on our specific 
monitoring assumptions. Rather than demonstrating that relational incentives can never sustain 
commitment power in communication, then, Corollary 3 serves as a useful theoretical bench-
mark. Whereas in general the ability to use feedback to sustain commitment power depends on 
specific details of the stage game—as evidenced by Best and Quigley’s (2020) results for the 
case of perfect state feedback—our result shows that relational incentives can never, absent some 
supporting feedback, hope to replicate complete commitment power.

4. Application: project implementation

In this section, we apply our theorem to study a repeated project implementation game.

Environment. A firm’s CEO (R) decides every period at what scale at ∈ [0, 1] the firm will 
implement a project in the division of a manager (S). In line with our model, the CEO’s choice of 
at is private and not observed by the manager. Each project produces a marginal expected revenue 
of θt to the firm, but also entails a constant marginal cost c of implementation. The firm’s flow 
profit is therefore at (θt − c). Project values θ are atomlessly distributed with support [0, 1], and 
the cost parameter satisfies E[θ ] < c < 1. The manager is driven by empire-building motives, and 
so internalizes only the benefits atθt . So, while the CEO must rely on the manager’s expertise, 
a conflict of interest precludes perfect communication. Importantly, we assume that the project’s 
realized return is extremely noisy and/or delayed, so that providing incentives to the manager 
based on ex-post outcomes is impractical.16

This example is a continuous version of the 2 × 2 model of Lipnowski and Ramos (2020), 
with the crucial difference that the CEO’s implementation choices are private here, and perfectly 
observable in that paper. Given the substantially different observability assumptions, neither their 
techniques nor their results can be directly applied here. However, as we show below, despite 
the extreme paucity of instruments, a repeated interaction still facilitates some communication. 
Applying our tools, we quantify the gains of repeated interaction for a given discount factor; we 
proceed informally for brevity.

As a starting observation, notice that babbling is the unique equilibrium of the stage game, 
giving both players a payoff of 0 (their minimax payoffs). Indeed, no two on-path messages 
could lead to different expected implementation scales, for the lower one could not be incentive-
compatible for any nonzero S type. But then, R rationally chooses a = 0 almost surely, because 
Eθ < c. This tells us that the equilibrium S payoff set is always of the form [0, v̄δ] and, in 
particular, bonuses cannot hurt S in this example.

16 Recall, the assumptions of our game require that players not observe their own payoffs. Rather than interpreting 
such an assumption literally, we take the view that a firm’s choices and their exact profitability might, sometimes, be 
prohibitively difficult to assess on a time horizon short enough to provide meaningful dynamic incentives.
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Pricing advice with burned money. Given the theorem, we begin by analyzing the game of 
one-shot cheap talk with M-capped money burning, for some cap M ∈ R+. Toward finding S’s 
best equilibrium payoff for this auxiliary game, we first invest in some notation. First, observe 
that there is a unique θ∗ ∈ (0, c) such that E[θ | θ ≥ θ∗] = c.17 In what follows, let v̄ := E[(θ −
θ∗)+] > 0 and δ̄ := θ∗

E[max{θ,θ∗}] = θ∗
θ∗+v̄

∈ (0, 1).
In contrast to the case without money burning, information can be communicated effectively 

by using burned money to price different recommendations. For example, it would be natural to 
look for a cutoff equilibrium where all types below an interior cutoff burn no money and all types 
above the same burn a fixed amount m ∈ (0, M] of money, and where no further information is 
communicated. The CEO, being even more pessimistic than at the prior belief, would respond to 
no burned money by choosing action zero. Clearly, for the CEO to willingly choose a different 
action following m, it must be that the cutoff is at least θ∗. Let us focus on the case that the 
cutoff is exactly θ∗, so that any action â ∈ [0, 1] is optimal for the CEO when the manager burns 
m. Next, given single crossing of the manager’s preferences, she will find this play optimal if 
and only if the cutoff type is indifferent. That is, this cutoff play is an equilibrium if and only if 
âθ∗ = m, i.e. recommendation â is priced (at m) exactly fairly from type θ∗’s perspective.

Now, what is the best equilibrium within this cutoff class?

Claim 1. The game with M-capped money burning admits cutoff equilibria with cutoff θ∗. In the 
best such equilibrium for the manager, the highest on-path implementation scale is min{1, M

θ∗ }, 
and generates a manager payoff of min{v̄, Mv̄

θ∗ }.

Given the described behavior by the CEO, the informed manager chooses optimally between 
burning nothing and paying a price of m, so that her expected payoff is E max{0, âθ − m} = âv̄, 
where â is the CEO’s chosen implementation scale when m is burned. Therefore, she bene-
fits from having â ∈ [0, 1] as large as possible subject to the constraint that âθ∗ = m ≤ M . 
And indeed, the best such equilibrium has â = min{1, M

θ∗ }, and so generates a payoff of 

âv̄ =min{v̄, Mv̄
θ∗ }.

Best equilibrium with burned money. Next, we argue that the cutoff equilibrium described 
above is in fact a best equilibrium for the manager. To this end, we take a mechanism design 
approach. Consider an arbitrary equilibrium, and for each θ ∈ [0, 1], let α(θ), τ(θ), and u(θ)

denote that type’s interim expected implementation scale, burned money, and equilibrium utility, 
respectively. So u(θ) = θα(θ) − τ(θ); and, if type θ were to play some type θ̃ ’s equilibrium 
strategy, she would get a lower payoff of θα(θ̃) − τ(θ̃). As manager incentives imply that no 
type strictly prefers to use another type’s mixture over [0, M] × Z, we can employ the standard 
toolbox of one-dimensional mechanism design (Myerson, 1981). In particular, we learn that α
is nondecreasing and that u(θ) − u(0) = ∫ θ

0 α for every type θ , where 
∫ θ

0 α is a short-hand for ∫ θ

0 α(θ̃) dθ̃ . Some features of the allocation follow directly from these incentive conditions. For 
instance:

Claim 2. In any equilibrium of the game with M-capped money burning, no project of type in 
[0, θ∗) is implemented at a strictly positive scale.

17 From the analysis of the salesperson example in Kamenica and Gentzkow (2011), it is straightforward to show that 
revealing whether or not the state is above θ∗ would be uniquely manager-optimal under commitment, leaving the CEO 
with his babbling payoff.
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Fig. 1. A cutoff equilibrium dominates another equilibrium: Interim utilities agree to the left of the cutoff, and then grow 
more quickly for the cutoff equilibrium. Hence, the latter generates higher S values.

To verify the claim, let us focus on the nontrivial case that α is not globally zero; let θ̂ ∈ [0, 1]
be the infimum type at which α > 0. By strict single crossing of the manager’s preferences, every 
type θ > θ̂ is certain to choose a message-money pair in �1, the set of all (y, z) ∈ [0, M] ×Z that 
lead to a strictly positive expected implementation scale; and every type θ < θ̂ is certain to choose 
a message-money pair outside of �1. Moreover, linearity of payoffs in the implementation scale 
implies that the CEO would find it optimal to implement the project at full scale whenever a signal 
in �1 is sent, and at zero scale otherwise. That the profit E[(θ − c)1

θ>θ̂
] = E[(θ − c)1

θ≥θ̂
] this 

CEO behavior would generate is nonnegative tells us that θ̂ ≥ θ∗, as desired.
We can now construct a modified equilibrium of the cutoff form which raises the manager’s 

payoff. Her indirect utility under the original and new equilibria are depicted in Fig. 1.
Because α(θ) = 0 for θ ≤ θ∗, and from monotonicity of α, the expected implementation scale 

of a project of type θ is bounded above by α̃(θ) := α(1)1θ≥θ∗ . The manager’s interim equilibrium 
payoff, when the project is type θ , is then

u(θ) = u(0) +
θ∫

0

α = −τ(0) +
θ∫

0

α ≤ 0 +
θ∫

0

α̃ = α(1)(θ − θ∗)+.

Therefore, the manager is better off with a cutoff equilibrium whose high implementation scale 
is â = α(1). All that remains is to observe that the implied burned money m for high types in 
such an equilibrium does not exceed the cap. And, indeed,

m = α(1)θ∗ = α(1) −
1∫

θ∗

α(1) ≤ α(1) −
1∫

θ∗

α = α(1) − u(1) + u(θ∗) = τ(1) + 0 ≤ M,

where the first inequality follows from α being monotone, and the second inequality follows 
from the original equilibrium respecting the money burning cap of M . So the modified cutoff 
equilibrium is feasible. Summarizing the above arguments yields:

Claim 3. Any equilibrium of the game with M-capped money burning admits a cutoff equilibrium 
with cutoff θ∗ that is weakly better for the manager.
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Combined, the above analysis shows that a best equilibrium for the manager with money 
burning capped at M takes a simple form, and generates an ex-ante payoff of min{v̄, Mv̄

θ∗ } to the 
manager.

Equilibrium manager payoffs in the repeated game. Having characterized the manager’s at-
tainable payoffs with capped money burning, we are poised to apply the theorem to our project 
implementation example.

Proposition 1. Vδ is equal to {0} if δ < δ̄, and [0, v̄] if δ ≥ δ̄.

We have already established Vδ = [0, v̄δ]. Given the theorem, v̄δ is the largest number v ≥ 0
such that v is less than or equal to the payoff min{v̄, Mv̄

θ∗ }, where M = δ
1−δ

v. Rephrasing, v̄δ is 

the largest v ∈ [0, v̄] such that v ≤ δv̄
(1−δ)θ∗ v. The latter inequality simply requires that v be non-

negative if δv̄
(1−δ)θ∗ > 1 and nonpositive if δv̄

(1−δ)θ∗ < 1. Finally, observe that the expression δv̄
(1−δ)θ∗

is strictly increasing in δ, and equal to 1 when δ is equal to δ̄. The proposition’s characterization 
of v̄δ follows directly.

A manager-optimal equilibrium. Let us now construct an equilibrium that attains v̄ when δ ≥ δ: 
it follows directly from the proposition that it is a best equilibrium for the manager.18 Let ε :=

δ−δ̄

δ(1−δ̄)
∈ [0, 1), and fix two distinct messages zH , zL ∈ Z. The manager has a history-independent 

reporting strategy in which she says zH whenever the current state is at least θ∗, and says zL

otherwise. The CEO has a history-contingent strategy in which he implements a project at scale 
εk−1 the kth time the manager says zH (for any k ∈ N), and implements no project (i.e. a = 0) 
whenever anything else is reported. Direct computation (see Appendix A.3) shows that, paired 
with an appropriate belief map, this pure strategy profile yields an equilibrium that gives the 
manager a payoff of v̄.

This equilibrium demonstrates how the manager’s future goodwill is used to price today’s 
recommendations. As the relationship progresses and her goodwill is gradually exhausted, the 
same advice gives a smaller benefit, but the cost—fraction 1 − ε of her residual goodwill—
shrinks as well.

Appendix A

This appendix comprises four subsections. First, we provide a useful alternative formalism 
for reasoning about S payoffs in communication games. Second, we prove formally our main 
theorem—which is entirely standard given the background work in the first subsection. Third, 
we provide supporting computations for the S-optimal equilibrium we construct in our project 
implementation application. Fourth, we demonstrate by example that bonuses are, in general, a 
necessary ingredient of our equilibrium characterization result.

18 The construction here, which exploits some linearity in the application, does not specialize the general-purpose 
construction in the proof of our main theorem, as described at the end of Section 2. Whereas here we see the manager’s 
goodwill being gradually depleted as she asks for projects, the general construction would instead see it stochastically 
disappearing.
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A.1. Equilibrium payoffs of static communication games

In this subsection, we develop a useful language to reason about equilibria of our auxiliary 
one-shot games. In short, we will identify an equilibrium with the collection of money-action-
belief triples that can be induced on-path, analogous to the equivalence between direct mecha-
nisms and delegated sets in the literature on optimal delegation (e.g. Holmström, 1982).

In what follows, we let M̄ ∈ R+ be high enough that any payoff attainable with M-capped 
bonuses or money burning for some M ≥ 0 is also attainable with some cap M̃ ≤ M̄—for in-
stance as defined in Footnote 11. We next let X := [−M, M] × �A × ��, and let KX be the 
set of closed nonempty subsets of X, endowed with the Hausdorff metric. Both are compact 
metrizable spaces because A and � are.

Loosely, we will identify an equilibrium with a subset of X. In slightly more detail: each 
signal (i.e. money-message pair) sent in equilibrium will induce a monetary consequence (y), a 
mixed action (α), and a belief (μ)—and so induces an element of X. But then, the equilibrium 
distribution of messages yields a distribution over X. We will observe that the support of such a 
distribution is enough to compute an S payoff, and that it is possible to directly characterize the 
set of all subsets of X that can arise as such a support.

A few notations will prove useful for our analysis.

Notation 1. For any K ⊆ X, define the projections

K1 := {y : (y,α,μ) ∈ K}, K3 := {μ : (y,α,μ) ∈ K}, K32 := {(μ,α) : (y,α,μ) ∈ K}.

Below, we define several more notations that will be useful. Informally, their descriptions are 
as follows. For each R belief μ, A∗(μ) gives his set of (mixed) best responses. For each “signal” 
x ∈ X and S type θ , the value f (x, θ) is S’s interim value from sending that signal. For each 
“signal set” K ⊆ X, the value f ∗(K, θ) gives S type θ ’s interim value from facing that signal 
set and choosing optimally, and so f ∗∗(K) is (as we will show) the associated greatest deviation 
gain of any S type. The set K is the set of all “signal sets” consistent with R being Bayesian 
and both players being rational, i.e. with every feature of equilibrium except for the bounds on 
the monetary signals S uses.19 The set Y is a set of sets of monetary levels that includes all 
relevant restrictions on monetary signals. For any restriction Y on monetary signals, �(Y ) is the 
associated set of equilibrium “signal sets”, W(Y ) is the associated set of equilibrium interim S 
payoff functions, and W(Y) is the associated set of equilibrium ex-ante S payoffs.

Having interpreted these objects, we define them formally.

Definition 3. Define the following objects:

A∗ : �� ⇒ �A

μ �→ �

⎡
⎣argmaxa∈A

∫
�

uR(a, ·) dμ

⎤
⎦

f : X × � →R

19 When specialized to the case of finitely many states and actions, one can verify that W({0}) is exactly the set of 
sender payoffs derived by Aumann and Hart (2003) in their one-shot analysis, evaluated at μ0.
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(y,α,μ, θ) �→ uS(α, θ) − y

f ∗ : KX × � →R

(K, θ) �→ max
x∈K

f (x, θ)

f ∗∗ : KX →R+

K �→ max
x=(y,α,μ)∈K

∫
�

[
f ∗(K, ·) − f (x, ·)] dμ

K :=

⎧⎪⎨
⎪⎩K ∈KX : c̄o(K3) � μ0︸ ︷︷ ︸

Bayes

, K32 ⊆ gr(A∗)︸ ︷︷ ︸
ICR

, f ∗∗(K) = 0︸ ︷︷ ︸
ICS

⎫⎪⎬
⎪⎭

Y := K[−M̄, M̄]

� : Y ⇒ K
Y �→ {K ∈ K : K1 ⊆ Y }

W : Y ⇒ C(�)

Y �→ {
f ∗(K, ·) : K ∈ �(Y )

}
W : Y ⇒ R

Y �→
⎧⎨
⎩
∫
�

w dμ0 : w ∈ W(Y )

⎫⎬
⎭ .

Let us first document some basic topological properties for the above objects.

Lemma 1. A∗ is upper hemicontinuous20; f, f ∗, f ∗∗ are continuous; K is closed; and �, W, W
are nonempty-compact-valued, upper hemicontinuous, and monotone with respect to set inclu-
sion.

Proof. First, f is obviously continuous. Next, A∗ is upper hemicontinuous and f ∗ is continuous 
by Berge’s theorem (note that the correspondence KX ⇒ X taking K �→ K is a continuous 
correspondence), implying f ∗∗ is continuous by the same argument. As f ∗∗ is continuous, A∗
is upper hemicontinuous, and the c̄o operator and projection operators are continuous on KX, it 
follows that K is closed in KX.

Let us observe now that the graph of � is a closed subset of Y ×K (making it compact-valued 
and upper hemicontinuous). Consider a sequence {Yn}n ⊆ Y converging to Y and Kn ∈ �(Yn)

20 In the remaining argument, R only enters the analysis through A∗ , and the only features of A∗ that we use are 
nonempty-compact-valuedness and upper hemicontinuity. Accordingly, our main theorem would apply without change 
if there were multiple receivers.
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for each n with Kn → K ∈ KX. As K is closed, we know K ∈ K; and continuity of projection 
yields Kn

1 → K1. Finally, that Kn
1 ⊆ Yn for each n implies that their limit is a subset of Y . 

Therefore, K ∈ �(Y ), as required.
Now, because f ∗ is continuous, and so uniformly continuous on its compact domain, it fol-

lows that the map � : KX → C(�) given by �(K) := f ∗(K, ·) is continuous. But then W is 
a continuous transformation of �, and so too is its continuous transformation W . It follows that 
(since � is) both W and W are compact-valued and upper hemicontinuous.

Finally, it is obvious that �, W, W are monotone with respect to set inclusion. That they are 
nonempty-valued is then easy to show by observing {(y, α, μ0)} ∈ �(Y ) for any y ∈ Y ∈ Y and 
α ∈ A∗(μ0). �

With these notations and preliminary observations in hand, we are equipped to complete our 
characterization. The following lemma shows that attainable S interim payoff vectors can be fully 
described by closed subsets of X they induce (and so are exactly given by W). Moreover, it shows 
that it is without loss of generality for S payoffs to focus on equilibria in which the monetary 
signal chosen in equilibrium is a deterministic function of the message sent. This latter feature 
will prove useful in the proof of our main equivalence theorem because S’s continuation value 
(which will serve as a stand-in for her monetary signal) is a function of her current message rather 
than a separate choice—a difference that the equivalence between (i) and (ii) renders immaterial.

Lemma 2. Given convex Y = [y, y] ∈ Y and w(·) ∈R�, the following are equivalent:

(i) There exists an equilibrium 〈σ, ρ, β〉 of the game with cheap talk and [y∗, y]-monetary 
signals yielding S interim payoff function w, for some y∗ ∈ Y .

(ii) There exists 〈σ, ρ, β〉 as in (i) such that σ(· | θ) = σ̂ (· | θ) ◦ (ŷ, idZ)−1 for all θ ∈ � for 
some measurable σ̂ : � → �Z and ŷ : Z → Y .

(iii) w ∈W(Y ).

Proof. As (ii) =⇒ (i) obviously, we prove that (i) =⇒ (iii) =⇒ (ii).

• (i) =⇒ (iii): Letting 〈σ, ρ, β〉 be an equilibrium as in (i), we must find K ∈ �(Y ) such 
that w = f ∗(K, ·).
Let P ∈ �X be given by, for all Borel Ŷ ⊆ Y , Â ⊆ �A, B̂ ⊆ ��,

P (Ŷ × Â × B̂) :=
∫
�

σ

(
[Ŷ × Z] ∩ ρ−1(Â) ∩ β−1(B̂)

∣∣∣∣·
)

dμ0.

Then let K := supp(P ). By Bayes, μ0 = ∫
��

μ d marg��P (μ) ∈ co(K3). ICR then im-
plies (β, ρ) is gr(A∗)-valued, so that α ∈ A∗(μ) a.s.-P (y, α, μ). But then, that A∗ is upper 
hemicontinuous means α ∈ A∗(μ) ∀(μ, α) ∈ K32.
Assume for a contradiction that f ∗∗(K) �= 0. Then there exists x = (y, α, μ) ∈ K such that 
μ{f (x, ·) < f ∗(K, ·)} > 0. Continuity of f and f ∗ delivers a nonempty open X̌ ⊆ X of 
x such that μ̌{f (x̌, ·) < f ∗(K, ·)} for each x̌ = (y̌, α̌, μ̌) ∈ X̌. But, as the supremum value 
of a given type θ ∈ � is at least f ∗(K, θ), ICS then implies that no θ ∈⋃

x̌∈X̌
{f (x̌, ·) <

f ∗(K, ·)} sends a signal inducing an element of X̌ in equilibrium.21 This contradicts Bayes 

21 By a signal inducing an element of X̌, we mean (y̌, ̌z) ∈ Y × Z with 
(
y̌, ρ(y̌, ž), β(y̌, ž)

) ∈ X̌.
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(given that messages corresponding to X̌ must be positive probability by definition of K). 
So f ∗∗(K) = 0, and therefore K ∈ �(Y ).
The equilibrium interim payoff vector is then:

sup
(y,z)∈Y×Z

[uS(ρ(y, z), ·) − y] = f ∗(K, ·) ∈ W(Y ).

• (iii) =⇒ (ii): Suppose K ∈ �(Y ). Fix some (y∗, α∗, μ∗) ∈ argmin(y,α,μ)∈K y, and let 
Y ∗ := [y∗, y]. For convenience, we assume without loss (appealing to Kuratowski’s theo-
rem since Z is an uncountable Polish space) that Z = ��. A measurable selection theorem 
(Aliprantis and Border, 2006, Theorem 18.13) delivers some measurable (ŷ, α̂) : K3 → K12
such that (ŷ(μ), α̂(μ), μ) ∈ K for all μ ∈ K3 and (ŷ(μ∗), α̂(μ∗)) = (y∗, α∗). Next, that μ0 ∈
co(K3) tells us (see Phelps, 2001) that there is some p ∈ �(K3) such that 

∫
K3

μ dp(μ) = μ0. 
As is now standard (e.g. Kamenica and Gentzkow, 2011), there exists some measurable 
σ̂ : � → �(K3) such that 

∫
�

σ̂ dμ0 = p and, for all Borel �̂ ⊆ �, B̂ ⊆ K3, we have that∫
�̂

σ̂ (B̂ | ·) dμ0 =
∫
B̂

μ(�̂)dρ(μ).

Now, define

σ : � → �([y, y] × Z)

θ �→ σ̂ (· | θ) ◦ (ŷ, idZ)−1

and

(β,ρ) : [y∗, y] × Z → �� × �A

(y, z) �→
{

(μ, α̂(β)) : z ∈ K3 and y = ŷ(z)

(μ∗, α∗) otherwise.

By construction, this is an equilibrium of the game with cheap talk and [y∗, y]-monetary 
signals (of the form in (ii)) generating payoff vector f ∗(K, ·) to S. �

A.2. Equilibrium payoffs of repeated communication games

Given the results of the previous section, we can now define, and prove essential properties 
of, the present analogue of APS’s set operator.

Notation 2. Define:

g :R+ → R

M �→ maxW
([0, M ∧ M]) ,

g :R+ → R

M �→ minW
([−(M ∧ M), 0]) ,

G :R+ ⇒ R

M �→ [g(M), g(M)].
20
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Lemma 3. G is a nonempty-compact-valued, upper hemicontinuous, and increasing with respect 
to set inclusion.

Proof. We invoke Lemma 1. First, W is increasing with respect to set inclusion. This implies 
that g is increasing, g is decreasing, and ∅ �= W ({0}) ⊆ G(M) for all M ∈ R+. Therefore, 
G is increasing and nonempty-valued; it is compact-valued by definition. Next, W is upper 
hemicontinuous and compact-valued, which implies that g is upper semicontinuous, g is lower 
semicontinuous, and both are bounded. From this, we conclude that G is upper hemicontinuous 
and compact-valued. �

Lemma 4. Given 〈σ, β, ρ〉, R rationality holds if and only if R myopically best responds to per-
period beliefs.

The above lemma is immediate from the fact that R’s behavior is not (even imperfectly) ob-
served by S.

Now, given that states are independent of past states and actions, and R is not monitored, we 
observe that public strategies (which enjoy recursive structure) are without loss.

Definition 4. Given a time-t history hi for player i ∈ S,R, let hP denote its projection onto 
([0,1] × Z)t × [0, 1], i.e. the associated public history.

Say 〈σ, β, ρ〉 is a public equilibrium if it is an equilibrium such that, for all hS, h̃S ∈ HS

[resp. hR, h̃R ∈ HR] such that hP = h̃P, we have σ(·|hS, ·) = σ(·|h̃S, ·) [resp. ρ(·|hR, ·) =
ρ(·|h̃R, ·) and β(·|hR, ·) = β(·|h̃R, ·)].

Lemma 5. For every v ∈ Vδ , there is a public equilibrium generating S payoff v.

We omit the proof of the above lemma, which is a standard adaptation of the usual construc-
tive argument for games with product monitoring structure (e.g. Fudenberg and Levine, 1994, 
Theorem 5.2); see (Mailath and Samuelson, 2006, Proposition 10.1.1) for further discussion. As 
players’ private histories are independent conditional on the public history, for any conditioning 
a player might do in some equilibrium on private past information, there is a payoff-equivalent 
(to both players, even if the other player were to unilaterally deviate) public strategy in which 
current private contemporaneous randomization replaces this conditional play.

Lemma 6. Let v := supVδ , v := infVδ , and M := δ
1−δ

(v − v). Then, Vδ ⊆ G(M).

Proof. The claim is immediate when δ = 0, so focus is on the case of δ ∈ (0, 1). Consider 
any public (which is without loss of payoffs by Lemma 5) equilibrium without initial public 
randomization; say it generates sender value v∗ ∈ Vδ . Let initial play be given by σ0 : � → �Z, 
ρ0 : Z → �A, and let v′(z) ∈ Vδ be the sender’s continuation value following message z, ∀z ∈ Z. 
Now ∀z ∈ Z, let

y(z) := δ
1−δ

[v∗ − v′(z)] ⊆
[

δ
1−δ

(v∗ − v), δ
1−δ

(v∗ − v)
]
.

Let P ∈ �X be given by, for all Borel Ŷ ⊆ [−M, M], Â ⊆ �A, B̂ ⊆ ��,

P (Ŷ × Â × B̂) :=
∫

σ

(
[v′]−1

(
1−δ
δ

Ŷ + v∗)∩ ρ−1(Â) ∩ β−1(B̂)

∣∣∣∣·
)

dμ0.
�
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Let K := supp(P ). It is straightforward that μ0 ∈ co(K3) by Bayes, that K32 ⊆ gr(A∗) by ICR

given Lemma 4, and that f ∗∗(K) = 0 by ICS (specifically, that S has no profitable one-shot 
deviation). Therefore, K ∈ K. It follows that

K ∈ �
([

δ
1−δ

(v∗ − v), δ
1−δ

(v∗ − v)
])

,

and so

v∗ ∈ W
([

δ
1−δ

(v∗ − v), δ
1−δ

(v∗ − v)
])

.

The above applies to every v∗ that is attainable in equilibrium without initial public random-
ization. But such equilibrium values can clearly approximate each of v and v arbitrarily well. 
So, applying upper hemicontinuity of W and taking limits as v∗ → v and as v∗ → v, we get that 
v ∈ W([0, M]) and v ∈ W([−M, 0]), i.e. [v, v] ⊆ G(M). �

Lemma 7. Suppose that v ≤ v and M = δ
1−δ

(v − v) are such that [v, v] ⊆ G(M). Then [v, v] is 
a subset of Vδ .

Proof. Let v0 := g(M) and v1 := g(M). By hypothesis, v0 ≤ v ≤ v ≤ v1. We will show by 
construction that {v0, v1} are both S equilibrium values, and the lemma will then follow from 
public randomization. Focus on the nontrivial case that v0 < v1 (since repetition of a babbling 
equilibrium yields the desired payoff in the complementary case).

Let us define a two-state automaton profile with states ξ ∈ {0, 1}. For ξ ∈ {0, 1}, Lemma 2
delivers an equilibrium 〈σξ , ρξ , βξ 〉 of the game with cheap talk and Yξ -monetary signals, and 
measurable σ̂ξ : � → �Z, ŷξ : Z → Yξ , delivering S payoff vξ , and such that

σξ (· | θ) = σ̂ξ (· | θ) ◦ (ŷξ , idZ)−1 ∀θ ∈ �,

where Y1 = [0, M] and Y0 = [−M̃, 0] for some M̃ ∈ [0, M].
When the automaton is in the state ξ ∈ {0, 1}:

• Current play is given by 〈σ̂ξ , ρ̂ξ , β̂ξ 〉, where

ρ̂ξ := ρξ ◦ (ŷξ , idZ) : Z → �A and β̂ξ := βξ ◦ (ŷξ , idZ) : Z → ��.

• The automaton switches states if and only if

ωt︸︷︷︸
public randomization ∼U [0,1]

<
1 − δ

δ

∣∣ŷξ (zt )
∣∣

v1 − v0
.

Note, that |ŷξ | ≤ M implies the switching cutoff is in [0, 1].

A direct computation (see below) shows that the automaton yields S payoff of vξ when starting 
in state ξ , and incentive constraints from the auxiliary contracting game imply that no player 
will have a profitable one-shot deviation.22 Therefore, 〈σ̂ξ , ρ̂ξ , β̂ξ 〉ξ∈{0,1} yields an equilibrium 
as required.

22 More specifically, an S type’s deviation gain from sending message ẑ instead of z for one period in state ξ will be 
proportional to her deviation gain from sending signal 

(
ŷξ (ẑ), ẑ

)
instead of 

(
ŷξ (z), z

)
in the game with monetary signals.
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Now, let us verify the construction yields an equilibrium that generates a payoff vξ in each 
state ξ ∈ {0, 1}. First, the Bayesian property and R incentive property are trivially inherited from 
the corresponding properties in the auxiliary games. Next, let us verify the S incentive property 
assuming the given strategy profile generates a payoff vξ from each initial state ξ ∈ {0, 1}. Ap-
pealing to the one-shot deviation principal, we need only show, for every ξ ∈ {0, 1} and θ ∈ �, 
that S does not want to engage in a one-shot deviation and send a different report than the putative 
equilibrium prescribes. To see this, observe that her continuation payoff from sending message 
z ∈ Z is

(1 − δ)

∫
A

uS(·, θ) dρ̂ξ (·|z) dσ̂ξ (z|θ) + δ
[
vξ + (v1−ξ − vξ )

1−δ
δ

∣∣ŷξ (z)
∣∣

v1−v0

]

= (1 − δ)

∫
A

uS(·, θ) dρ̂ξ (·|z) + δ
[
vξ − (v1 − v0)

1−δ
δ

ŷξ (z)

v1−v0

]

= δvξ + (1 − δ)

⎡
⎣∫

A

uS(·, θ) dρ̂ξ (·|z) − ŷξ (z)

⎤
⎦

= δvξ + (1 − δ)

⎡
⎣∫

A

uS(·, θ) dρξ (·|ŷξ (z), z) − ŷξ (z)

⎤
⎦ .

Hence, her incentive to deviate from message z ∈ Z to message z′ ∈ Z at such a history in the 
repeated game is proportional to her incentive to deviate from 

(
ŷξ (z), z

)
to 
(
ŷξ (z

′), z′) in the 
static game with monetary incentives; and so the S incentive constraints from the latter imply her 
incentive constraints for the former.

Finally, letting ṽξ denote the S payoff generated by the given strategy profile when starting in 
state ξ ∈ {0, 1}, let us compute (ṽ0, ṽ1) and verify that it coincides with (v0, v1). By construction, 
each ξ ∈ {0, 1} has

ṽξ = (1 − δ)

∫
�

∫
Z

∫
A

uS(·, θ) dρ̂ξ (·|z) dσ̂ξ (z|·) dμ0

+δ

⎡
⎣ṽξ + (ṽ1−ξ − ṽξ )

∫
�

∫
Z

1−δ
δ

∣∣ŷξ (z)
∣∣

v1−v0
dσ̂ξ (z|·) dμ0

⎤
⎦

= (1 − δ)

∫
�

∫
Z

∫
A

uS(·, θ) dρ̂ξ (·|z) dσ̂ξ (z|·) dμ0

+δ

⎡
⎣ṽξ − (ṽ1 − ṽ0)

∫
�

∫
Z

1−δ
δ

ŷξ (z)

v1−v0
dσ̂ξ (z|·) dμ0

⎤
⎦

= δṽξ + (1 − δ)

∫
�

∫
Z

⎡
⎣∫

A

uS(·, θ) dρ̂1(·|z) − ṽ1−ṽ0
v1−v0

ŷξ (z)

⎤
⎦ dσ̂ξ (z|·) dμ0,

which rearranges to
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ṽξ =
∫
�

∫
Z

⎡
⎣∫

A

uS(·, θ) dρ̂ξ (·|z) − ṽ1−ṽ0
v1−v0

ŷξ (z)

⎤
⎦ dσ̂ξ (z|·) dμ0

=
∫
�

∫
Z

⎡
⎣∫

A

uS(·, θ) dρ̂ξ (·|z) − ŷξ (z)

⎤
⎦ dσ̂ξ (z|·) dμ0

+ (v1−v0)−(ṽ1−ṽ0)
v1−v0

∫
�

∫
Z

ŷξ (z) dσ̂ξ (z|·) dμ0

=
∫
�

∫
Y×Z

⎡
⎣∫

A

uS(·, θ) dρξ (·|y, z) − y

⎤
⎦ dσξ (y, z|·) dμ0

+ (v1−v0)−(ṽ1−ṽ0)
v1−v0

∫
�

∫
Z

ŷξ (z) dσ̂ξ (z|·) dμ0

= vξ + [(ṽ0 − v0) − (ṽ1 − v1)
]
γξ ,

where γξ := 1
v1−v0

∫
�

∫
Z

ŷξ (z) dσ̂ξ (z|·) dμ0. Now, because γ0 ≤ 0 ≤ γ1, the pair of linear equa-
tions

ṽ1 − v1 = γ1
(1+γ1)

(ṽ0 − v0)

ṽ0 − v0 = −γ0
(1−γ0)

(ṽ1 − v1)

has a unique solution, implying (ṽ0, ṽ1) = (v0, v1) as desired. �

We can now easily prove the main theorem. Just as in APS, having established the appropriate 
monotonicity and closure properties of the relevant set operator, the remaining argument is nearly 
immediate.

Proof of Theorem 1. We know Vδ �= ∅ because there exists a repeated babbling equilibrium. 
Given public randomization, Vδ is convex. Let v := supV , v := infV , and M := δ

1−δ
(v − v). 

Lemma 6 implies that V ⊆ G(M). Then, Lemma 3 implies that V ⊆ G(M). Lemma 7 then 
implies that V ⊆ V (i.e. V is closed), so V = [v, v]. Therefore, V is a compact interval with 
V ⊆ G( δ

1−δ
(v − v)). By Lemma 7, any other such interval with the same property is a subset of 

V . �

A.3. Equilibrium computations for project implementation

Here, we provide supporting computations for the equilibrium described at the end of Sec-
tion 4. Our aim is to show that the described strategy profile, paired with some belief map, forms 
an equilibrium and yields the manager a payoff of v̄. Take the CEO’s beliefs to be derived from 
Bayesian updating whenever message zH or zL is sent, and have the CEO’s belief from any other 
message be the same as that from zL; the Bayesian property is then immediate. The CEO’s best 
response property is also immediate, because message zH leaves her indifferent between all of 
her actions, and other messages leave her more pessimistic about the state (and hence willing to 
choose action zero). Moreover, the manager is always indifferent between sending message zL
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and sending messages outside of {zL, zH }. Hence, all that remains to show is that the manager’s 
payoff, v, from this strategy profile is equal to v̄; and that the manager prefers sending zH to zL

[resp. zL to zH ] whenever θ > θ∗ [resp. θ < θ∗].
Now, let v denote the manager’s payoff at the beginning of the game, and let p := P {θ ≥ θ∗}. 

Note that, given the form of the CEO’s strategy, the manager’s continuation payoff is εkv at any 
history for which he has sent message zH exactly k times. Observe that

1 − ε = (1−δ)δ̄

δ(1−δ̄)
= 1−δ

δ
θ∗
v̄

=⇒ v = (1 − δ)E[θ1θ≥θ∗ ] + δ[1 − (1 − ε)p]v
= (1 − δ)(v̄ + pθ∗) + δ

[
1 − 1−δ

δ
θ∗
v̄

p
]
v

= (1 − δ)
[
v̄ + pθ∗

(
1 − v

v̄

)]+ δv

=⇒ v = v̄ + pθ∗
(
1 − v

v̄

)
The last equation is satisfied by v = v̄, and the two sides move antimonotonically with v; it 
follows that v = v̄. Finally, we verify the manager’s incentives. At any history, some k ∈ N
exists so that the manager’s incremental payoff from reporting zH rather than reporting zL is

[(1 − δ)εk−1θ + δεkv̄] − δεk−1v̄ = εk−1 [(1 − δ)θ − δ(1 − ε)v̄]

= εk−1
[
(1 − δ)θ − δ

(
1−δ
δ

θ∗
v̄

)
v̄
]

= εk−1(1 − δ)(θ − θ∗).
Hence, types above [resp. below] θ∗ prefer to send message zH [resp. zL], as required.

A.4. Bonuses can hurt

Our main theorem yields an equivalence between the sender payoffs in the repeated game and 
the payoffs from a static cheap talk game with money burning and bonuses. However, bonuses 
played no role in our one worked application. Moreover, it is straightforward to show (for in-
stance, applying an observation of Kamenica and Gentzkow (2011)) that the leading example of 
Crawford and Sobel (1982) shares the feature that a repeated babbling equilibrium is worst for S 
in the repeated game, so that again the one-shot game with bonuses is irrelevant. Here, we pro-
vide an example in which capped self-assigned bonuses can lead to S achieving worse payoffs in 
the static game than he could without bonuses.23

Let � = {−1, 0, 1}, A = [−1, 1], μ0(1) = μ0(−1) = 1
4 , and the players’ utility functions 

take the form uR(a, θ) = −(a − θ)2 and uS(a, θ) = a − 12(1 − θ2)a2. We argue, proceeding 
informally, that this example is as desired.

First, consider cheap talk with no monetary signals. Facing quadratic loss, R always chooses 
his expectation of the state. As the two nonzero S types simply want to maximize R’s action, 
there is no equilibrium in which these two types send different message distributions: type −1
would have a strict incentive to deviate from the message she is supposedly more likely to send. 
Therefore, R chooses action 0 almost surely, yielding S payoff of 0.

Now, we describe an equilibrium of the game where S can send bonuses capped at 1. Here, S 
collects no bonus if her type is 1, collects a bonus of 1 if her type is −1, and mixes uniformly 

23 We are grateful to Doron Ravid for providing the first known example to us; this example is essentially the same as 
Doron’s.
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between these two choices if her type is 0; she babbles, so that only her bonus signals her type. 
Meanwhile, R will have uniform belief over types {0, 1} and choose 1

2 if no bonus is collected, 
and have uniform belief over types {−1, 0} and choose − 1

2 if a strictly positive bonus is collected. 
Direct computation shows that the above describes an equilibrium (in particular, all S types are 
indifferent between collecting no bonus and collecting a maximum bonus), and that S has an 
ex-ante payoff of −1 < 0.
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