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MOTIVATION

Projects in firms rely on workers’ complementary efforts

Workers rewarded for overall success face strategic risk
▶ Reluctant to work unless they expect others will

What is firm’s optimal scheme that uniquely implements work?
1. Is transparency about workers’ rank and pay good?
2. Is pay inequality a feature of optimal incentives?



ENSURING EFFORT

Want to provide assurance to worker that coworker will work

Winter (2004): Specify hierarchy of workers
▶ High reward for high-rank workers to always work
▶ Lower for low-rank workers to work when higher-rank do

Scheme is discriminatory

But this assumes public contracts
▶ Realistic? Optimal?



RANK UNCERTAINTY

Current debate: lack of transparency in firms
▶ Firms rarely (internally) disclose employee contract terms
▶ Also discourage/prohibit workers from discussing terms
▶ Secrecy further sustained by social norms

We show firm’s optimal scheme indeed limits information
▶ Create rank uncertainty to address strategic uncertainty

Scheme is unique and entails no discrimination



LITERATURE
SOME HIGHLIGHTS

Contracting with externalities
▶ Segal (1999, 2003), Winter (2004)
▶ Randomization: Eliaz-Spiegler (2015), Moriya-Yamashita (2019)

Information design
▶ Inostroza-Pavan (2020), Hoshino (2019),

Mathevet-Perego-Taneva (2020),
Morris-Oyama-Takahashi (2020)

Broader literature on incentives and discrimination



Model



MORAL HAZARD IN TEAMS

Timeline:
▶ Principal offers contracts to set of agents (see next slide)
▶ Each agent works or shirks
▶ Project succeeds or fails
▶ Based on outcome, agents paid according to contracts

Want everybody to work, at low monetary cost

Parameters:

Agents ∶ N = {1, . . . ,N}
Production ∶ P ∶ 2N

→ [0, 1] supermodular and increasing
Costs ∶ c⃗ = (ci)i, all > 0



OPTIMAL CONTRACTING PROBLEM

Before play, principal designs incentive scheme σ = ⟨T, q,B⟩:
▶ T = ∏i Ti, where each Ti is finite

(WLOG Ti ⊆ N)

▶ q ∈ ∆T

(WLOG qi has full support on Ti)

▶ B = (Bi)i, where Bi ∶ Ti → R+ is i’s bonus from success

Say σ uniquely implements work (UIW) if ∀ε > 0, everybody
works in every BNE of the Bayesian game with type space
⟨T, q⟩ and bonuses B + ε.

Principal’s problem:

W∗ = infσ Expected total payment
s.t. σ UIW
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A Simple Example



WINTER (2004), LEADING EXAMPLE
REVIEW OF “PUBLIC CONTRACTS” CASE

2 agents, ci = c, project succeeds w.p.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ∶ both work
p2 ∶ both shirk
p ∶ one each

To make all-work an equilibrium, pay each worker

bL ∶=
c

1−p

To make it the only equilibrium, pay one worker

bH ∶= c
p(1−p) > bL

... but can then pay other worker bL
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WINTER (2004), LEADING EXAMPLE
LIMITING TRANSPARENCY

2 agents, ci = c, project succeeds w.p.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ∶ both work
p2 ∶ both shirk
p ∶ one each

Suppose we privately offer one worker a random contract:

bH or bL, each w.p. 1
2

Offer the other worker bM ∶=
c

1
2 p(1 − p) + 1

2 (1 − p)

Agents “reassure” each other ⟹ both work
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WINTER (2004), LEADING EXAMPLE
EFFECTS OF LIMITING TRANSPARENCY

bM <
1
2 bH + 1

2 bL

⟹ Total average payments decrease

⟹ Public contracts with loss of generality

bL < bM < bH

⟹ Less transparency can mean less discrimination



Ranking Agents



RANKING SCHEMES

σ = ⟨T, q,B⟩ is a ranking scheme if:
1. Every distinct i, j have q{t ∶ ti = tj} = 0;
2. Every i and ti have

Bi(ti) Eq [P{j ∶ tj ≤ ti} − P{j ∶ tj < ti}
»»»»»»»»

ti] = ci.

Lemma:
1. Every ranking scheme UIW.
2. Anything that UIW is costlier than some ranking scheme.

So firm can optimize over ranking schemes
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CONSTRUCTIVE PROOF
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Solving the

Principal’s Problem



INCENTIVE COSTS OF A RANKING

Let Π be the set of permutations on N.
▶ Each t (without ties) induces an agent ranking π(t) ∈ Π

▶ Ranking scheme σ induces ranking distribution µσ ∈ ∆Π

▶ Type ti has ranking belief µσi (⋅∣ti) ∈ ∆Π

Given µi ∈ ∆Π, let

fi(µi) ∶=

ci

Eπ∼µi [P{j ∶ πj ≤ πi} − P{j ∶ πj < πi}]

⋅ P(N)

(Very Easy) Lemma: A ranking scheme σ = ⟨T, q,B⟩ costs

∑
i

Eti∼qi fi(µσi (⋅∣ti))
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THE OPTIMAL VALUE

fi(µi) ∶= ciP(N)
Eπ∼µi [P{j∶ πj≤i}−P{j∶ πj<i}]

Theorem 1: The firm’s optimal value is:

min
µ∈∆Π

∑
i

fi(µ).

Proof: First, Efi (µσi (⋅∣ti)) ≥ fi (Eµσi (⋅∣ti)) = fi(µσ)

⟹ can’t do better
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OPTIMAL INCENTIVE SCHEMES

Auxiliary program characterizes optimal incentive schemes,
and generates uniquely optimal payments

Theorem 2:

1. There is a unique bonus profile b∗ ∈ RN which minimizes
∑i∈N bi among all

b ∈ { 1
P(N) (f1(µ), . . . , fN(µ)) ∶ µ ∈ ∆Π} .

2. A sequence (σm)m that UIW is optimal iff the limit bonus
distribution under σm (exists and) is degenerate on b∗.

Proof idea: f ∼ strictly convex, and ∃ common prior over Π
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DISCRIMINATION

From Theorem 2, optimal bonus to i uniquely pinned down.

Corollary:

If ci = cj and P(J ∪ {i}) = P(J ∪ {j}) ∀J ⊆ N \ {i, j}, then b∗i = b∗j .

Every optimal (σm)m has Pm{∣bi − bj∣ < ε} → 1 ∀ε > 0.

▶ No discrimination between identical agents

▶ Little discrimination between similar agents
▶ Rank uncertainty strictly optimal for similar agents
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Heterogeneity and

Rank Uncertainty



EMERGENCE OF A HIERARCHY

Proposition: Suppose P(J) = P(∣J∣), and label c1 ≤ ⋯ ≤ cN.

▶ ∃ order ≿ on N that, in any optimal ranking distribution,
is finest such that i is “ranked above” j whenever i ≻ j.

▶ Have 1 ≻ ⋯ ≻ N iff

P(1) − P(0)
√

c1
≥ ⋯ ≥

P(N) − P(N − 1)
√

cN

and 1 ∼ ⋯ ∼ N iff

P(1) − P(0)
∑1

i=1
√

ci

, . . . ,
P(N − 1) − P(0)

∑N−1
i=1

√
ci

<
P(N) − P(0)
∑N

i=1
√

ci

▶ Payment to i increases in ci or cj.
Markup for i decreases in ci.
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EMERGENCE OF A HIERARCHY

(*bonus as a function of cost 2*)
c1 = 1;
p = .5;

PlotPiecewisec2 / (p (1 - p)), c2  c1 < p, c2 + c2 c1   (1 - p^2),

1 / p > c2  c1 > p, c2 / (1 - p), 1 / p < c2  c1 ,

Piecewisec1 / (p (1 - p)), c1  c2 < p, c1 + c1 c2   (1 - p^2),

1 / p > c1  c2 > p, c1 / (1 - p), 1 / p < c1  c2 , {c2, 0, 5}

(*ranking belief as a function of cost 2*)
c1 = 1;
p = .5;

PlotPiecewise0, c2  c1 < p, 
- c2 + c1 p

 c2 + c1  (-1 + p)
, 1 / p > c2  c1 > p,

1, 1 / p < c2  c1 , Piecewise0, c1  c2 < p, 
- c1 + c2 p

 c1 + c2  (-1 + p)
,

1 / p > c1  c2 > p, 1, 1 / p < c1  c2 , {c2, 0, 5}

(*two successes figure*)
q = .8;
p = .3;
Plot[Min[1 / (b (q - p) / q + (1 - b) (p / q (q - p) / q)),

1 / (b ((1 + q - p) / (1 + q)) + (1 - b) (p / (1 + q)))], {b, 0, 1}]
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Extensions



SUBSTITUTABLE EFFORT

Workers’ efforts may not always be complements
▶ Congestion costs; small tasks

Modify analysis for uniquely (IC)Rationalizable work:

fi(µi) =
ciP(N)

Eπ∼µimi ({j ∈ N ∶ πj < πi})

where mi(J) ∶= min {P (̂J ∪ {i}) − P(̂J) ∶ J ⊆ Ĵ ⊆ N \ {i}}

Equilibrium analysis seems harder



INFORMATION SHARING

Rank uncertainty undermined if agents can reveal terms

Revealing equilibrium with verifiable disclosure (symmetric P)
▶ “Threat beliefs” punish nondisclosure
▶ Rank uncertainty cannot be ensured!
▶ Such a firm cannot outperform Winter (2004)

Firms discourage/prohibit discussion about contracts
▶ Gely-Bierman (2003), Hegewisch-Williams-Drago (2011)
▶ Edwards (2005), Cullen-Perez-Truglia (2018)



INTERDEPENDENT CONTRACTING

So far: workers know own contractual terms

What if (effective) contractual terms are interrelated?
▶ In math, Bi(t) rather than Bi(ti)
▶ Could arise through discretionary pay

Punchline: Strategic risk becomes irrelevant
▶ Minimum bonus bi to make work an equilibrium
▶ ti ∈ {1, 2} i.i.d. where type 1 has probability ε ≈ 0

Bi(t) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ci
P{i}−P(∅) ∶ ti = 1,

1
εN−1 ⋅ bi ∶ ti = 2 and tj = 1 for all j ≠ i,
0 ∶ otherwise



CONCLUDING REMARKS

Rank uncertainty allows firm to ensure work at lower cost

Current debate: increase transparency to reduce discrimination
▶ Regulation protecting workers who share contract terms
▶ Some firms moving to open (internal) disclosure

We find: discrimination optimal↭ public contracts

Either measures will be counterproductive, or factors other
than optimal incentives are behind firms’ discrimination



Thanks!


