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A sender commissions a study to persuade a receiver but influences
the report with some probability. We show that increasing this proba-
bility can benefit the receiver and can lead to a discontinuous drop in
the sender’s payoffs. To derive our results, we geometrically character-
ize the sender’s highest equilibrium payoff, which is based on the
concavification of a capped value function.

I. Introduction

Many institutions routinely collect and disseminate information. Although
the collected information is instrumental to its consumers, often the main
goal of dissemination is to persuade. Persuading one’s audience, however,
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requires the audience to believe what one says. In other words, the institu-
tionmust be credible, meaning it must be capable of delivering both good
and bad news. Yet if the institution is not independent from its superiors,
delivering unfavorable news might be especially difficult. This paper stud-
ies how an institution’s credibility influences its persuasiveness and the
quality of information it provides.
For concreteness, consider a head of state who wants to sway a firm to

invest as much as possible in her country’s economy. The firm can make
a large investment (2), a small investment (1), or no investment (0).
Whereas the country’s leader wants tomaximize thefirm’s expected invest-
ment, the firm’s net benefit from investing depends on the state of the
economy, which can be either good or bad. When the economy is good,
the firm makes a profit of 1 from a large investment and 3/4 from a small
investment. Investing in a bad economy results in losses, yielding the firm a
payoff of21 and21/4 froma large and small investment, respectively. Not
investing always generates a payoff of 0 to the firm, regardless of the
state. Therefore, the firmwill make a large (no) investment whenever it as-
signs a probability of at least 3/4 to the economy being good (bad). For
intermediate beliefs, the firm makes a small investment. The firm and
the leader share a prior belief of PðgoodÞ 5 1=2 (fig. 1).
To persuade the firm to invest, the leader commissions a report by the

country’s central bank. By specifying the report’s parameters—its data,
methods, assumptions, focus, and so on—the leader controls what infor-
mation the report is supposed to convey. Formally, the commissioned re-
port is a signal structure, yð#jgoodÞ and yð#jbadÞ, specifying a distribution
overmessages that the firm observes conditional on the state if the report
is conducted as announced. To execute the report as planned, however,
the bankmust withstand the leader’s behind-the-scenes pressures; that is,
the firm observes a message drawn from y only if the bank is indepen-
dent, which occurs with probability x. With complementary probability,
the bank is influenced, meaning it releases a message of the leader’s
choice. Once the message is realized, the firm observes it and chooses
how much to invest without knowing whether the report is influenced.
When the central bank is fully credible, x 5 1, it is committed to the

official report. As such, the leader can communicate any information
she chooses, and so this example falls within the framework of Kamenica
and Gentzkow (2011). Using their results, one can deduce that the pol-
icy maker optimally chooses a symmetric binary signal,

y*1 g jgoodð Þ 5 3=4, y*1 g jbadð Þ 5 1=4,

y*1 bjgoodð Þ 5 1=4, y*1 bjbadð Þ 5 3=4:
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Under this signal structure, the firm is willing to invest 2 following a g
signal, and 1 following a b signal. Ex ante, the two signals occur with
equal probability, leading the firm to invest 3/2 on average.
If the central bank were weaker, its messages would be less persuasive

because the firm would no longer take them at face value. To illustrate,
suppose that x 5 2=3 and that the leader commissioned the same report
as under full credibility. In this case, the firm could not possibly make a
large investment after seeing g ; otherwise, the leader would always send g
when influencing the report, which would make a small investment strictly
better for the firm. Thus, when x 5 2=3, the leader’s full-commitment re-
port is not sufficiently persuasive to increase the firm’s involvement in the
local economy beyond its no-information investment of 1.
The leader can, however, overcome the firm’s skepticism by asking the

bank to release more information. In fact, when x 5 2=3, commission-
ing a fully revealing report that sends g if and only if the economy is good
is optimal for the leader. In the resulting equilibrium, the leader always
sends g when influencing the report, whereas the firm makes a large in-
vestment when seeing g and invests nothing otherwise. The reason the
firm invests 2 upon seeing g is that the bank’s official report is so infor-
mative that a g message results in the firm believing the economy is good
with probability 3/4 despite the leader’s possible interference. Because
the firm sees the gmessage with probability 2/3, it invests 4/3 on average
in the leader’s economy.
Since a weaker central bank results in the leader commissioning a

more informative report, the firm may benefit from a reduction in the
bank’s credibility. To illustrate, observe that when x 5 1, the firm is
no better off with the leader’s report than it was without it: in either case,
the firm expects a profit of 1/4. By contrast, when x 5 2=3, the firm
strictly benefits from the leader’s communications, making an expected
profit of 1/2 from investing 2 after seeing g and not investing otherwise.
On average, the firm’s profit equals 1/3. Thus, the leader responds to
the central bank’s decreased credibility by commissioning a report
whose informativeness more than compensates the firm for the central
bank’s increased susceptibility.
Tounderstand examples suchas theone above, we study a generalmodel

of strategic communicationbetween a receiver (he) and a sender (she)who
cares about only the receiver’s action. The receiver’s preferences over

FIG. 1.—Firm’s best response in central bank example.
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his actions depend on an unknown state, v. To learn about v, the receiver
relies on information provided by an institution under the sender’s con-
trol. The game begins with the sender publicly announcing an official re-
porting protocol, which is an informative signal about the state.With prob-
ability x, the sender’s institution is independent, delivering the receiver a
messagedrawn according to the originally announcedprotocol.With com-
plementary probability, the report is influenced: the sender learns the state
and chooses whatmessage to send to the receiver. Seeing themessage (but
not its origin), the receiver takes an action. Thus, x represents the credibil-
ity of the sender’s institution, that is, the institution’s ability to resist inter-
ference by its superiors.
At the extremes, our framework specializes to two prominent models

of information transmission. When x 5 1, the sender can never influ-
ence the report, so our setting reduces to one in which the sender pub-
licly commits to her communication protocol at the beginning of the
game. In other words, under full credibility, our model is equivalent
to Bayesian persuasion (Kamenica and Gentzkow 2011). When x 5 0,
the receiver knows the sender is choosing the report’s message ex post.
Because messages are costless, they are just cheap talk (Crawford and
Sobel 1982; Green and Stokey 2007), meaning that our no-credibility
case corresponds to a cheap-talk game with state-independent prefer-
ences (Chakraborty and Harbaugh 2010; Lipnowski and Ravid 2020).
The corner cases of our model lend themselves to geometric analysis.

Let the sender’s value function be the highest value the sender can obtain
from the receiver responding optimally at a given posterior belief. Ka-
menica and Gentzkow (2011) show that concavifying this function gives
the sender’s largest equilibriumpayoff in the Bayesian persuasionmodel.
More recently, Lipnowski and Ravid (2020) observe that as long as the
sender cares about only the receiver’s actions, quasiconcavifying the
sender’s value function delivers her highest equilibrium payoff under
cheap talk.
Our theorem 1 uses the aforementioned geometric approach to char-

acterize the sender’s maximal equilibrium value in the intermediate
credibility case, x ∈ ð0, 1Þ. To do so, the theorem partitions the sender’s
equilibrium messages into two sets: messages the sender willingly sends
when influencing the report (e.g., g in the above example) andmessages
communicated only by the official report. One might guess that con-
cavification and quasiconcavification characterize the sender’s payoffs
from official and influenced reporting, respectively. However, we show
that whereas quasiconcavification characterizes the sender’s payoffs
from influenced reporting, one cannot find the sender’s utility from of-
ficial reporting using concavification alone. The reason is that the send-
er’s payoff from a message cannot surpass the utility she obtains under
compromised reporting: if it did, the sender would have a profitable
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deviation. To account for this incentive constraint, one must cap the
sender’s value function at her utility from influenced reporting before
concavifying it.
Using theorem 1, we explore how the use of weaker institutions affects

persuasion. Proposition 1 identifies situations in which the receiver does
better with a less credible sender. In particular, the proposition shows
that such productive mistrust can occur when the sender wants to reveal
intermediate information under full credibility. In such circumstances, a
less credible sender may choose to commission a report that releases
more news that is bad for her, so that the receiver believes messages that
are good for the sender. We see this case in the central bank example
above: when x 5 1, the bank never fully reveals any state, whereas under
x 5 2=3, the report must occasionally reveal that the economy is bad in
order to ensure that the firm invests 2 when seeing g.
Our next result, proposition 2, shows that small decreases in credibility

can lead to large drops in the sender’s value. More precisely, we show that
such a collapse occurs at some full-support prior and some credibility level
if andonly if the sender can benefit frompersuasion. Sucha collapse is pre-
sent in the above example: whenever x < 2=3, the leader cannot induce
the firm to invest 2 even when she chooses to commission a fully revealing
report. Thus, the best she can do when x < 2=3 is to get an investment of 1
for sure by communicating no information—a drop of 1/3 from the 4/3
average investment the leader obtains when x is exactly 2/3.
Onemay wonder if such collapsesmay occur at full credibility. Our prop-

osition 3 shows that such a discontinuity can occur but only in knife-edge
cases. Thus, although the sender’s value often drops at some prior and
some x because of small decreases in credibility, it rarely does so at x 5 1.
Related literature.—This paper contributes to the literature on strategic

information transmission. To place our work, consider two extreme
benchmarks: full credibility and no credibility. Our full-credibility case
is the model used in the Bayesian persuasion literature (Aumann and
Maschler 1995; Kamenica and Gentzkow 2011; Kamenica 2019), which
studies sender-receiver games in which a sender commits to an informa-
tion transmission strategy. The no-credibility specialization of our model
reduces to cheap talk (Crawford and Sobel 1982; Green and Stokey
2007). In particular, we build on Lipnowski and Ravid (2020), who use
the belief-based approach to study cheap talk under state-independent
sender preferences.
Two recent papers (Fréchette, Lizzeri, and Perego 2022; Min 2021)

study closely related models. Fréchette, Lizzeri, and Perego (2022) test
experimentally the connection between the informativeness of the send-
er’s communication and her credibility in the binary state, binary action
version of our model. Min (2021) looks at a generalization of our model
in which the sender’s preferences can be state dependent. He shows that
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the sender weakly benefits from a higher commitment probability. Ap-
plying Blume, Board, and Kawamura’s (2007) results on noisy communi-
cation, Min (2021) also shows that allowing the sender to commit with
positive rather than zero probability strictly helps both players in Craw-
ford and Sobel’s (1982) uniform quadratic example.
Other thematically related work studies games of information transmis-

sion while varying the (exogenous or endogenous) limits to communica-
tion. Some suchwork focuses on games of direct communication, showing
how some manner of commitment power can be sustained (for either a
sender or a receiver) via lying costs (e.g., Kartik 2009; Guo and Shmaya
2021; Nguyen and Tan 2021), repeated interactions (e.g., Mathevet,
Pearce, and Stacchetti 2022; Best and Quigley 2022), verifiable informa-
tion (e.g., Glazer and Rubinstein 2006; Sher 2011; Hart, Kremer, and Perry
2017; Ben-Porath, Dekel, and Lipman 2019), informational control (e.g.,
Ivanov 2010; Luo and Rozenas 2018), or mediation (e.g., Goltsman et al.
2009; Salamanca 2021). Other work considers models in which a sender
chooses an experiment ex ante, asking how persuasion can be shaped by
exogenous experiment constraints (e.g., Ichihashi 2019; Perez-Richet
andSkreta 2022) or by signalingmotives (e.g., Perez-Richet 2014;Hedlund
2017; Alonso and Câmara 2018).
More broadly, weak institutions often serve as a justification for exam-

ining mechanism design under limited commitment (e.g., Bester and
Strausz 2001; Skreta 2006). We complement this literature by relaxing
a principal’s commitment power in the control of information rather than
incentives.

II. A Weak Institution

We analyze a game with two players: a sender (she) and a receiver (he).
Whereas both players’ payoffs depend on the receiver’s action, a ∈ A,
the receiver’s payoff also depends on an unknown state, v ∈ Θ. Thus, the
sender and the receiver have objectives uS : A→R and uR : A ! Θ→R, re-
spectively, and each aims to maximize expected payoffs.
The game begins with the sender commissioning a report, y :Θ→ ΔM ,

to be delivered by a research institution. The state then realizes, and the
receiver sees a message m ∈ M (without observing v). Given any v, the
sender is credible with probability x, meaning m is drawn according to
the official reporting protocol, yð#jvÞ. With probability 1 2 x, the sender
is not credible, in which case the sender decides which message to send
after privately observing v. Only the sender learns her credibility type,
and she learns it only after announcing the official reporting protocol.1

1 In the appendix, we show that our payoff results are unchanged if the sender learns
her credibility type before choosing the official report.
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We impose some technical restrictions on our model.2 Both A and Θ
are finite spaces with at least two elements. The state, v, follows some prior
distribution m0 ∈ ΔΘ, which is known to both players. Finally, we assume
that M is rich enough to ensure that the sender faces no exogenous con-
straints on communication.3

We now define an equilibrium, which consists of four objects: the send-
er’s official reportingprotocol, y :Θ→ ΔM , executedwhenever the sender
is credible; the strategy that the sender employs when not committed, that
is, the sender’s influencing strategy, j :Θ→ ΔM ; the receiver’s strategy,
a :M → ΔA; and the receiver’s belief map, p :M → ΔΘ, assigning a poste-
rior belief to eachmessage. Ax-equilibrium is an official reporting policy an-
nounced by the sender, y, together with a perfect Bayesian equilibrium of
the subgame following the sender’s announcement. Formally, ax-equilibrium
is a tuple (y, j, a, p) of maps such that it is consistent with Bayesian up-
dating, and both the receiver and the sender behave optimally; that is,

1. Bayesian updating : the belief map p :M → ΔΘ satisfies Bayes’s rule
given prior m0 and the message policy

xy 1 1 2 xð Þj :Θ→ ΔM:

2. Receiver optimality: every m ∈ M has a(m) supported on

argmax
a∈A

o
v∈Θ
uR a, vð ÞpðvjmÞ:

3. Sender optimality: every v ∈ Θ has j(v) supported on

argmax
m∈M

o
a∈A

uSðaÞaðajmÞ:

We view the sender as a principal capable of steering the receiver toward
her favorite x-equilibria. In Lipnowski, Ravid, and Shishkin (2022), we
define the notion of perfect Bayesian x-equilibrium in which we explic-
itly model the sender’s incentives at the experiment choice stage. By ap-
propriately completing off-path play, that paper shows that the sender’s
highest x-equilibrium payoff coincides with her highest perfect Bayesian
x-equilibrium payoff.

2 We view every topological space as a measurable space with its Borel field. For any mea-
surable space Y, we denote by ΔY the set of all probability measures over Y. For any mea-
surable spaces X, Y, a map X → Y is a measurable function X → Y .

3 For example, we could take M 5 ½0, 1$ (see appendix). Moreover, corollary 1 in the
appendix implies that the sender’s optimal equilibrium payoff would remain unchanged
if M were instead finite with jM j ≥ minfjAj, 2jΘj 2 1g.
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III. Persuasion with Partial Credibility

In this section, we characterize the sender’s maximal x-equilibrium payoff.
Our analysis applies the belief-based approach (Kamenica 2019; Forges
2020). Within an equilibrium, each message m that the sender communi-
cates to the receiver induces a posterior belief m 5 pðmÞ ∈ ΔΘ and an ex-
pected sender utility from the receiver’s (potentially mixed) action s 5
oa∈AuSðaÞaðajmÞ ∈ R. By replacing each message with its associated m
and s, one can transform the equilibrium distribution of messages into its
induced joint distribution P of the receiver’s beliefs and the sender’s contin-
uationpayoffs.We refer to ðm, sÞ ∈ ΔΘ # R as an outcome, and to adistribution
P ∈ ΔðΔΘ # RÞ as an outcome distribution, and we define a x-equilibrium out-
come distribution to be an outcome distribution induced by a x-equilibrium.

A. The Extreme Cases

We now review existing results that cover the extreme cases of our model.
These cases serve as building blocks for proving our main theorem, which
covers the case in which x is intermediate.

1. Full Credibility

When x 5 1, the sender’s official announcement is binding, and so our
model reduces to the Bayesian persuasion model of Kamenica and
Gentzkow (2011).Wenow review someof their results.With full credibility,
the sender is hampered by only two constraints. The first constraint is that
the receiver updates his beliefs usingBayes’s rule, which is equivalent to the
receiver’s posterior belief averaging to his prior. That is, P must satisfy

ð
mdPðm, sÞ 5 m0: (Bayes)

The second constraint is that the receiver must be best responding: for
any belief the receiver holds, he must take only actions he finds optimal.
To formalize this requirement, define the sender’s value correspondence to
be the correspondence mapping each posterior belief to the set of pay-
offs the sender can attain from the receiver-optimal behavior,4

V : ΔΘ ⇉R

m ↦ couS argmax
a∈A

o
v∈Θ
uRða, vÞmðvÞ

" #
:

4 The reason for the convex hull in V ’s definition is that the receiver may choose to mix
in the event that he has multiple best responses to a given belief.
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Then, P is compatible with the receiver’s incentive constraint if and only if
P is supported on the graph of V; that is, amessage can induce an outcome
(m, s) only if s ∈ V ðmÞ. Letting gr V :5 fðm, sÞ : s ∈ V ðmÞg denote the
graph of V, we can state this constraint formally as

Pðgr V Þ 5 1: (R-IC)

As noted by Kamenica and Gentzkow (2011), the conditions (R-IC) and
(Bayes) are together necessary and sufficient for an outcome distribution
P to arise from some 1-equilibrium. Denote the subset of ΔðΔΘ # RÞ
that satisfy these conditions for a prior m0 and value correspondence V by

BPðm0, V Þ 5 P ∈ Δ ΔΘ # RÞ :  P satisfies ðBayesÞ and ðR-ICÞð g:f

One can characterize the sender’s highest 1-equilibrium payoff using her
value function,

v : ΔΘ → R

m ↦max V ðmÞ,

which maps every belief to the utility the sender obtains if the receiver
chooses optimally and breaks ties in the sender’s favor givenmultiple best
responses. Specifically, one can show that the sender’s utility in her favor-
ite 1-equilibrium equals v̂ðm0Þ, where

v̂ :5 cavðvÞ

is the lowest concave function that is everywhere above v (e.g., Aumann
and Maschler 1995; Kamenica and Gentzkow 2011). The function v̂ is
known as v’s concavification.
Figure 2 illustrates the above in the context of the central bank example

from the introduction. Because the state is binary, we identify the receiver’s
posterior beliefmwith the probability it assigns to the economybeing good.
The left panel in figure 2 plots the sender’s value correspondence, takingm

FIG. 2.—Value correspondence V, sender’s best 1-equilibrium outcome P, and value
function v with its concavification v̂ in central bank example.
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as an input. For m < 1=4, the sender can only get a payoff of 0, whereas
when m ∈ ð1=4, 3=4Þ, she can only get 1, and when m > 3=4, she can only
get 2. The sender can attain any payoff between 0 and 1 when m 5 1=4
and any payoff between 1 and 2 when m 5 3=4. The middle panel depicts
the sender’s best 1-equilibrium outcome distribution P, which assigns
equal weight to the points ðm, sÞ 5 ð1=4, 1Þ and ðm, sÞ 5 ð3=4, 2Þ. As can
be seen, both points lie on the graph of V, meaning that this distribution
satisfies (R-IC). This distribution also satisfies (Bayes) because the aver-
age probability assigned to v 5 good equals 1/2, which is the probability
assigned to that state by the prior. One can visually verify that this distri-
bution is indeed sender optimal by examining the right panel, which shows
the sender’s value function along with its concave envelope,

vðmÞ 5

0 if  m ≤ 1=4,

1 if  m ∈ ½1=4, 3=4$

2 if  m ≥ 3=4,

, v̂ðmÞ 5

4m if  m ≤ 1=4,

1 1 2ðm 2 1=4Þ if  m ∈ ½1=4, 3=4$,

2 if  m ≥ 3=4:

8
>>><

>>>:

8
>>><

>>>:
(1)

As seen in the figure, the outcome distribution P gives the sender an
expected payoff of 3/2, which is also the value of v̂ðm0Þ, thereby confirm-
ing that P is indeed sender optimal.

2. No Credibility

We now turn to the x 5 0 case, in which the receiver knows the sender is
choosing m after observing the state. Being freely chosen, the sender’s
communication is cheap talk (Crawford and Sobel 1982; Green and
Stokey 2007) and thus needs to satisfy the sender’s incentive constraints.
Our assumption that the sender’s preferences are state independent
simplifies these constraints considerably: the sender must be indifferent
between all on-path messages. The reason is that if the sender’s payoffs
across two distinct messages differ, the sender will never (in any state)
want to send the lower-payoff message. As such, the sender’s payoff from
all outcomes in the support of a 0-equilibrium outcome distribution must
be the same. In other words, every 0-equilibrium outcome distribution
P must satisfy

P ΔΘ % sif gf g 5 1 for some si ∈ R: (CP)

Combining (CP) with the restrictions imposed by Bayesian updating
(Bayes) and the receiver incentives (R-IC), one obtains a full character-
ization of the attainable outcome distributions under no credibility (see
Aumann and Hart 2003; Lipnowski and Ravid 2020). It follows that the
sender’s highest 0-equilibrium payoff is given by
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max
P∈BPðm0,V Þ

ð
s dPðm, sÞ subject to ðCPÞ: (CT)

Lipnowski and Ravid (2020) show that this maximal payoff is equal to
!vðm0Þ, where

!v 5 qcavðvÞ

is v’s quasiconcavification, that is, the lowest quasiconcave function that
is everywhere above v.
Figure 3 depicts v’s quasiconcavification and concavification, respec-

tively, for some function v. These functions describe the sender’s ability
to benefit from communication by connecting points on the graph of
the sender’s value correspondence. With full credibility, the sender
can connect such points using any affine segment. When x 5 0, the
sender’s incentive constraints dictate that her payoff coordinate must re-
main constant; that is, the sender can use only flat segments.
Let us revisit the example from the introduction when x 5 0. Observe

that the optimal 1-equilibrium outcome distribution in this example does
not satisfy (CP), because it generates two outcomes with different sender
payoffs and so cannot be induced by a 0-equilibrium (see fig. 2, middle
panel). We now argue that the sender cannot attain any value above 1 in
any 0-equilibrium. One way of seeing this fact is to observe that the send-
er’s value function in this example is quasiconcave and is therefore equal
to its quasiconcavification. Alternatively, observe that (Bayes) requires ev-
ery 0-equilibrium outcome distribution P to induce at least one outcome
with m ≤ 1=2, whereas (R-IC) requires the sender’s payoff from all such
beliefs to be below 1. Because the sender’s payoff must be constant over
P’s support by (CP), it follows thatP cannot induce a sender payoff strictly
larger than 1.

FIG. 3.—Value function v and its quasiconcavification !v and concavification v̂.
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B. The Intermediate Credibility Case

This section presents theorem 1, which geometrically characterizes the
sender’s optimal x-equilibrium value for our general model.
Suppose that credibility is not extreme (0 < x < 1) so that both the of-

ficial reporting protocol and the sender’s influencing strategy are rele-
vant, and let P be a x-equilibrium outcome distribution. Notice that the
receiver optimality and the Bayesian-updating conditions are as in the full-
and no-credibility cases, and so P must satisfy (Bayes) and (R-IC); that is,
P ∈ BPðm0, V Þ. We now use these conditions to derive an upper bound on
the sender’s value from P.
We begin by decomposing P into two distributions. To do so, let

smax :5 max s :ðm, sÞ ∈ suppðPÞf g

be the highest payoff in the support of P, and let k ∈ ½0, 1$ denote the P-
probability of sender payoffs strictly below smax. In what follows, we focus
on the case in which 0 < k < 1.5 Let G be the distribution over outcomes
induced by P conditional on s 5 smax, and let B be the outcome distribu-
tion conditional on s < smax. By construction,

P 5 ð1 2 kÞG 1 kB:

For an example, consider the optimal 1-equilibrium outcome distribu-
tion P from the central bank example, which generates the outcomes
ðm, sÞ 5 ð1=4, 1Þ and ðm, sÞ 5 ð3=4, 2Þ with equal probability. In this case,
smax 5 2 and k 5 1=2, whereas G and B are degenerate on (3=4, 2) and
(1=4, 1), respectively.
We now bound the sender’s payoff from P from above by applying the

results of the extreme cases of our model to the above decomposition.
We begin by bounding the value the sender obtains fromG. To do so, note
that because P satisfies (R-IC),G is supported on the graph of V. It follows
thatG ∈ BPðg, V Þ, where g 5

Ð
mdGðm, sÞ is the receiver’s expected poste-

rior underG. Moreover, observe thatG satisfies the constant sender payoff
condition (CP): by construction, G only induces outcomes that give the
sender a payoff of smax. Hence, given the above characterization of feasible
distributions for the no-credibility case,G is compatible with a 0-equilibrium
for the game withmodified prior g. Therefore, we can bound the sender’s
expected payoff fromG using the quasiconcavification of the sender’s value
function:

smax 5
ð
s dGðm, sÞ ≤ !vðgÞ:

5 It will be apparent that in the cases of k 5 0 and k 5 1, the payoff upper bound we
derive will remain an upper bound.
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Next, we use concavification to bound from above the sender’s expected
payoff from B. Toward this goal, for every payoff !s, define the correspon-
dence V∧!s : ΔΘ⇉R that censors V(m) from above by !s:

V∧!sðmÞ 5 min s,!sf g : s ∈ V ðmÞf g:

Figure 4 illustrates V∧!s. The graph of this correspondence is constructed
by reducing to!s the payoff coordinate of every outcome (m, s) in V ’s graph
whose s is above !s. Other outcomes in V ’s graph are kept unchanged.
TounderstandwhyV∧!s is a useful correspondence, observe thatB is sup-

ported on the graph of V and that, by definition, B never yields a sender
payoff above smax. In other words, for any!s larger than smax,B only generates
outcomes from the graph of V that are also in the graph of V∧!s. Hence,
whenever!s ≥ smax, the outcomedistributionB is in the set BPðb, V∧!sÞ, where
b 5

Ð
mdBðm, sÞ is the receiver’s average posterior under B. Therefore, B

must give the sender a utility below the maximal payoff that the sender
can get from some distribution in this set. As we explained in section III.A,
one can find this maximal payoff using concavification. Specifically, let

v∧!s : ΔΘ →R

m ↦max V∧!sðmÞ 5 min vðmÞ,!sf g

be the function that assigns every belief m with the highest sender utility in
V∧!sðmÞ, and let v̂∧!s be the concavification of v∧!s. Then, v̂∧!sðbÞ is the highest
payoff the sender can obtain from any distribution in BPðb, V∧!sÞ. Because
!vðgÞ ≥ smax, setting !s 5 !vðgÞ delivers that B gives the sender an expected
payoff below v̂∧!vðgÞ. To ease notational burden, we use

v̂∧g :5 cavðv∧!vðgÞÞ

as shorthand for v̂∧!vðgÞ.

FIG. 4.—Construction of V∧!s for !s 5 0:5, 1, 1:5 in central bank example.
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Figure 5 illustrates the construction of v̂∧g. The first step in the con-
struction is to find !vðgÞ, the value of the quasiconcavification of v at an
arbitrary g. Using this value, one then caps the sender’s value function
so that no belief results in a payoff higher than !vðgÞ. The result is the func-
tion v∧gð#Þ 5 minfvð#Þ, !vðgÞg, which is the same function one obtains by
mapping every belief m to the maximal value in V∧!vðgÞ. Concavifying this
function delivers v̂∧g.
Collecting the above observations allows us to bound the sender’s pay-

off from a fixed x-equilibrium outcome distribution P,
ð
s dPðm, sÞ 5 k

ð
s dBðm, sÞ 1 ð1 2 kÞ

ð
s dGðm, sÞ

≤ kv̂∧gðbÞ 1 ð1 2 kÞ!vðgÞ:

Of course, the above bound holds only for P, the x-equilibrium out-
come distribution we started from. To attain an upper bound across all x-
equilibria, we maximize the right-hand side of the above equation over
all (b, g, k) satisfying two restrictions necessary for a x-equilibriumoutcome
distribution. For the first restriction, recall that Pmust satisfy the Bayesian
updating constraint (Bayes), and so

m0 5
ð
mdPðm, sÞ 5 k

ð
mdBðm, sÞ 1 ð1 2 kÞ

ð
mdGðm, sÞ:

Because
Ð
mdBðm, sÞ 5 b and

Ð
mdGðm, sÞ 5 g, it follows that (b, g, k)

must satisfy the Bayesian splitting constraint

kb 1 ð1 2 kÞg 5 m0 : (BS)

For the second restriction, observe that an influencing sender only
sends messages whose induced outcome results in a sender payoff of smax.
Indeed, she never attains a higher payoff, since no on-path message
leads to a payoff above smax, and she cannot find sending a message yield-
ing a lower payoff optimal, because then she would prefer to deviate to a

FIG. 5.—Construction of concavification of value function capped at some g.
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message generating a payoff of smax. Hence, for each state v, the probabil-
ity the state is v and the sender obtains a payoff of smax is at least the prob-
ability the state is v and reporting is influenced—that is, ð1 2 xÞm0ðvÞ.
Expressing this inequality directly in terms of P and using the definitions
of k and G gives

ð1 2 xÞm0ðvÞ ≤
ð

ðm,sÞ : s5smaxf g
mðvÞdPðm, sÞ 5 ð1 2 kÞ

ð
mðvÞdGðm, sÞ:

Recalling that
Ð
mdGðm, sÞ 5 g delivers that (b, g, k) must satisfy the

credibility constraint

ð1 2 kÞgðvÞ ≥ ð1 2 xÞm0ðvÞ 8 v ∈ Θ:
( x C)

Thus, we have obtained the following upper bound on the sender’s
maximal x-equilibrium value:

v*x ðm0Þ :5 max
b,g∈ΔΘ, k∈½0,1$

kv̂∧gðbÞ 1 ð1 2 kÞ!vðgÞf g

subject to ðBSÞ and ðxCÞ:
( * )

Our main theorem shows that this bound is also tight when x is
intermediate.
Theorem 1. Some x-equilibrium exists in which the sender’s value is

v*x ðm0Þ. Moreover, any such x-equilibrium is sender optimal.
Our proof uses a (b, g, k) that solves the program (*) to construct a x-

equilibrium yielding the sender a value of v*x ðm0Þ. Intuitively, one pastes
together a sender-optimal equilibrium of a cheap talk game with prior g
and a Bayesian persuasion solution with prior b. We give an informal de-
scription of this construction in appendix A and a formal proof in ap-
pendix B.
We now apply the theorem to the introduction’s central bank example.

To solve the program for v*x ðm0Þ, first note that setting ðb, g, kÞ 5 ðm0, m0, 0Þ
is always feasible, and hence v*x ðm0Þ ≥ !vðm0Þ 5 1. But what formmust a so-
lution (b, g, k) take if v*x ðm0Þ > 1? First, because the objective is bounded
above by !vðgÞ, it must be that !vðgÞ > 1. Equivalently, g ≥ 3=4. Constraint
(BS) then requires b ≤ 1=2 and further gives us an exact formula for k
in terms of (b, g):

k 5 kb,g :5
g 2 m0

g 2 b
:

In what follows, we treat the program as an optimization over (b, g), tak-
ing for granted that k will be set to kb,g.
Observe that we can (still under the hypothesis that v*x ðm0Þ > !vðm0Þ)

take g 5 3=4. Indeed, moving g ∈ ½3=4, 1$ closer to the prior—hence,

(χC)

(*)
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lowering k to preserve (BS)—always preserves (xC).6 Meanwhile, because
v̂∧gðbÞ ≤ !vðgÞ by definition, such a modification raises the program’s ob-
jective if the modification does not alter the value of !vðgÞ. Therefore, be-
cause !v is constant on [3=4, 1], any solution (b, g, k) such that g ≥ 3=4
can be replaced with one that has g 5 3=4.
Thus, we have argued that the program (*) always admits a solution of

the form (b, 3=4, kb,3=4) for b ∈ ½0, 1=2$. Restricted to solutions of this
form, the program (*) reduces to a univariate constrained maximization
program, which can be solved in three exhaustive cases. If x ≥ 3=4, the
triplet (1=4, 3=4, 1=2) is a feasible (b, g, k) that delivers the sender her
full commitment value of v*x ðm0Þ 5 3=2, meaning that said triplet is op-
timal. If 2=3 ≤ x < 3=4, it is optimal to set b equal to

b*x :5
3x 2 2
4x 2 2

,

which is the highest b for which kb,3=4 and g 5 3=4 satisfy the constraint
(xC). The sender’s utility in this case is v*x ðm0Þ 5 2x. Finally, if x < 2=3,
no b ∈ ½0, 1=2Þ can satisfy the constraints required to support g 5 3=4,
and so we cannot improve upon feasible solution ðb, g, kÞ 5
ð1=2, 1=2, 0Þ, which yields value v*x ðm0Þ 5 1; that is, the sender can do
no better than a babbling equilibrium. To summarize, the sender’s max-
imal equilibrium payoff is given by

v*x ðm0Þ 5

1 if  x < 2=3,

2x if  x ∈ 2=3, 3=4½ $,

3=2 if  x ≥ 3=4:

8
>><

>>:

Figure 6 illustrates the calculation of this value for some x ∈ (2/3, 3/4).
The way the sender obtains the above value—following the construc-

tion described after the proof of theorem 1—depends on x. When
x < 2=3, it is best for the sender to leave the receiver uninformed. When
x 5 1, the sender is best commissioning the report described in the in-
troduction, y*1 . To obtain her full-credibility payoff when x ∈ ½3=4, 1Þ, the
sender commissions a report that induces the same information about v
in equilibrium, but the official report is itself more informative than y1 to
compensate for the fact that an influencing sender always sends the high
message. When x ∈ ð2=3, 3=4Þ, the sender commissions a report that
sends three different messages. The low and medium messages, which
induce posterior beliefs 0 and 1/4, respectively, are only ever sent under

6 In the presence of (BS), the constraint (xC) is equivalent to requiring kbðvÞ ≤ xm0ðvÞ
for every state v, a constraint that relaxes as k decreases.
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official reporting. The highmessage would induce a belief strictly higher
than 3/4 if it were known to come from official reporting, but when tak-
ing into account that influenced reporting sends this message in either
state, its induced receiver belief is exactly 3/4. Finally, the case of
x 5 3=4 is a limiting version of the latter case in which the mediummes-
sage is never sent; in this case, the official report is fully informative.

IV. Varying Credibility

This section uses theorem 1 to conduct general comparative statics. First,
we study how a decrease in the sender’s credibility affects the receiver’s
value. In particular, we provide sufficient conditions for the receiver to
benefit from a less credible sender. Second, we show that small reduc-
tions in the sender’s credibility can often lead to a large drop in the send-
er’s payoffs. Finally, we note that these drops rarely occur at full credibil-
ity. In other words, the full-credibility value is usually robust to small
imperfections in the sender’s commitment power.

A. Productive Mistrust

We now study how a decrease in the sender’s credibility affects the receiv-
er’s value and the informativeness of the sender’s equilibrium commu-
nication. In general, the less credible the sender, the smaller the set of
equilibrium outcome distributions.7 However, that the set of outcome
distributions shrinks does not mean that less information is transmitted
in the sender’s preferred equilibrium. Our introductory example is a

FIG. 6.—Calculating sender value for feasible b and g in central bank example.

7 Givencredibility levelsx0 < x andax0-equilibrium(y,j,a,p),onecanconstructax-equilibrium
that generates the same outcome distribution, e.g., (ðx0=xÞy 1 ½1 2 ðx0=xÞ$j, j, a, p).
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case in point, showing that lowering the sender’s credibility can result in
a more informative equilibrium (à la Blackwell 1953). Moreover, in that
example, the receiver uses this additional information, obtaining a strictly
higher value when the sender’s credibility is lower. In what follows, we re-
fer to this phenomenon as productive mistrust and provide sufficient
conditions for it to occur.
Our key sufficient condition involves the sender’s optimal outcome

distribution under full credibility. For a state v, let dv ∈ ΔΘ be the degen-
erate belief that generates v with probability 1. Given prior m, an out-
come distribution P ∈ BPðm, V Þ is a show-or-best (SOB) outcome distribu-
tion if every supported receiver belief lies in

dvf gv∈Θ [ argmax
m0∈Δ½suppðmÞ$

vðm0Þ:

In words, P is an SOB distribution if it either reveals the state to the re-
ceiver or brings the receiver to a posterior belief that attains the sender’s
best feasible value. Say the sender is a two-faced SOB if for every binary
support prior m ∈ ΔΘ, every P ∈ BPðm, V Þ is outperformed by an SOB
distribution P0 ∈ BPðm, V Þ; that is,

Ð
s dPðm0, sÞ ≤

Ð
s dP0ðm0, sÞ. Figure 7 de-

picts an example in which the sender is a two-faced SOB. Note that pro-
ductive mistrust cannot occur in this example: one can show that if the
sender’s favorite equilibrium outcome distribution changes as credibility

FIG. 7.—Sender is a two-faced SOB.
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declines, no information must become sender optimal.8 As such, the re-
ceiver need not benefit from a less credible sender.
Finally, say a model is generic if the receiver is (1) not indifferent be-

tween any two actions at any degenerate belief and (2) not indifferent
between any three actions at any binary support belief.9

Proposition 1 below shows that in generic settings, the sender not be-
ing a two-faced SOB is sufficient for productive mistrust to occur for
some full-support priors at some credibility levels. Intuitively, the sender
being an SOB means that a highly credible sender has no bad informa-
tion to hide: under full credibility, the sender’s bad messages are maxi-
mally informative, subject to keeping the receiver’s posterior fixed fol-
lowing the sender’s good messages. The sender not being an SOB at
some prior means her bad messages optimally hide some instrumental
information. By reducing the sender’s credibility just enough to make
the full-credibility solution infeasible, one can push her to reveal some
of that information to the receiver. In other words, the sender commits
to potentially revealing more extreme bad information in order to pre-
serve the credibility of her good messages. Proposition 1 below formal-
izes this intuition.
Proposition 1. Consider a generic model in which the sender is not

a two-faced SOB. Then, a full-support prior and credibility levels x0 < x
exist such that every sender-optimal x0-equilibrium is strictly better for
the receiver than every sender-optimal x-equilibrium.10

The proposition builds on the binary state case, extending to the gen-
eral case via a continuity argument. We now sketch the binary state argu-
ment. To follow the argument, consulting figure 8, which depicts the rel-
evant objects for the central bank example, is useful. Because the model
is generic, !v has a nondegenerate interval of maximizers (which corre-
spond to beliefs in [3=4, 1] in fig. 8). Fixing a prior near this interval
but toward the nearest kink, we then find the lowest x ∈ ½0, 1" at which
the sender still obtains her full-credibility value. In the central bank ex-
ample, one can use any prior in (1/4, 3/4). If we choose m0 5 1=2, we

8 For an explanation, observe that the claim is obvious for priors that allow the sender to
attain her first-best under no information. For other priors, a feasible (b, g, k) exists that
improves on the sender’s no-information payoff if and only if a feasible (b, g, k) exists that
gives the sender her full-credibility payoff.

9 Given a fixed finite A and Θ, genericity holds for (Lebesgue) almost every uR ∈ RA#Θ. In
particular, it holds ifuR ða, vÞ ≠ uR ða 0, vÞ for all distincta, a 0 ∈ A and all v ∈ Θ, and ðuR ða1, v1Þ2
uR ða 2, v1ÞÞ=ðuRða1, v2Þ2uR ða 2, v2ÞÞ ≠ ðuR ða 2, v1Þ2uR ða3, v1ÞÞ=ðuR ða 2, v2Þ2uRða3, v2ÞÞ for all dis-
tinct a1, a 2, a3 ∈ A and all distinct v1, v2 ∈ Θ.

10 Two additional remarks are in order. First, when jΘj 5 2, every sender-optimal
x0-equilibrium is more Blackwell informative than every sender-optimal x-equilibrium.
Second, with more than two states, one can also find payoff environments in which every

sender-optimal 0-equilibrium is strictly better for the receiver than every sender-optimal
1-equilibrium.

persuasion via weak institutions 000



take x to be 3/4, which is the lowest credibility level that delivers the
sender’s full-commitment payoff. At this x, the sender’s favorite equilib-
rium outcome distribution P is unique, generating the outcome (g, !vðgÞ)
with probability (1 2 k) and the outcome (b, !v∧gðbÞ) with probability k,
where (b, g, k) is a solution to theorem 1’s program (see g 5 3=4 and
b 5 1=4 in fig. 8). The beliefs g and b are interior, and v̂ has a kink at
b. Although g remains optimal in theorem 1’s program for any additional
small reduction in credibility, (xC) means that one must replace b with
a new belief b0 (b*x in the central bank example) that is further from the
prior. Relying on the set of beliefs being one-dimensional, we show that
this new solution results in an outcome distribution P0 whose marginal
distribution p0 over the receiver’s posterior belief (so p 0 ∈ ΔΔΘ) is strictly
more informative than the corresponding marginal p for P. Intuitively,
one can attain p0 from p using two consecutive splittings, each of which
involves an increase in informativeness: First, b is split between g and
b0, and then b0 is split between b and another posterior (0 in fig. 8). This
posterior lies even further from theprior thanb0 does and gives the sender
a strictly lower continuation value than b. Hence, the additional informa-
tion p0 provides to the receiver over p is instrumental, strictly increasing
the receiver’s utility.

FIG. 8.—Productive mistrust in central bank example.
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B. Collapse of Trust

Theorem 1 immediately implies that lowering the sender’s credibility
can only decrease her value.11 Below, we show that this decrease is dis-
continuous for many payoff specifications of our model. In other words,
small decreases in the sender’s credibility can result in a large drop in
the sender’s benefits from communication.
Proposition 2. The following are equivalent:

i. A collapse of trust never occurs:

lim
x0 ↗ x

vx0* ðm0Þ 5 v*x ðm0Þ

for every x ∈ ½0, 1$ and every full-support prior m0.
ii. Commitment is of no value: v*1 5 v*0 .
iii. No conflict occurs: vðdvÞ 5 max vðΔΘÞ for every v ∈ Θ.

Let us sketch proposition 2’s proof. To this end, notice that two of the
proposition’s three implications are immediate. First, whenever no con-
flict occurs, the sender can reveal the state in an incentive-compatible
way while obtaining her first-best payoff (given the receiver’s incentives),
meaning commitment is of no value; that is, point iii implies point ii.
Second, because the sender’s highest equilibrium value increases with
her credibility, commitment having no value means that the sender’s
best equilibrium value is constant (and, a fortiori, continuous) in the
credibility level; that is, point ii implies point i.
To show that point i implies point iii, we show that any failure of point

iii implies the failure of point i. To do so, we fix a full-support prior m0 at
which !v is minimized. Because conflict occurs, !v is nonconstant and thus
takes values strictly greater than !vðm0Þ. By theorem 1, one has that
v*x ðm0Þ > !vðm0Þ if and only if a feasible triplet (b, g, k) with k < 1 exists
such that !vðgÞ > !vðm0Þ. Using upper semicontinuity of !v, we show that
such a triplet is feasible for credibility x if and only if x is weakly greater
than some strictly positive x*. We thus have

v*
x*ðm0Þ ≥ k!vðm0Þ 1 ð1 2 kÞ!vðgÞ > !vðm0Þ 5 max

x∈½0,x*Þ
v*x ðm0Þ,

where the first inequality follows from m0 minimizing !v; that is, a collapse
of trust occurs.

11 In app. sec. B.1.4, we show that credibility increases have a continuous payoff effect: a suf-
ficiently small increase in the sender’s credibility never results in a large gain in the sender’s
benefits from communication. Thus, the sender’s value is an upper-semicontinuous function
of x. Proposition 2 implies that lower semicontinuity is frequently violated.
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C. Robustness of the Commitment Case

Given the large and growing literature on optimal persuasion with com-
mitment, one may wonder whether the commitment solution is robust
to small decreases in the sender’s credibility. Proposition 3 shows the an-
swer is almost always.
Proposition 3. The following are equivalent:

i. The full-commitment value is robust: limx↗ 1v*x ðm0Þ 5 v*1 ðm0Þ for ev-
ery full-support m0.

ii. The sender receives the benefit of the doubt: every v ∈ Θ is in the
support of some member of argmaxm∈ΔΘ vðmÞ.

Thus, the proposition shows that the sender’s full-credibility value is
robust if and only if the sender can persuade the receiver to take her fa-
vorite action without ruling out any states. A sufficient condition for the
latter is that the receiver is willing to take the sender’s preferred un-
dominated action at some full-support belief, a property that holds ge-
nerically.12 Hence, although small decreases in credibility often lead to
a collapse in the sender’s value, these collapses rarely occur at x 5 1.
The argument behind proposition 3 establishes a four-way equiva-

lence between

a. the sender getting the benefit of the doubt,
b. !v being maximized by a full-support prior g,
c. a full-support g existing such that v̂∧g and v̂ agree over all full-

support priors, and
d. robustness to limited credibility.

To see that point a implies point b, notice that whenever the sender
receives the benefit of the doubt, one can find a full-support prior in
the convex hull of the beliefs in which the receiver is willing to give
the sender her first-best action. Splitting this prior across those beliefs
gives an outcome distribution in BP(m0,V ) that delivers the sender her
highest feasible payoff for every supported outcome, meaning the sender
can attain this payoff using cheap talk. For the converse direction, one can
use the fact that max !vðΔΘÞ 5 max vðΔΘÞ. Specifically, this fact implies !v
is maximized at a full-support prior g if and only if one can split g in a way

12 More precisely, proposition 3 implies that the sender’s full-credibility value is robust
whenever a sender-best action among those not strictly dominated for the receiver is a best
reply for some full-support belief. It follows from lemma 1 in Lipnowski, Ravid, and
Shishkin (2022) that this property holds for Lebesgue-almost every preference specification.
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that attains v’s maximal value at all posteriors, because !v gives the sender’s
highest cheap-talk payoff for every prior. The sender receiving the benefit
of the doubt then follows from g having full support.
For the equivalence of points b and c, note that v̂ and v̂∧g are both con-

tinuous because A and Θ are finite. Therefore, the two functions agree
over all full-support priors if and only if they are equal, which is equiva-
lent to the cap on v^v̄(g) being nonbinding; that is, g maximizes !v.
To see why point c is equivalent to point d, fix some full-support m0 and

consider two questions about theorem 1’s program. First, which beliefs
can serve as g for x < 1 large enough? Second, how do the optimal (b,
k) for a given g change as x goes to 1? For the first question, the answer
is that g is feasible for some x < 1 if and only if g has full support.13 For
the second question, one can show that it is always optimal to choose (b,
k) so as to make (xC) bind while still satisfying (BS).14 Direct computa-
tion reveals that as x goes to 1, every such (b, k) must converge to (m0, 1).
Combined, one obtains that as x increases, the sender’s optimal value
converges to maxg∈intðΔΘÞv̂∧gðm0Þ. Thus, the sender’s value is robust to lim-
ited credibility if and only if some full-support g exists for which v̂∧g 5 v̂
for all full-support priors; that is, point c is equivalent to point d. The
proposition follows.

V. Conclusion

This paper studies a model of persuasion through a weak institution
whose messages are compromised. Our model has certain features that
are worth further discussion.
Throughout the paper, we assumed that the sender’s credibility is in-

dependent of the state of the world. However, in many scenarios, it is nat-
ural for the sender’s credibility to be correlated with the state. For exam-
ple, an autocrat may be more likely to influence the media in a rich
economy with abundant resources than in a country where resources
are scarce (e.g., Egorov, Guriev, and Sonin 2009). One can capture such
correlation by supposing that when the state is v, the message is drawn

13 It is easy to see that every full-support g admits some b and k < 1 that make (BS) hold.
Moreover, (xC) is also satisfied at (b, g, k) for all sufficiently high x, because (xC)’s right-
hand side converges to zero as x→ 1. Conversely, observe that if gðvÞ 5 0, (xC) is violated
at v for all x < 1, because m0 has full support.

14 To see why, for any feasible (b, g, k), a (b0, k0) exists such that (b0, g, k0) is feasible, (xC)
binds, and k 0 ≥ k. By (BS), b0 5 ðk=k 0Þb1ð1 2 k=k 0Þg. Because v̂∧ g is concave and v̂∧ gðgÞ 5
!vðgÞ,

k 0v̂∧ g b0ð Þ1 ð12 k 0Þ!vðgÞ5 k 0v̂∧ g
k

k 0 b 1 12
k

k 0

! "
g

! "
1 12 k 0ð Þ!vðgÞ

≥ kv̂∧ g bð Þ1 k 0 2 kð Þv̂∧ g gð Þ1 12 k 0ð Þv̂ðgÞ5 kv̂∧ g bð Þ1 12 kð Þv̂ðgÞ:
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from the sender’s official report with probability x(v). Theorem 1 gener-
alizes to this case with a minor modification. For a bounded and measur-
able f :Θ→R and m ∈ ΔΘ, let f m denote the measure on Θ given by
f mðΘ̂Þ :5

Ð
Θ̂f dm. Then, appendix B shows that some sender-favorite equi-

librium exists, and the sender’s value in this equilibrium is given by

v*x ðm0Þ 5 max
b,g∈ΔΘ, k ∈ ½0,1$

kv̂∧ gðbÞ 1 ð1 2 kÞ!vðgÞ

subject to kb 1 ð1 2 kÞg 5 m0,

ð1 2 kÞg ≥ ð1 2 xÞm0:

With the above characterization in hand, the propositions of section IV
extend to the state-dependent credibility model in a straightforward
manner; see the appendix for precise statements.
We also assumed that the sender announces her official report before

knowing whether the announcement is credible. In practice, the sender
may be privy to institutional features that affect her chances of influencing
the report before she commissions it. To understand such situations, ap-
pendix C considers a modifiedmodel in which the sender learns her cred-
ibility type before announcing the official reporting protocol. We show
that this modification has no impact on the sender’s equilibrium payoffs,
and so the sender’s maximal equilibrium value remains unchanged.
Finally, we formulated our model as having a finite number of actions

and states. However, many applications admit infinite states, infinite ac-
tions, or both (e.g., Gentzkow and Kamenica 2016; Kolotilin et al. 2017;
Dworczak and Martini 2019). To accommodate such applications, the
appendix considers a more general model in which both the action
and the state space are compact metrizable. As we show there, our char-
acterization of sender-optimal equilibrium payoffs generalizes to this
case in a straightforward manner.
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Online Appendix

A Constructing an S-optimal Equilibrium

In this appendix, we informally explain how to use a (�, �, k) that solves the program

(⇤) to construct a �-equilibrium yielding S a value of v⇤�(µ0). As a first step, let

(��,↵�, ⇡�) denote an equilibrium of the cheap-talk game with modified prior � that

generates S payo↵ v̄(�); some such equilibrium exists as we outlined in discussing

the no-credibility case. If k = 0 (implying � = µ0 by (�C)), then (⇠, �,↵, ⇡) =

(��, ��,↵�, ⇡�) is a �-equilibrium delivering the desired S payo↵.

Given the above observation, we can focus on the case in which every solution

(�, �, k) to the program has k > 0—or, equivalently, that v⇤�(µ0) > v̄(µ0). Let B 2
BP(�, V^v̄(�)) be such that

R
(µ, s) dB(µ, s) = (�, v̂^�(�)). Lemma 3 in Appendix B.1.2

uses the geometry of concavification and quasiconcavification to prove B is supported

only on outcomes in V that are left untouched by moving from V to V^v̄(�). It follows

B is in BP(�, V ), and so one can use the results from the full-credibility case to obtain

some triple (⇠�,↵�, ⇡�) that—when the prior is � and credibility level is � = 1—

induces the outcome distribution B, is consistent with Bayesian updating, and satisfies

R’s incentive constraints. Moreover, because the message space is rich, we may assume

without loss that the messages M� used by ⇠� have no overlap with the messages M�

used by ��.

Now, let us describe how the the above objects can be “pasted” together to deliver

a �-equilibrium with the relevant S payo↵. Because constraint (BS) is satisfied, a

binary signal can be used to “split” the prior into beliefs � and �: concretely, some

� : ⇥ ! [0, 1] exists such that if message “high” and “low” are respectively sent

with probability 1� �(✓) and �(✓) in state ✓, the would-be posterior distribution from

hearing message “high” is � and from “low” is �. Further, constraint (�C) implies

�(✓)  � for every state ✓. We can therefore construct a �-equilibrium as follows. The

influencing S strategy � is ��; the o�cial reporting protocol is given by

⇠(✓) := ⇠⇤(✓)⇠�(✓) + [1� ⇠⇤(✓)]��(✓)

, where

⇠⇤(✓) := 1� �(✓)/� 2 [0, 1];
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and the R strategy ↵ and belief map ⇡ agree with (↵�, ⇡�) for messages in M� and

(↵�, ⇡�) for messages in M�. In the appendix, we show (⇠, �,↵, ⇡) inherits the Bayesian

and R incentive properties from its constituent pieces and generates an S payo↵ of

v⇤�(µ0). Moreover, because S is indi↵erent between all messages in M� and receives

payo↵s from V^v̄(�) (hence, below v̄(�)) from messages in M�, S’s incentive constraints

are also satisfied. Hence, we have found a �-equilibrium generating S payo↵ v⇤�(µ0),

delivering the theorem.

A byproduct of the theorem’s construction is the following result, which bounds

the number of on-path messages required for an S-optimal equilibrium.

Corollary 1. Some S-optimal �-equilibrium exists with no more than min{|A|, 2|⇥|�1}
distinct messages sent on path.

Existing literature has already established the above bounds hold when credi-

bility is extreme. Specifically, Kamenica and Gentzkow (2011) and Lipnowski and

Ravid (2020) note that when � 2 {0, 1}, an S-optimal �-equilibrium exists that uses

only min{|A|, |⇥|} messages. Applying these bounds separately to G and B deliv-

ers that no �-equilibrium S-value requires more than twice as many messages, that

is, min{2|A|, 2|⇥|}. The corollary shows one can tighten these bounds by utilizing

Theorem 1’s construction. See Appendix B.1.3 for more details.

B Main Results

B.1 Toward the Proof of Theorem 1

Throughout this subsection, we work with a more general setting of the model in which

both ⇥ and A are compact metrizable spaces with at least two elements, and the ob-

jectives uR and uS are continuous.14 Finally, we assume M is an uncountable compact

metrizable space.15 To generalize the definition of a �-equilibrium and the value cor-

respondence V , the sums are replaced with the corresponding integrals with respect to

measures ⇡(m), ↵(m), and µ over ⇥, A, and ⇥, respectively. Further, throughout the

14We view any compact metrizable space Y as a measurable space with its Borel field; let �Y
denote the set of all probability measures on Y ; and endow �Y with its weak* topology, so that �Y
is itself a compact metrizable space.

15In the special case in which A and |⇥| are finite, our characterization of sender-optimal equilibrium
values (Theorem 1) and the propositions of section 4 hold if |M | � min{|A|, 2|⇥|�1}; see Corollary 1.
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appendix, we modify the definitions of the value function’s concavification v̂ (resp. qua-

siconcavification v̄), letting it be the lowest (quasi)concave and upper semicontinuous

function that dominates v.16

In addition, we allow for the possibility that credibility is state dependent, given

by some measurable function � : ⇥ ! [0, 1]. Throughout this appendix, we adopt

the following notational convention. For a compact metrizable space Y , a probability

measure µ 2 �Y , and a function f : Y ! R that is bounded and measurable, let

f(µ) :=
R
Y f dµ 2 R denote the average value of f . In particular, for any credibility

function �, the scalar �(µ0) is simply the total probability that the report is not

subject to influence.

Although accommodating this more general model entails some notational cost, all

conceptual content of the proof is identical in the special case of constant credibility,

and so the generalization requires no additional arguments. We therefore encourage

the reader to read the entire proof while keeping in mind with the special case in which

the function � is a constant �.

We now provide a brief overview of the proof. Formalizing a form of equilibrium

summary that is su�cient to calculate players’ payo↵s, the proof begins by showing

an equivalence between the set of �-equilibrium summaries, the set of �-nonical equi-

librium summaries, and the existence of a particular decomposition of the equilibrium

distribution of R beliefs. This decomposition makes it easy to see program (2) is a re-

laxation of the program that maximizes S’s value across all �-equilibrium summaries.

In particular, program (2) enables S to induce posteriors that would generate too high

a continuation payo↵ for S. The proof’s next part establishes this constraint is non-

binding at the optimum. We then conclude by explicitly writing the program that finds

S’s favorite equilibrium summary and showing its value is identical to that of (2).

B.1.1 Characterization of All Equilibrium Summaries

In this section, we characterize the full range of �-equilibrium summaries, which we

define below. In short, a �-equilibrium summary consists of a description of the infor-

mation R receives in equilibrium (which is jointly constructed by the o�cial reporting

protocol and an influencing S’s messaging strategy), an expected payo↵ that S receives

conditional on the o�cial reporting protocol being used, and an expected payo↵ that

16When ⇥ is finite, it follows from Carathéodory’s theorem that the lowest (quasi)concave majorant
of v is upper semicontinuous because v is. Hence, the present definition generalizes the one in the
main text.
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S receives conditional on having the opportunity to influence.

To present unified proofs including for the case of � = 1 and � = 0, we adopt the

notational convention that 0
0 = 1 wherever it appears.

We now define a convenient class of equilibria.

Definition 1. A �-nonical equilibrium is a �-equilibrium (⇠, �,↵, ⇡) such that ev-

ery Borel M̂ ✓ M⇤
↵ has ⇠(M̂ |·) = ⇠(M⇤

↵|·) �(M̂ |·), where M⇤
↵ := argmaxm2M uS(↵(m)).

The above definition imposes further structure on a �-equilibrium. The requirement

pertains to the set M⇤
↵ of the highest-payo↵ messages for S, which are necessarily the

only messages an influencing S chooses. The condition says the conditional distribution

of messages in M⇤
↵ is identical for the o�cial experiment and for an influencing sender’s

choices, in any state for which the o�cial report sometimes sends messages in M⇤
↵.

Informally, the condition says all di↵erences in how the o�cial and influenced report

communicate are through whether they send a message in M⇤
↵ in a given state.

Definition 2. Say (p, so, si) 2 ��⇥⇥R⇥R is a �-equilibrium summary if some

�-equilibrium (⇠, �,↵, ⇡) exists whose induced receiver belief distribution, o�cial-report

sender payo↵, and influenced-report sender payo↵ are (p, so, si); that is,

p =

✓Z

⇥


�⇠ + (1� �)�

�
dµ0

◆
� ⇡�1

so =

Z

⇥

�
�(µ0)

Z

M

uS(↵(m)) d⇠(m|·) dµ0

si =

Z

⇥

1��
1��(µ0)

Z

M

uS(↵(m)) d�(m|·) dµ0.

If, further, (⇠, �,↵, ⇡) is a �-nonical equilibrium, we say (p, so, si) is a �-nonical

equilibrium summary.

Observe that knowing a �-equilibrium’s summary is su�cient for recovering each

player’s expected payo↵: given a summary (p, so, si), S earns a payo↵ of �(µ0)so +

[1� �(µ0)] si, whereas R’s expected utility is
R
�⇥ maxa2A

R
⇥ uR(a, ·) dµ dp(µ).

The following lemma adopts a belief-based approach, directly characterizing the

range of �-equilibrium summaries in our game. To state the characterization, let

P(µ) := {p 2 ��⇥ :
R
µ̃ dp(µ̃) = µ} denote the set of information policies corre-

sponding to prior µ 2 �⇥.

Lemma 1. For (p, so, si) 2 ��⇥⇥ R⇥ R, the following are equivalent:
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1. (p, so, si) is a �-equilibrium summary;

2. (p, so, si) is a �-nonical equilibrium summary;

3. Some k 2 [0, 1], g, b 2 ��⇥ exist such that

(i) kb+ (1� k)g = p 2 P(µ0);

(ii) (1� k)
R
�⇥ µ dg(µ) � (1� �)µ0;

(iii) g{µ 2 �⇥ : si 2 V (µ)} = b{µ 2 �⇥ : minV (µ)  si} = 1;

(iv) si � so 2 k
�(µ0)

h
si �

R
supp(b) si ^ V db

i
.
17

The first two parts of the lemma are self-explanatory. The third part says that the

information policy p can be decomposed into two separate random posteriors, b and

g, satisfying three conditions. Condition (ii) says the barycenter of g satisfies (�C).

Condition (iii) says R is willing to give S a continuation payo↵ equal to si after all

posteriors induced by g, and a lower continuation payo↵ for any posterior induced by

b. And condition (iv) says R’s best response to posteriors in b can be selected so that

no posterior generates a payo↵ above si and so that S’s average payo↵ conditional on

her report coming from the o�cial protocol adds up to so.

We now give an overview of Lemma 1. Obviously, 2 implies 1. Therefore, the

proof proceeds by completing a cycle, showing 1 implies 3 and 3 implies 2. To show 1

implies 3, we take an equilibrium and partition the set of on-path messages into two

subsets: the set of “good” messages for S to send (i.e., those that give S the highest

possible expected payo↵ out of any possible message), and the complementary “bad”

messages. Following this decomposition, one can obtain g and b by looking at the

distribution of R’s posterior beliefs conditional on the message being in the “good”

or “bad” set, respectively. Letting k be the probability S sends a “bad” message, one

obtains condition (i) from the usual Bayesian reasoning. Condition (ii) then follows

from similar reasoning as explained in the main text, whereas conditions (iii) and (iv)

follow from S’s incentive constraints. To prove 3 implies 2, we use the decomposition

provided by 3 to construct a �-nonical equilibrium.

17Here, si ^ V : �⇥ ◆ R is the correspondence with si ^ V (µ) = (�1, si] \ V (µ); it is a Kakutani
correspondence (because V is) on the restricted domain {minV  si} ◆ supp(b). The integral is the
(Aumann) integral of a correspondence:

Z

supp(b)
si ^ V db =

(Z

supp(b)
� db : � is a measurable selector of si ^ V |supp(b)

)
.

5



Proof. We show 1 implies 3 and 3 implies 2, noting 2 obviously implies 1.

Let us first show 1 implies 3. To that end, suppose (⇠, �,↵, ⇡) is a �-equilibrium

resulting in summary (p, so, si). Let

G :=

Z

⇥

� d
h

1��
1��(µ0)

µ0

i
and P :=

Z

⇥

[�⇠ + (1� �)�] dµ0 2 �M

denote the probability measures over messages induced by non-committed behavior

and by average sender behavior, respectively. Let k := 1� P (M⇤
↵) denote the ex-ante

probability that a suboptimal message is sent. Sender incentive compatibility (which

implies �(M⇤
↵|·) = 1) tells us that k 2 [0,�(µ0)]. Let B := 1

k [P � (1 � k)G] if k > 0;

and let B :=
R
⇥ ⇠ dµ0 otherwise. As barycenters of probability measures over M , the

measures G,P are in �M . Measure B on M therefore has total measure 1. Therefore,

B 2 �M as long as B is a positive measure, that is, P � (1�k)G. To see this measure

inequality, note

(1� k)G = P (M⇤
↵)

Z

⇥

� d
h

1��
1��(µ0)

µ0

i

Z

⇥

� d [(1� �)µ0]  P,

where the first inequality follows from sender incentives (implying influenced reporting

only sends messages in M⇤
↵). Now, define the induced belief distributions by these

two distributions over messages, g := G � ⇡�1 and b := B � ⇡�1. By construction,

kb+ (1� k)g = P � ⇡�1 = p 2 P(µ0); that is, the first condition holds. Moreover, the

second condition holds:

(1� k)

Z

�⇥

µ dg(µ) =

Z

M

⇡ d[(1� k)G] =

Z

M⇤
↵

⇡ dP � (1� �)µ0,

where the inequality follows from the Bayesian property of ⇡, together with the fact

that � almost surely sends a message from M⇤
↵ on the path of play. Next, observe

that for any m 2 M , sender incentive compatibility tells us uS(↵(m))  si, and

receiver incentive compatibility implies ↵(m) 2 V (⇡(m)). It follows directly that

g{V 3 si} = b{minV  si} = 1; that is, the third condition holds. Toward the fourth

and final condition, let us view ⇡,↵ as random variables on the probability space

hM,P i. Defining the conditional expectation �0 := EB[uS(↵)|⇡] : M ! R, the Doob-

Dynkin lemma delivers a measurable function � : �⇥! R such that � � ⇡ =B�a.e. �0.

Because uS(↵(m)) 2 si ^ V (m) for every m 2 M , and the correspondence si ^ V is

compact- and convex-valued, it must be that �0 2B�a.e. si ^ V (⇡). Therefore, � 2b�a.e.

6



si^V . Modifying � on a b-null set, we may assume without loss that � is a measurable

selector of si ^ V . Observe now that

Z

supp(b)

� db =

Z

M

�0 dB =

Z

M

EB[uS(↵)|⇡] dB =

Z

M

uS � ↵ dB.

Therefore, because G(M⇤
↵) = 1,

so =

Z

M

uS � ↵ dP�[1��(µ0)]G
�(µ0)

=

Z

M

uS � ↵ dkB+(1�k)G�[1��(µ0)]G
�(µ0)

=

Z

M

uS � ↵ d
h⇣

1� k
�(µ0)

⌘
G+ k

�(µ0)
B
i
=
⇣
1� k

�(µ0)

⌘
si +

k
�(µ0)

Z

supp(b)

� db,

as required.

Now, we show 3 implies 2. Because M is an uncountable Polish space, the Borel

isomorphism theorem (Theorem 3.3.13 Srivastava, 2008) says M is isomorphic (as a

measurable space) to {i, o} ⇥ �⇥. We can therefore assume without loss that M =

{i, o}⇥�⇥.
Suppose k 2 [0, 1], g, b 2 ��⇥ satisfy the four listed conditions so that 3 holds, and

let � be a measurable selector of si^V |supp(b) with so =
⇣
1� k

�(µ0)

⌘
si+

k
�(µ0)

R
supp(b) � db,

which the fourth condition assures us exists.

We construct a �-nonical equilibrium from these objects that induces summary

(p, so, si).

Let us proceed in two cases. First, consider the case in which so = si. In this case,

the fourth condition implies b{� = si} = 1, so that p 2 P(µ0) has p{V 3 si} = 1.

Hence, (V being upper hemicontinuous) Lipnowski and Ravid (2020, Lemma 1) delivers

an equilibrium (�,↵, ⇡) of the pure cheap-talk game generating receiver information

distribution p and sender payo↵ si. It follows immediately that (�, �,↵, ⇡) is a �-nonical

equilibrium that induces summary (p, si, si).

Henceforth, we focus on the remaining case in which so < si. Without loss of

generality, we may further assume b{� < si} = 1.18 Define � :=
R
�⇥ µ db(µ) and

� :=
R
�⇥ µ dg(µ). Let measurable ⌘g : ⇥ ! �[supp(g)] ✓ ��⇥ and ⌘b : ⇥ !

�[supp(b)] ✓ ��⇥ be signals that induce belief distribution g for prior � and belief

distribution b for prior �, respectively, such that for each such signal the induced

18Indeed, one could replace k with k̃ := kb{� < si} > 0, replace b with b̃ := k
k̃
b ((·) \ {� < si}), and

replace g with g̃ := 1
1�k̃

(p� k̃b̃).
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posterior belief is to equal the message itself. That is, for every Borel ⇥̂ ✓ ⇥ and

D̂ ✓ �⇥,
Z

⇥̂

⌘b(D̂|·) d� =

Z

D̂

µ(⇥̂) db(µ) and

Z

⇥̂

⌘g(D̂|·) d� =

Z

D̂

µ(⇥̂) dg(µ).

Take some Radon-Nikodym derivative d�
dµ0

: ⇥ ! R+; changing it on a µ0-null set, we

may assume 0  k
�

d�
dµ0

 1 because (1� k)� � (1��)µ0. With the above ingredients

in hand, we can define the sender’s influenced strategy and reporting protocol

� := �i ⌦ ⌘g : ⇥! �M,

⇠ :=
⇣
1� k

�
d�
dµ0

⌘
�i ⌦ ⌘g +

k
�

d�
dµ0

�o ⌦ ⌘b : ⇥! �M.

Because Mi := {i} ⇥ �⇥ obviously has �(Mi|·) = 1 and ⇠(M̂i|·) = ⇠(Mi|·) �(M̂i|·)
for every Borel M̂i ✓ Mi, it follows that a �-equilibrium with sender play described

by (�, ⇠) is in fact a �-nonical equilibrium, as long as the receiver strategy ↵ satisfies

M⇤
↵ ◆ Mi. To finish constructing such a �-equilibrium, we define the receiver strategy

and belief map for our proposed equilibrium as follows. Intuitively, an on-path message

(i, µ) will lead to belief µ and a receiver best response that delivers payo↵ si to the

sender; an on-path message (o, µ) will lead to belief µ and a receiver best response that

delivers a potentially lower payo↵ to the sender, calibrated to give the target average

payo↵; and o↵-path messages are interpreted as equivalent to some on-path message so

as not to introduce new incentive constraints. Formally, fix some µ̂ 2 supp(b), which

will serve as a default belief and incentive-compatible receiver response for any o↵-path

messages. We can then define a receiver belief map as

⇡ : M ! �⇥

m 7!

8
<

:
µ : m = (i, µ) for µ 2 supp(g), or m = (o, µ) for µ 2 supp(b)

µ̂ : otherwise.

Finally, by Lipnowski and Ravid (2020, Lemma 2), some measurable ↵b,↵g : �⇥! �A

exist such that19

↵b(µ),↵g(µ) 2 argmax↵̃2�A uR(↵̃, µ) 8µ 2 �⇥;
19The cited lemma delivers ↵b|supp(b),↵g|supp(g). Then, as supp(p) ✓ supp(b) [ supp(g), we can

extend both functions to the rest of their domains by making them agree on supp(p) \ [supp(b) \
supp(g)].
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uS(↵b(µ)) = �(µ) 8µ 2 supp(b), and uS(↵g(µ)) = si 8µ 2 supp(g).

From these selectors, we can define a receiver strategy as

↵ : M ! �A

m 7!

8
>>><

>>>:

↵b(µ) : m = (o, µ) for some µ 2 supp(b)

↵g(µ) : m = (i, µ) for some µ 2 supp(g)

↵b(µ̂) : otherwise.

We want to show the tuple (⇠, �,↵, ⇡) is a �-equilibrium (hence, a �-nonical equilib-

rium) resulting in summary (p, so, si). It is immediate from the construction of (�,↵, ⇡)

that sender incentive compatibility and receiver incentive compatibility hold, and that

the expected sender payo↵ is si given influenced reporting. It remains to verify that

the induced receiver belief distribution is p, that the Bayesian property is satisfied, and

that the expected sender payo↵ from the o�cial report is so. We verify these features

below, via a tedious computation.

Recall �⇠ : ⇥ ! �M is defined as the pointwise product; that is, for every ✓ 2 ⇥
and Borel M̂ ✓ M , we have (�⇠)(M̂ |✓) = �(✓)⇠(M̂ |✓); and similarly for (1� �)�. To

see that the Bayesian property holds, observe that every Borel D ✓ �⇥ satisfies

[(1� �)� + �⇠]({o}⇥D|·) = k d�
dµ0

⌘b(D|·)

[(1� �)� + �⇠]({i}⇥D|·) =
h
(1� �) + �

⇣
1� k

�
d�
dµ0

⌘i
⌘g(D|·)

=
⇣
1� k d�

dµ0

⌘
⌘g(D|·).

Now, take any Borel M̂ ✓ M and ⇥̂ ✓ ⇥, and let Dz :=
n
µ 2 �⇥ : (z, µ) 2 M̂

o
for

z 2 {i, o}. Observe that

Z

⇥

Z

M̂

⇡(⇥̂|m) d[(1� �)� + �⇠](m|·) dµ0

=

Z

⇥

✓Z

{o}⇥Do

+

Z

{i}⇥Di

◆
⇡(⇥̂|m) d[(1� �)� + �⇠](m|·) dµ0

=

Z

⇥


k d�
dµ0

Z

Do

µ(⇥̂) d⌘b(µ|·) +
⇣
1� k d�

dµ0

⌘Z

Di

µ(⇥̂) d⌘g(µ|·)
�
dµ0

= k

Z

⇥

Z

Do

µ(⇥̂) d⌘b(µ|·) d� +

Z

⇥

Z

Di

µ(⇥̂) d⌘g(µ|·) d[µ0 � k�]
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= k

Z

⇥

Z

Do

µ(⇥̂) d⌘b(µ|·) d� + (1� k)

Z

⇥

Z

Di

µ(⇥̂) d⌘g(µ|·) d�

= k

Z

Do

Z

⇥

µ(⇥̂) dµ(✓) db(µ) + (1� k)

Z

Di

Z

⇥

µ(⇥̂) dµ(✓) dg(µ)

= k

Z

Do

µ(⇥̂) db(µ) + (1� k)

Z

Di

µ(⇥̂) dg(µ).

Let us establish that the above computation implies both that (⇠, �, ⇡) satisfies the

Bayesian property (making (⇠, �,↵, ⇡) a �-equilibrium) and that its induced belief

distribution is p. First, observe that

Z

⇥

Z

M̂

⇡(⇥̂|m) d[(1� �)� + �⇠](m|·) dµ0

= k

Z

Do

µ(⇥̂) db(µ) + (1� k)

Z

Di

µ(⇥̂) dg(µ)

= k

Z

⇥̂

⌘b(Do|·) d� + (1� k)

Z

⇥̂

⌘g(Di|·) d�

=

Z

⇥̂

⌘b(Do|·) d[k�] +
Z

⇥̂

⌘g(Di|·) d[µ0 � k�]

=

Z

⇥̂

h
k d�
dµ0

⌘b(Do|·) +
⇣
1� k d�

dµ0

⌘
⌘g(Di|·)

i
dµ0

=

Z

⇥̂

[(1� �)� + �⇠](M̂ |·) dµ0,

verifying the Bayesian property. Second, for any Borel D ✓ �⇥, we can specialize

to the case of Do = Di = D and ⇥̂ = ⇥, showing the equilibrium probability of the

receiver posterior belief belonging to D is exactly

Z

⇥

[(1� �)� + �⇠]({i, o}⇥D|·) dµ0 = k

Z

D

1 db+ (1� k)

Z

D

1 dg = p(D).

Finally, the expected sender payo↵ conditional on reporting not being influenced is
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given by

Z

⇥

Z

M

uS (↵(m)) d⇠(m|·) d
h

�
�(µ0)

µ0

i

=

Z

⇥

⇣
1� k

�
d�
dµ0

⌘Z

�⇥

uS (↵(i, µ)) d⌘g(µ|·) + k
�

d�
dµ0

Z

�⇥

uS (↵(o, µ)) d⌘b(µ|·)
�
d
h

�
�(µ0)

µ0

i

=

Z

⇥

⇣
1� k

�
d�
dµ0

⌘Z

�⇥

si d⌘g(µ|·) + k
�

d�
dµ0

Z

supp(b)

�(µ) d⌘b(µ|·)
�
d
h

�
�(µ0)

µ0

i

= si +
k

�(µ0)

Z

⇥


�si +

Z

supp(b)

�(µ) d⌘b(µ|✓)
�
d�(✓)

=
h
1� k

�(µ0)

i
si +

k
�(µ0)

Z

�⇥

Z

⇥

�(µ) dµ(✓) db(µ)

= (1�k)�[1��(µ0)]
�(µ0)

si +
k

�(µ0)

Z

supp(b)

� db

= so,

as required.

B.1.2 Proof of Theorem 1

We begin with a simple technical lemma on the geometry of concavifications and the

belief distributions that attain them.

Lemma 2. If f : �⇥! R is upper semicontinuous, f̂ is f ’s concavification, � 2 �⇥,
and b 2 P(�) has

R
f db = f̂(�), then b{µ 2 �⇥ : f̂ |co{�,µ} a�ne} = 1.

Proof. First, observe that every concave, non-a�ne function ' : [0, 1] ! R has '(z) >

z'(1) + (1 � z)'(0) for every z 2 (0, 1). Hence, it su�ces to show f̂
�
1
2� + 1

2µ
�
=

1
2 f̂(�) +

1
2 f̂(µ) a.s.-b(µ). Equivalently, because concavity of f̂ implies 1

2 f̂(�) +
1
2 f̂(µ)�

f̂
�
1
2� + 1

2µ
�
 0 for every µ 2 �⇥, we need only show

R h
1
2 f̂(�) +

1
2 f̂(µ)

i
db(µ) and

R
f
�
1
2� + 1

2µ
�
db(µ) coincide. To show this identity, observe that (because f̂ is concave,

upper semicontinuous, and everywhere above f)

f̂(�) =

Z h
1
2 f̂(�) +

1
2f
i
db 

R h
1
2 f̂(�) +

1
2 f̂
i
db


R
f̂
�
1
2� + 1

2µ
�
db(µ)  f̂

✓Z ⇥
1
2� + 1

2µ
⇤
db(µ)

◆
= f̂(�).

Hence, all of the above expressions are equal, delivering the lemma.
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Before proceeding to the proof of Theorem 1, we prove a useful lemma about the

theorem’s auxiliary program. In short, the lemma shows that a relaxation built into

this program—that S can be held to payo↵ v̄(�) even at beliefs at which every R best

response gives S a higher payo↵—is payo↵ irrelevant at an optimum.

Lemma 3. If (�, �, k) solve program (2) and have v̂^�(�) < v̄(�), and b 2 P(�)

has
R
v^� db = v̂^�(�), then v^�(µ) 2 V (µ) for every µ 2 supp(b). In particular,

b{minV  v̄(�)} = 1.

Proof. Given the definition of v^�, and given that V is nonempty-compact-convex-

valued, it su�ces to show w(µ)  v̄(�) for µ 2 supp(b), where w := minV . Then,

because V is upper hemicontinuous, it su�ces to show b{w  v̄(�)} = 1. To that end,

define D :=
�
µ 2 �⇥ : v̂^�|co{�,µ} a�ne

 
. Applying Lemma 2 to v^� implies b(D) = 1,

so the lemma will follow if we can show w|D  v̄(�).

Let us establish that every µ 2 D has w(µ)  v̄(�). The result is obvious if v(µ) <

v̄(�), so we focus on the case in which v(µ) � v̄(�). For such µ, note every proper convex

combination µ0 of � and µ has v(µ0) < v̄(�); otherwise, v̂^�(�) < v̂^�(µ0) = v̂^�(µ),

violating the definition of D 3 µ. It follows that µ is in the closure of {v  v̄(�)} ✓
{w  v̄(�)}. Lower semicontinuity of w then implies w(µ)  v̄(�).

We now prove our main theorem: an S-optimal �-equilibrium exists, giving S payo↵

v⇤�(µ0).

Proof. By Lemma 1, the supremum sender value over all �-equilibrium summaries is

ṽ⇤�(µ0) := sup
b,g2��⇥, k2[0,1], so,si2R

⇢
�(µ0)so + [1� �(µ0)]si

�

s.t. kb+ (1� k)g 2 P(µ0), (1� k)

Z

�⇥

µ dg(µ) � (1� �)µ0,

g{V 3 si} = b{minV  si} = 1,

so 2
⇣
1� k

�(µ0)

⌘
si +

k
�(µ0)

Z

supp(b)

si ^ V db.

Given any feasible (b, g, k, so, si) in the above program, replacing the associated

measurable selector of si ^ V |supp(b) with the weakly higher function si ^ v|supp(b), and
raising so to

⇣
1� k

�(µ0)

⌘
si +

k
�(µ0)

R
supp(b) si ^ v db, weakly raises the objective and

12



preserve all constraints. Therefore,

ṽ⇤�(µ0) = sup
b,g2��⇥, k2[0,1], si2R

⇢
(1� k)si + k

Z

supp(b)

si ^ v db

�

s.t. kb+ (1� k)g 2 P(µ0), (1� k)

Z

�⇥

µ dg(µ) � (1� �)µ0,

g{V 3 si} = b{minV  si} = 1.

Given any feasible (b, g, k, si) in the latter program, replacing (g, si) with any (g⇤, s⇤i )

such that
R
�⇥ µ dg⇤(µ) =

R
�⇥ µ dg(µ), g⇤{V 3 s⇤i } = 1, and s⇤i � si will preserve all

constraints and weakly raise the objective. Moreover, Lipnowski and Ravid (2020,

Lemma 1 and Theorem 2) tell us that any � 2 �⇥ has maxg2P(�),si2R: g{V 3si}=1 si =

v̄(�).20 Therefore,

ṽ⇤�(µ0) = sup
�,�2�⇥, k2[0,1], b2P(�)

⇢
(1� k)v̄(�) + k

Z

�⇥

v^� db

�

s.t. k� + (1� k)� = µ0, (1� k)� � (1� �)µ0,

b{minV  v̄(�)} = 1.

Trivially, the program (2) that defines v⇤�(µ0) is a relaxation of the above program;

that is, for every feasible (�, �, k, b) for the above program, (�, �, k) is feasible in (2)

and generates a weakly higher objective there; that is, ṽ⇤�(µ0)  v⇤�(µ0). We now prove

the opposite inequality also holds, thereby completing the theorem’s proof. Notice the

program (2) has an upper-semicontinuous objective and compact constraint set, and

so admits some solution (�, �, k). We now argue some (�̃, �̃, k̃, b) exists that is feasible

for the above program and such that

(1� k̃)v̄(�̃) + k̃

Z
v^�̃ db � kv̂^�(�) + (1� k)v̄(�),

and so ṽ⇤�(µ0) � v⇤�(µ0). If v̂^�(�) < v̄(�), Lemma 3 delivers b such that (�, �, k, b)

is as desired. Otherwise, v̂^�(�) = v̄(�), and so quasiconcavity of v̄ implies v̄(µ0) �
kv̂^�(�) + (1� k)v̄(�), meaning (µ0, µ0, 0, �µ0) is as desired. The theorem follows.

20Note g{V 3 si} = 1 implies si 2
T

µ2supp(g) V (µ) because V is upper hemicontinuous.
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B.1.3 Simple Communication: Proof of Corollary 1

We begin with a lemma showing program (2) always admits a solution with additional

structure. In particular, whenever S-optimal �-equilibrium requires the o�cial report-

ing protocol to di↵er from an influencing S’s behavior, we can assume without loss that

every message sent by o�cial reporting is strictly suboptimal for an influencing S.

Lemma 4. One of the following holds:

1. The triple (�, �, k) = (µ0, µ0, 0) is an optimal solution to program (2);

2. Some optimal solution (�, �, k) to program (2) and b 2 P(�) exist with k > 0,
R
v^� db = v̂^�(�), and b{v < v̄(�)} = 1.

Proof. As observed in (the SDC generalization of) Theorem 1, program (2) admits some

solution (�, �, k). Further, some b 2 P(�) exists with
R
v^� db = v̂^�(�) because P(�)

is compact and b 7!
R
v^� db is upper semicontinuous. Letting D := {v � v̄(�)} ✓ �⇥,

we have nothing to show if b(D) = 0, so suppose b(D) > 0.

Now, let k0 := k[1 � b(D)] 2 [0, 1); let �0 := 1
1�k0

⇥
(1� k)� + k

R
D µ db(µ)

⇤
2 �⇥;

and let �0 := 1
1�b(D)

R
(�⇥)\D µ db(µ) if b(D) < 1, and �0 := µ0 if b(D) = 1. Because

k0�0 + (1� k0)�0 = k� + (1� k)� and (1� k0)�0 � (1� k)� by construction, (�0, �0, k0)

is feasible in (2). In what follows, we show (�0, �0, k0) is an optimal solution to (2) with

the desired features.

First, by construction, �0 is in the closed convex hull of {v̄ � v̄(�)}. But {v̄ � v̄(�)}
is closed and convex because v̄ is upper semicontinuous and quasiconcave, implying

v̄(�0) � v̄(�). If k0 = 0 (in which case �0 = �0 = µ0 by construction), this ranking

implies v̄(�0) � (1 � k)v̄(�) + kv̂^�(�), so that (�0, �0, k0) is optimal too, establishing

the claim.

We now focus on the remaining case in which 0 < k0 < 1. That v̄(�0) � v̄(�) implies

b0 := 1
1�b(D)b ((·) \D) 2 P(�0) has b0{v < v̄(�0)} = 1. Moreover,

(1� k0)v̄(�0) + k0v̂^�0(�0) � (1� k0)v̄(�0) + k0
Z

v^�0 db0

= [1� k + k�(D)] v̄(�0) + k0
Z

v^�0 db0

= (1� k)v̄(�0) + k

Z
v^�0 db

� (1� k)v̄(�) + k

Z
v^� db.
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Optimality of (�, �, k) in (2) then implies (�0, �0, k0) is optimal too. Therefore, the

inequalities in the above chain must hold with equality, from which the first line of the

above chain yields v̂^�0(�0) =
R
v^�0 db0. Thus, (�0, �0, k0) and b0 are as required.

Although our main purpose for the above lemma is to prove Corollary 1, note

Lemma 4 can be useful in narrowing the search for a solution to Theorem 1’s program.

For example, in the context of the central bank example, the lemma immediately

implies that (for any � at which S can do strictly better than her no-credibility value)

one optimally sets �  1
4 .

We now proceed to prove the corollary. Our proof applies to the general model (not

assuming A and ⇥ are finite, and not assuming � is state independent). Specifically,

we show two things. First, some S-optimal �-equilibrium entails no more than |A|
on-path messages. Second, if ⇥ is finite, some S-optimal �-equilibrium entails no

more than 2|⇥| � 1 on-path messages. The central-bank example, for which every

S-optimal equilibrium requires at least three on-path messages when 2/3 < � < 3/4,

demonstrates both bounds are tight.

Proof of Corollary 1. By Lemma 4, some optimal solution (�, �, k) to program (2)

exists such that either (1) (�, �, k) = (µ0, µ0, 0) or (2) k > 0, and some b̃ 2 P(�) has
R
v^� db̃ = v̂^�(�) and b̃{v < v̄(�)} = 1. Let si := v̄(�).

In case 1, we observe that some g 2 P(µ0) exists with g{V 3 si} = 1 and |supp(g)|
is weakly below the given cardinality bound. In case 2, we observe that some b 2 P(�)

and g 2 P(�) exist with b{v < si} = g{V 3 si} = 1, and |supp(b)|+ |supp(g)| is weakly
below the given cardinality bound. In either case, the proof of Lemma 1 (applied with

b = g in case 1) yields an S-optimal equilibrium that respects the cardinality bound on

on-path messages.

First, we prove the bound based on the number of actions. Letting A+ := {a 2 A :

uS(a) � si}, (the proof of) Proposition 2 from Lipnowski and Ravid (2020) delivers

some g 2 P(�) such that g{V 3 si} = 1 and |supp(g)|  |A+|. In case 1, nothing

remains to be shown, so we now focus on case 2. Because b 2 P(�) is such that

argmaxa2A
R
uR(a, ·) dµ ✓ A\A+ a.s.-b(µ), (the proof of) Proposition 1 from Kamenica

and Gentzkow (2011) delivers some b 2 P(�) such that |supp(b)|  |A \A+|.21 Hence,

21In both of the cited propositions, the result we use is proven in the cited paper, but not written
in the proposition’s statement. The proof of Proposition 2 from Lipnowski and Ravid (2020) shows
any attainable equilibrium S payo↵ of the cheap-talk game is attainable in an equilibrium in which
every on-path message is a pure-action recommendation, and the recommended action is S’s preferred
action in the support of R’s (possibly mixed-action) response to that recommendation. The proof of
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some S-optimal �-equilibrium (⇠, �,↵, ⇡) exists in which some measurable M⇤ ✓ M

with |M⇤|  |A| has ⇠(M⇤|·) = �(M⇤|·) = 1.

Now, supposing n := |⇥| < 1, we prove the bound based on the number of states.

Lemma 1 of Lipnowski and Ravid (2020) implies � is in the convex hull of the compact

set {V 3 si}, and then Caratheodory’s theorem says � is in the convex hull of some

a�nely independent subset D ✓ {V 3 si}. Clearly, |D|  n, so nothing remains to be

shown in case 1; let us now focus on case 2.

As |D| < 1, we can without loss remove elements from D to ensure � is a proper

convex combination of all elements of D. By Choquet’s theorem, b̃ is the barycenter of

extreme points of P(b), which must then be solutions to maxb2P(�)

R
v^� db. Taking one

such extreme point yields b 2 extP(�) such that b{v < si} = 1 and
R
v^� db = v̂^�(�).

Because extreme points of P(�) have a�nely independent support, it follows that

|supp(b)|  n. Hence, some S-optimal �-equilibrium (⇠, �,↵, ⇡) exists in which some

M⇤ ✓ M with |M⇤|  n+ |D| has ⇠(M⇤|·) = �(M⇤|·) = 1. The corollary then follows

if we can establish (in case 2) that |D| < n.

Assume for a contradiction that |D| = n. Then, the set of proper convex combi-

nations of all elements of |D| is an open subset of �⇥ that contains �. In particular,

some proper convex combination �0 of � and µ0 lies in the convex hull of |D|. Ob-

serve three properties of �0. First, by construction, some k0 2 (0, k) exists such that

k0� + (1 � k0)�0 = µ0. Second, quasiconcavity of v̄ implies v̄(�0) � min v̄(D) � si.

Third,

(1� k0)�0 = µ0 � k0� � µ0 � k� = (1� k)�,

so that (�, �0, k0) is feasible in program (2). Hence,

k0v̂^�0(�) + (1� k0)v̄(�0) � k0v̂^�(�) + (1� k0)si > kv̂^�(�) + (1� k)si,

contradicting the optimality of (�, �, k).

B.1.4 Further Consequences of Lemma 1 and Theorem 1

In this subsection, we record some properties of the �-equilibrium payo↵ set and S’s

favorite �-equilibrium payo↵. We use these properties in the subsequent analysis.

Proposition 1 from Kamenica and Gentzkow (2011) shows, given a communication protocol with R
best responding to Bayesian beliefs, that communication can be garbled to an incentive-compatible
direct recommendation producing the same joint distribution of states and actions.
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Corollary 2. The set of �-equilibrium summaries (p, so, si) at prior µ0 is a compact-

valued, upper-hemicontinuous correspondence of (µ0,�) on �⇥⇥ [0, 1].

Proof. Let YG be the graph of V and let YB be the graph of [minV,maxuS(A)], both

compact because V is a Kakutani correspondence.

Let X be the set of all (µ0, p, g, b,�, k, so, si) 2 (�⇥)⇥(��⇥)3⇥[0, 1]2⇥[co uS(A)]2

such that

kb+ (1� k)g = p;

(1� �)
R
�⇥ µ dg(µ) + �

R
�⇥ µ db(µ) = µ0;

(1� k)
R
�⇥ µ dg(µ) � (1� �)µ0;

g ⌦ �si 2 �(YG) and b⌦ �si 2 �(YB); and

k
R
�⇥ minV db  (k � �) si + �so  k

R
�⇥ si ^ v db.

As an intersection of compact sets, X is itself compact. By Lemma 1, the equilibrium

summary correspondence has a graph that is a projection of X, and so is itself compact.

Therefore, it is compact valued and upper hemicontinuous.

Corollary 3. For any µ0 2 �⇥, the map

{� : ⇥! [0, 1] : � measurable} ! R
� 7! v⇤�(µ0)

is weakly increasing.

Proof. This result follows immediately from Theorem 1 (the general version, with state-

dependent credibility, proven above) because increasing credibility weakly expands the

constraint set.

Corollary 4. For any µ0 2 �⇥, the map

[0, 1] ! R
� 7! v⇤�(µ0)

is weakly increasing and right-continuous.
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Proof. That it is weakly increasing is a specialization of Corollary 3. That it is upper

semicontinuous (and so, since nondecreasing, it is right-continuous) follows directly

from Corollary 2.

Corollary 5. For any � 2 [0, 1], the map v⇤� : �⇥! R is upper semicontinuous.

Proof. This result is immediate from Corollary 2.

B.2 Varying Credibility: Proofs for Section 4

In this section, we provide proofs for the results reported in section 4. We note these

results are stated for the version of the model developed in the main text (with finite

action space, finite state space, and state-independent credibility). In contrast to the

proof of Theorem 1, finiteness plays a nontrivial role in the proofs of these propositions.

As our proofs make clear, the same results would hold with state-dependent credibility.

B.2.1 Productive Mistrust: Proof of Proposition 1

In this section, we prove Proposition 1 as stated in the main text. Whereas this propo-

sition is stated for state-independent credibility, it immediately implies the following

result for the case in which credibility is allowed to depend on the state:

Corollary 6. Consider a finite and generic model in which S is not a two-faced SOB.

Then, a full-support prior and state-dependent credibility levels �0 < � exist such

that every S-optimal �0
equilibrium is strictly better for R than every S-optimal �-

equilibrium.

As explained in the main text, one can divide the proof of Proposition 1 into two

parts. The first part proves the proposition for the case in which ⇥ is binary. The

second part uses a continuity argument to extend the binary-state result to any finite-

state environment.

Productive Mistrust with Binary States We first verify our su�cient conditions

for productive mistrust to occur in the binary-state world in the lemma below. In

addition to being a special case of the proposition, it will also be an important lemma

for proving the more general result.

To this end, to introducing a more detailed language for our key SOB condition is

useful. Given a prior µ 2 �⇥, say S is an SOB at µ if every p 2 P(µ) is outperformed

by an SOB policy p0 2 P(µ), that is, has
R
v dp0 �

R
v dp.
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Lemma 5. Suppose |⇥| = 2, the model is finite and generic, and a full-support belief

µ 2 �⇥ exists such that the sender is not an SOB at µ. Then, a full-support prior µ0

and credibility levels �0 < � exist such that every S-optimal �0
-equilibrium is both strictly

better for R and more Blackwell-informative than every S-optimal �-equilibrium.

Moreover, some full-support belief µ+ exists such that any solution (�, �, k) to the

program in Theorem 1 at prior µ0 and credibility level in {�,�0} has � = µ+.

Proof. First, note the genericity assumption delivers full-support µ0 such that V (µ0) =

{max v (�⇥)}.
Name our binary-state space {0, 1} and identify �⇥ = [0, 1] in the obvious way.

The function v : [0, 1] ! R is upper semicontinuous and piecewise constant, which

implies its concavification v⇤1 is piecewise a�ne. That is, some n 2 N and {µi}ni=0 exist

such that 0 = µ0  · · ·  µn = 1 and v⇤1|[µi�1,µi] is a�ne for every i 2 {1, . . . , n}. Taking
n to be minimal, we can assume µ0 < · · · < µn and the slope of v⇤1|[µi�1,µi] is strictly

decreasing in i. Therefore, some i0, i1 2 {0, . . . , n} exist such that i1 2 {i0, i0 + 1} and

argmaxµ̃2[0,1] v
⇤
1(µ̃) = [µi0 , µi1 ]. That the sender is not an SOB at µ implies i0 > 1 or

i1 < n� 1. Without loss of generality, say i0 > 1. Now let µ� := µi0�1 and µ+ := µi0 .

We now find a µ0 2 (µ�, µ+) such that v̄|[µ0,µ+) is constant and lies strictly below

v⇤1|[µ0,µ+). To do so, recall the model is finite, and so v̄ has a finite range and is piecewise

constant. It follows some ✏ > 0 exists such that v̄ is constant on (µ+ � ✏, µ+). Because

v⇤1 : [0, 1] ! R is concave and upper semicontinuous, it is in fact continuous, and so

admits an ✏̃ 2 (0, µ+) such that every µ̃ 2 (µ+ � ✏̃, µ+) has

v⇤1(µ̃) > max [v̄([0, 1]) \ {max v̄([0, 1])}] � v̄(µ̃),

where the last inequality follows from v̄|[0,µ+)  v⇤1|[0,µ+) < v⇤1(µ+). Thus, the desired

properties are satisfied by any µ0 2 (max{µ�, µ+ � ✏, µ+ � ✏̃}, µ+). Let µ0 be one such

belief.

To summarize, the beliefs µ�, µ0, µ+ 2 [0, 1] are such that 0 < µ� < µ0 < µ+;

v̂^µ+ = v̂ = v⇤1 is a�ne on [µ�, µ+] and on no larger interval; v̂^µ+ is strictly increasing

on [0, µ+]; v⇤0 = v̄ is constant on [µ0, µ+).

Let � 2 [0, 1] be the smallest credibility level such that v⇤�(µ0) = v⇤1(µ0), which

exists by Corollary 4. That v⇤0(µ0) < v⇤1(µ0) implies � > 0. Notice µ+ has full support,

because 0  µ� < µ+  µ0 < 1. It follows that � < 1. Consider now the following

claim.
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Claim: Given �0 2 [0,�], suppose

(�0, �0, k0) 2 argmax(�,�,k)2[0,1]3

⇢
kv̂^�(�) + (1� k)v̄(�)

�
(3)

s.t. k� + (1� k)� = µ0, (1� k)(�, 1� �) � (1� �0)(µ0, 1� µ0),

and the objective attains a value strictly higher than v̄(µ0). Then,

�0 = µ+ and �0  µ�.

If b0 2 P(�0) and g0 2 P(�0) are such that p0 = k0b0+(1� k0)g0 is the information

policy of an S-optimal �0
-equilibrium, then b0[0, µ�] = g0{µ+} = 1.

We now prove the claim.

Suppose first �0 > µ+ for a contradiction, and let k00 > 0 be the unique solution to

k00�0 + (1� k00)µ+ = µ0. Observe k00 < k0, and so

(1� k00)(µ+, 1� µ+) = (µ0, 1� µ0)� k00(�0, 1� �0)

� (µ0, 1� µ0)� k0(�0, 1� �0)

= (1� k0)(�0, 1� �0) � (1� �0)(µ0, 1� µ0).

Because

k00v̂^µ+(�
0) + (1� k00)v̄(µ+) � k00v̂^�0(�0) + (1� k00)v̄(�0) > k0v̂^�0(�0) + (1� k0)v̄(�0),

(�0, µ+, k00) is a feasible solution that would strictly outperform (�0, �0, k0), contradicting

optimality of (�0, �0, k0). It follows �0  µ+.

Next, note v̄—as a weakly quasiconcave function that is nondecreasing and noncon-

stant over [µ0, µ+]—is nondecreasing over [0, µ+]. Moreover, limµ%µ+ v̄(µ) = v̄(µ0) <

v̄(µ+). Therefore, if �0 < µ+, it would follow that k0v̂^�0(�0) + (1 � k0)v̄(�0)  v̄(�0) 
v̄(µ0). Given the hypothesis that (�0, �0, k0) strictly outperforms v̄(µ0), it follows that

�0 = µ+. A direct implication is that

(�0, k0) 2 argmax(�,k)2[0,1]2

⇢
kv̂^µ+(�) + (1� k)max v[0, µ+]

�

s.t. k� + (1� k)µ+ = µ0, (1� k)(1� µ+) � (1� �0)(1� µ0).

Let us now see why we cannot have �0 2 (µ�, µ0). Because v̂^µ+ is a�ne on [µ+, µ�],

replacing such (k0, �0) with (k, µ�) that satisfies kµ� + (1� k)µ+ = µ0 necessarily has
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(1 � k)(µ+, 1 � µ+) � (1 � �0)(µ0, 1 � µ0). This would contradict minimality of �.

Therefore, �0  µ�.

We now prove the second bullet. First, every µ < µ+ satisfies v(µ)  v⇤1(µ) <

v⇤1(µ+) = v(µ+). This property implies �µ+ is the unique g 2 P(µ+) with inf v(suppg) �
v(µ+). Therefore, g0 = �µ+ . Second, the measure b0 2 P(�0) can be expressed as

b0 = (1� �)bL + �bR for bL 2 �[0, µ�], bR 2 �(µ�, 1], and � 2 [0, 1). Note (µ�, v(µ�))

is an extreme point of the subgraph of v⇤1, and therefore an extreme point of the

subgraph of v̂^µ+ . Taking the unique �̂ 2 [0,�] such that b̂ := (1� �̂)bL+ �̂�µ� 2 P(�0),

it follows that
R
[0,1] v̂^µ+ db̂ �

R
[0,1] v̂^µ+ db0, strictly so if �̂ < �. But �̂ < � necessarily

if � > 0, because
R
[0,1] µ d�R(µ) > µ�. Optimality of b0 then implies � = 0, that is,

b0[0, µ�] = 1. This observation completes the proof of the claim.

With the claim in hand, we can now prove the lemma. The claim implies that, for

credibility level �, any solution (�⇤, �⇤, k⇤) of the program (3) is such that �⇤ = µ+,

k⇤ = µ+�µ0

µ+��⇤ , and �⇤ solves

max
�2[0,µ�]

⇢
µ+ � µ0

µ+ � �
v̂^µ+(�) +

µ0 � �

µ+ � �
v̄(µ+)

�
.

Note that because v̄(µ+) = v(µ+) = v̂^µ+(µ+), any � 2 [0, µ�] has

µ+ � µ0

µ+ � �
v̂^µ+(�) +

µ0 � �

µ+ � �
v̂^µ+(µ+)  v̂^µ+

✓
µ+ � µ0

µ+ � �
� +

µ0 � �

µ+ � �
µ+

◆
= v̂^µ+(µ0)

by concavity of v̂^µ+ . Moreover, the inequality is strict for � < µ� but holds with

equality for � = µ�, because v̂^µ+ is a�ne on [µ�, µ+] and on no larger interval. Hence,

the unique solution to (3) is (µ�, µ+, k⇤), where k⇤µ� + (1 � k⇤)µ+ = µ0. Moreover,

the minimality property defining � implies (1� k⇤)(1� µ+) = (1� �)(1� µ0).

Given �0 < � su�ciently close to �, one can verify directly that (�0, µ+, k0) is

feasible, where

k0 := 1� 1��0

1�� (1� k⇤) and �0 := 1
k0 [µ0 � (1� k0)µ+] .

Because v̂^µ+ is a continuous function, it follows that v⇤�0(µ0) % v⇤�(µ0) as �0 % �. In

particular, v⇤�0(µ0) > v⇤0(µ0) for �0 < � su�ciently close to �. Fix such a �0.

Let p0 be any S-optimal �0-equilibrium information policy. Appealing to the claim,

some b0 2 P(�0)\�[0, µ�] exists such that p0 2 co{b0, �µ+}. Therefore, p0 is weakly more
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Blackwell-informative than p⇤. Finally, because (1 � k⇤)(1 � µ+) = (1 � �)(1 � µ0)

and �0 < �, feasibility of p0 tells us p0 6= p⇤. Therefore (the Blackwell order being

antisymmetric), p0 is strictly more informative than p⇤.

All that remains is to show the receiver’s optimal payo↵ is strictly higher given p0

than given p⇤. To that end, fix sender-preferred receiver best responses a� and a+ to

µ� and µ+, respectively. Because the receiver’s optimal value given p⇤ is attainable

using only actions {a�, a+}, and the same value is feasible given only information p0

and using only actions {a�, a+}, it su�ces to show that there are beliefs in the support

of p0 to which neither of {a�, a+} is a receiver best response. But, every µ 2 [0, µ�)

satisfies

v(µ)  v̄(µ) < v̄(µ�) = min{v̄(µ�), v̄(µ+)};

that is, max uS (argmaxa2A uR(a, µ)) < min{uS(a�), uS(a+)}. The result follows.

Productive Mistrust with Many States: Proof of Proposition 1 Given Lemma

5, we need only prove the proposition for the case of |⇥| > 2, which we do below. The

proof intuition is as follows. Using the binary-state logic, one can always obtain a

binary-support prior µ1
0 and credibility levels �0 < � such that R strictly prefers every

S-optimal �0-equilibrium to every S-optimal �-equilibrium. We then find an interior

direction through which to approach µ1
0 , while keeping S’s optimal equilibrium value

under both credibility levels continuous. Genericity ensures such a direction exists de-

spite v̄ being discontinuous. The continuity in S’s value from the identified direction

then ensures upper hemicontinuity of S’s optimal equilibrium policy set; that is, the

limit of every sequence of S-optimal equilibrium policies from said direction must also

be optimal under µ1
0 . Now, if the proposition were false, one could construct a conver-

gent sequence of S-optimal equilibrium policies from said direction for each credibility

level, {p�n, p�
0

n }n�0, such that R would weakly prefer p�n to p�
0

n . Because R’s payo↵s are

continuous, R being weakly better o↵ under � than under �0 along the sequences would

imply the same at the sequences’ limits. Notice, though, such limits must be S-optimal

for the prior µ1
0 by the choice of direction, meaning productive mistrust fails at µ1

0 ;

that is, we have a contradiction. Below, we proceed with the formal proof.

Proof. Suppose some prior with binary support ⇥2 = {✓1, ✓2} exists at which S is not

an SOB. Let s̄ := max v (�⇥2), and define the R value function vR : ��⇥ ! R via

vR(p) :=
R
�⇥ maxa2A uR(a, µ) dp(µ). Lemma 5 delivers some µ1

0 2 �⇥ with support

⇥2 and credibility levels �00 < �0 such that every S-optimal �00-equilibrium is strictly
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better for R than every S-optimal �0-equilibrium. Consider the following claim.

Claim: Some sequence {µn
0} of full-support priors exists that converges to µ1

0 with

lim inf
n!1

v⇤�(µ
n
0 ) � v⇤�(µ

1
0 ) for � 2 {�0,�00}.

Before proving the claim, let us argue it implies the proposition. Given the claim,

assume for contradiction that for every n 2 N, prior µn
0 admits some S-optimal �0-

equilibrium and �00-equilibrium,  0
n = (p0n, s

0
in, s

0
on) and  00

n = (p00n, s
00
i n, s

00
on), respec-

tively, such that vR(p0n) � vR(p00n). Dropping to a subsequence if necessary, we may

assume by compactness that ( 0
n)n and ( 00

n)n converge (in ��⇥ ⇥ [co uS(A)]
2) to

some  0 = (p0, s0i, s
0
o) and  00 = (p00, s00i , s

00
o), respectively. By Corollary 2, for every

credibility level �, the set of �-equilibria is an upper-hemicontinuous correspondence

of the prior. Therefore,  0 and  00 are �0- and �00-equilibria, respectively, at prior µ1
0 .

Continuity of vR (by Berge’s theorem) then implies vR(p0) � vR(p00). Finally, by the

claim, it must be that  0 and  00 are S-optimal �0- and �00-equilibria, respectively, con-

tradicting the definition of µ1
0 . Therefore, some n 2 N exists such that the full-support

prior µn
0 is as required for the proposition.

So all that remains is to prove the claim, which we do by constructing the desired

sequence.

First, Lemma 5 delivers some �1 2 �⇥ with support ⇥2 such that v̄(�1) = s̄ and,

for � 2 {�0,�00}, any solution (�, �, k) to the program in Theorem 1 at prior µ1
0 and

credibility level � has � = �1.

Let us now show a closed convex set D ✓ �⇥ exists that contains �1, has a

nonempty interior, and satisfies v̄|D = s̄. Notice, first, that the genericity assumption

delivers µ0 with support ⇥2 such that V (µ0) = {s̄}. Then, for any n 2 N, let Bn ✓ �⇥
be the closed ball (say, with respect to the Euclidean metric) of radius 1

n around µ0,

and let Dn := co [{�1} [ Bn]. Because v|�⇥2  s̄ and v̄ = maxp2P(·) inf v(supp(p)) (see

Lipnowski and Ravid 2020, Theorem 2), it follows v̄|�⇥2  s̄ as well. Because V is upper

hemicontinuous, the hypothesis on µ0 ensures v̄|Bn � v|Bn = s̄ for su�ciently large n 2
N; quasiconcavity then tells us v̄|Dn � s̄. Assume now, for a contradiction, that every

n 2 N has v̄|Dn ⇥ s̄. That is, each n 2 N admits some �n 2 [0, 1] and µ0
n 2 Bn such

that v̄ ((1� �n)�1 + �nµ0
n) > s̄. In this case, each n 2 N has v̄ ((1� �n)�1 + �nµ0

n) �
ŝ := min [v̄(�⇥) \ (s̄,1)] (observe ŝ is well defined because |v̄(�⇥)| < 1 due to the

model being finite). Dropping to a subsequence, we get a strictly increasing sequence

(n`)1`=1 of natural numbers such that (because [0, 1] is compact) �n`

`!1���! � 2 [0, 1]
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and v̄
�
(1� �n`

)�1 + �n`
µ0
n`

�
� ŝ for every ` 2 N. Because v̄ is upper semicontinuous,

the sequence of inequalities would imply v̄ ((1� �)�1 + �µ0) � ŝ > s̄, contradicting

the definition of s̄ and µ0. Therefore, some D 2 {Dn`
}1`=1 is as desired.

In what follows, let �1 2 D be some interior element with full support. Then, for

each n 2 N, define µn
0 := n�1

n µ1
0 + 1

n�1. We show the sequence (µn
0 )

1
n=1—a sequence

of full-support priors converging to µ1
0 —is as desired. To that end, fix � 2 {�0,�00}

and some (�, k) 2 �⇥⇥ [0, 1] such that (�, �1, k) solves the program in Theorem 1 at

prior µ1
0 . Then, for any n 2 N, let

✏n := 1
n�(n�1)k 2 (0, 1],

�n := (1� ✏n)�
1 + ✏n�1 2 D,

kn := n�1
n k 2 [0, k).

Given these definitions,

(1� kn)�n = 1
n [n� (n� 1)k] �n

= 1
n {[n� (n� 1)k � 1] �1 + �1}

= n�1
n (1� k)�1 + 1

n�1

� n�1
n (1� �)µ1

0 + 1
n�1 � (1� �)µn

0 ,

and

kn� + (1� kn)�n = n�1
n k� + n�1

n (1� k)�1 + 1
n�1

= n�1
n µ1

0 + 1
n�1 = µn

0 .

Therefore, (�, �n, kn) is �-feasible at prior µn
0 . As a result,

v⇤�(µ
n
0 ) � knv̂^�n(�) + (1� kn)v̄(�n)

= knv̂^�(�) + (1� kn)v̄(�) (since v̄(�n) = u)
n!1���! kv̂^�(�) + (1� k)v̄(�) = v⇤�(µ

1
0 ).

This proves the claim, and hence the proposition.
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B.2.2 Collapse of Trust: Proof of Proposition 2

Proof. Let us establish a four-way equivalence between the three conditions in the

proposition’s statement and the following state-dependent-credibility analogue of con-

dition (i):

(i)0 Every � 2 [0, 1]⇥ and full-support prior µ0 have lim�0%� v⇤�0(µ0) = v⇤�(µ0), where

convergence of �0(·) ! �(·) is in the Euclidean topology on R⇥.

Three of four implications are easy given Corollary 3. First, (i)0 trivially implies (i).

Second ((iii) implies (ii)), in the absence of conflict, Lemma 1 from Lipnowski and

Ravid (2020) tells us a 0-equilibrium exists with full information that generates sender

value max v(�⇥) � v⇤1; in particular, v⇤0 = v⇤1. Third ((ii) implies (i)0), if v⇤0 = v⇤1,

Corollary 3 implies v⇤� is constant in �, ruling out a collapse of trust (even under state-

dependent credibility). Below, we show that any conflict implies a collapse of trust;

that is, a failure of (iii) implies a failure of (i).

Suppose a conflict exists; that is, min✓2⇥ v(�✓) < max v(�⇥) or, equivalently,

min✓2⇥ v̄(�✓) < max v̄(�⇥). Taking a positive a�ne transformation of uS, we may

assume without loss that min v̄(�⇥) = 0 and (because v̄(�⇥) ✓ uS(A) is finite)

min[v̄(�⇥) \ {0}] = 1. The set D := argminµ2�⇥ v̄(µ) = v̄�1(�1, 1) is then open

and nonempty. We can then consider some full-support prior µ0 2 D. For any scalar

�̂ 2 [0, 1], let

�(�̂) := {(�, �, k) 2 �⇥⇥ (�⇥ \D)⇥ [0, 1] : k� + (1� k)� = µ0, (1� k)� � (1� �̂)µ0} ,

and let K(�̂) be its projection onto its last coordinate. Because the correspondence �

is upper hemicontinuous and increasing (with respect to set containment), K inherits

the same properties. Next, note K(1) 3 1 (because v̄ is nonconstant by the hypothesis

that a conflict exists, so that �⇥ 6= D) and K(0) = ? (as µ0 2 D). Therefore,

� := min{�̂ 2 [0, 1] : K(�̂) 6= ?} exists and belongs to (0, 1].

Given any scalar �0 2 [0,�), it must be that K(�0) = ?. That is, if �, � 2 �⇥
and k 2 [0, 1] with k� + (1� k)� = µ0 and (1� k)� � (1� �0)µ0, then � 2 D. Thus,

by Theorem 1, v⇤�0(µ0) = v̄(µ0) = 0. There is, however, some k 2 K(�). By Theorem

1 and the definition of �, a �-equilibrium generating ex-ante sender payo↵ of at least

k · 0 + (1 � k) · 1 = (1 � k) � (1 � �) therefore exists. If � < 1, a collapse of trust

occurs at credibility level �.
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The only remaining case is the one in which � = 1. In this case, some ✏ 2 (0, 1)

and µ 2 �⇥ \D exist such that ✏µ  µ0. Then,

v⇤�(µ0) � ✏v̄(µ) + (1� ✏)v̄
�
µ0�✏µ
1�✏

�
� ✏.

So, again, a collapse of trust occurs at credibility level �.

B.2.3 Robustness: Proof of Proposition 3

Before proving the proposition, let us briefly observe that the proposition as stated is

equivalent to the analogous statement for state-dependent credibility. Indeed, given

Corollary 3, any prior µ0 and state-dependent credibility � has v⇤�(µ0)  v⇤�(µ0) 
v⇤1(µ0) for � = min✓2⇥ �(✓) 2 [0, 1]. It follows immediately that lim�%1 v⇤�(µ0) = v⇤1(µ0)

if and only if lim�%1 v⇤�(µ0) = v⇤1(µ0), where convergence of � ! 1 is in the Euclidean

topology on R⇥. That is, the stronger property of robustness of the commitment value

to small state-dependent departures from perfect credibility is equivalent to that stated

in the proposition.

We now proceed to proving the proposition for the case of state-independent cred-

ibility.

Proof. By Lipnowski and Ravid (2020, Lemma 1 and Theorem 2), S receives the benefit

of the doubt (i.e., every ✓ 2 ⇥ is in the support of some member of argmaxµ2�⇥ v(µ))

if and only if some full-support � 2 �⇥ exists such that v̄(�) = max v(�⇥).

First, given a full-support prior µ0, suppose � 2 �⇥ is full-support with v̄(�) =

max v(�⇥). It follows immediately that v̂^� = v̂ = v⇤1. Let r0 := min✓2⇥
µ0{✓}
�{✓} 2 (0,1)
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and r1 := max✓2⇥
µ0{✓}
�{✓} 2 [r0,1). Then, Theorem 1 tells us that for � 2

h
r1�r0
r1

, 1
⌘
,

v⇤�(µ0) � sup
�2�⇥, k2[0,1]

⇢
kv⇤1(�) + (1� k)v(�)

�

s.t. k� + (1� k)� = µ0, (1� k)� � (1� �)µ0

= sup
k2[0,1]

⇢
kv⇤1

⇣
µ0�(1�k)�

k

⌘
+ (1� k)v(�)

�

s.t. (1� �)µ0  (1� k)�  µ0

� sup
k2[0,1]

⇢
kv⇤1

⇣
µ0�(1�k)�

k

⌘
+ (1� k)v(�)

�

s.t. (1� �)r1  (1� k)  r0

� sup
k2[0,1]

⇢
kv⇤1

⇣
µ0�(1�k)�

k

⌘
+ (1� k)v(�)

�

s.t. (1� �)r1 = (1� k)

= [1� (1� �)r1] v
⇤
1

⇣
µ0�(1��)r1�
1�(1��)r1

⌘
+ (1� �)r1v(�).

But note v⇤1, being a concave function on a finite-dimensional space, is continuous

on the interior of its domain. Therefore, v⇤1

⇣
µ0�(1��)r1�
1�(1��)r1

⌘
! v⇤1(µ0) as � ! 1, implying

lim inf�%1 v⇤�(µ0) � v⇤1(µ0). Finally, monotonicity of � 7! v⇤�(µ0) implies v⇤�(µ0) !
v⇤1(µ0) as � ! 1. That is, persuasion is robust to limited commitment.

Conversely, suppose S does not receive the benefit of the doubt (which of course

implies v is nonconstant). Taking an a�ne transformation of uS, we may assume

without loss that max v(�⇥) = 1 and (because v(�⇥) ✓ uS(A) is finite) max[v̄(�⇥) \
{1}] = 0. Fix any full-support prior µ0 and consider any credibility level � 2 [0, 1).

For any �, � 2 �⇥, k 2 [0, 1] with k� + (1 � k)� = µ0 and (1 � k)� � (1 � �)µ0,

that S does not get the benefit of the doubt implies (see Lipnowski and Ravid, 2020,

Theorem 1) that v̄(�)  0, and therefore that kv̂^�(�) + (1 � k)v(�)  0. Theorem 1

then implies v⇤�(µ0)  0.

Fix some full-support µ1 2 �⇥ and some � 2 �⇥ with v(�) = 1. For any ✏ 2 (0, 1),

the prior µ✏ := (1� ✏)� + ✏µ1 has full support and satisfies

v⇤1(µ✏) � (1� ✏)v(�) + ✏v(µ1) � (1� ✏) + ✏ ·min v(�⇥),

which is strictly positive for su�ciently small ✏. Persuasion is therefore not robust to
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limited commitment at prior µ✏.

C Extension on Signaling Credibility

In this section, we consider the modified version of our model in which S learns her

credibility type before announcing the o�cial reporting protocol. By letting S com-

mission a di↵erent o�cial report based on her credibility, the modified model allows

S to signal whether she can influence the report’s message. We show such signaling

has no impact on S’s attainable payo↵s. More precisely, every interim S-payo↵ profile

(i.e., every pair specifying S’s payo↵s conditional on each credibility type) is attain-

able in a pooling equilibrium in which both credibility types choose the same o�cial

experiment. It follows that pooling equilibria are without loss as far as S payo↵s are

concerned. We also show an S-payo↵ profile is attainable in a pooling equilibrium if and

only if it is attainable in a �-equilibrium. Our definition will make the fact that every

pooling-equilibrium payo↵ profile is attainable in a �-equilibrium immediate: a pooling

equilibrium of the modified game requires the same conditions as a �-equilibrium, ex-

cept S must also be willing to announce the equilibrium experiment conditional on her

credibility type. For the converse direction, we show every �-equilibrium can be imple-

mented as a pooling equilibrium of the signaling game by appropriately constructing

R’s behavior o↵ path. Thus, we show a three-way equivalence between S’s payo↵s in

all equilibria of the signaling game, all pooling equilibria of the signaling game, and

�-equilibria of the original game. It follows that informing S of her ability to influence

the report before its announcement has no impact on S’s achievable payo↵s.

C.1 On S’s Equilibrium Payo↵ Sets

We begin by providing results on the space of S payo↵s that will be of use in the

extension that follows and may be of independent use. We return to the general

specification of our model in which the state and action spaces may be finite or infinite,

and the credibility level may or may not depend on the payo↵ state.

First, we characterize the set of payo↵s attainable in a �-equilibrium by an influ-

encing S, in particular showing this payo↵ set is an interval. Then, we show the set of

ex-ante S payo↵s attainable in a �-equilibrium is an interval as well.

Toward the proof, we first record a useful property of Kakutani correspondences.
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Fact 1. The range of a Kakutani correspondence from a nonempty, compact, convex

space to R is a nonempty compact interval.

Proof. Nonemptiness is trivial. Compactness of the range holds because the corre-

spondence is upper hemicontinuous on a compact domain. Convexity follows from

the intermediate value theorem for correspondences (e.g., Lemma 2 of de Clippel,

2008).

Next, we establish convexity and compactness of the sets of S’s possible �-equilibrium

ex-ante payo↵s and payo↵s from influencing. To do so, we now provide a characteriza-

tion of the set

S�
i := {si 2 R : (p, so, si) is a �-equilibrium summary for some p, so}.

Lemma 6. Let si 2 R. Then si 2 S�
i if and only if some k 2 [0, 1], �, � 2 �⇥ exist

such that

(i) k� + (1� k)� = µ0,

(ii) (1� k)� > (1� �)µ0,

(iii) max{w(�), w(�)}  si  v̄(�).

Moreover, the set S�
i is a nonempty compact interval.

Proof. By Lemma 1, si 2 S�
i if and only if some k 2 [0, 1], g, b 2 ��⇥ exist such that

(i0) kb+ (1� k)g 2 P(µ0),

(ii0) (1� k)
R
µ dg(µ) > (1� �)µ0,

(iii0) g{V 3 si} = b{w  si} = 1.

Then, the existence of (k, g, b) satisfying (i0-iii0) immediately implies the existence of

(k, �, �) satisfying (i-iii) by setting � :=
R
µ dg(µ), � :=

R
µ db(µ). Conversely, let

(k, �, �) satisfy (i-iii). By Lipnowski and Ravid’s (2020) Theorem 2 and Corollary 3:

Some g 2 P(�) exists with g{V 3 si} = 1 if and only if si 2 [w(�), v̄(�)],

Some b 2 P(�) exists with b{w  si} = 1 if and only if si > w(�).
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Thus, we obtain the desired characterization.

Finally, to show the “moreover” part, rewrite the above characterization of S�
i as

follows. Let M be the set of Borel measures on ⇥ and G := {⌘ 2 M : (1 � �)µ0 
⌘  µ0}, a compact convex subset. Define the functions

ṽ : M ! R w̃ : M ! R

⌘ 7!

8
<

:
v̄
⇣

⌘
⌘(⇥)

⌘
: ⌘ 6= 0

max v̄(�⇥) : ⌘ = 0
⌘ 7!

8
<

:
w
⇣

⌘
⌘(⇥)

⌘
: ⌘ 6= 0

minw(�⇥) : ⌘ = 0

 : G ! R
⌘ 7! ṽ(⌘)�max{w̃(⌘), w̃(µ0 � ⌘)}.

Then, the above characterization implies si 2 S�
i if and only if some ⌘ 2 G exists such

that si 2 [max{w̃(⌘), w̃(µ0� ⌘), ṽ(⌘)], because (k, �, �) 7! (1� k)� is a surjection from

the subset of (k, �, �) 2 [0, 1]⇥�⇥2 satisfying (i-ii) to G. But this means S�
i = ⌧(G⇤),

where G⇤ := �1([0,1)) and ⌧ is a correspondence defined as

⌧ : G⇤ ◆ R
⌘ 7! [max{w̃(⌘), w̃(µ0 � ⌘)}, ṽ(⌘)].

We now proceed to show S�
i is a nonempty compact interval. First, observe that 

is upper semicontinuous and quasiconcave—because both v̄ and �w are, and therefore

so are ṽ and �w̃. Hence, the set �1([0,1)) = G⇤ is compact and convex, and it is

also nonempty because it contains µ0. Second, note ⌧ is a Kakutani correspondence

because it is compact-convex-valued by definition, nonempty-valued by the definition of

G⇤, and upper hemicontinuous by upper (resp. lower) semicontinuity of ṽ (w̃). Hence,

the result follows from Fact 1.

Building on the previous two lemmas, the following result shows the set of ex-ante

�-equilibrium payo↵s for S is convex.

Lemma 7. The set {�so+(1��)si : (p, so, si) is a �-equilibrium summary} of ex-ante

�-equilibrium payo↵s is a nonempty compact interval.
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Proof. Define the correspondence

& : S�
i ◆ R
si 7! {�(µ0)so + [1� �(µ0)] si : (p, so, si) is a �-equilibrium summary} .

We show & is a Kakutani correspondence, which will give the desired result in light of

Fact 1 and Lemma 6.

First, & is nonempty-valued by the definition of S�
i . Second, the graph of & is com-

pact as a continuous image of the compact space X defined in the proof of Corollary 2.

Therefore, & is compact-valued and upper hemicontinuous.

Finally, we show & is convex-valued. Fix any si 2 S�
i , s, s

0 2 &(si), � 2 (0, 1). By

Lemma 1, some k, k0 2 [0, 1], g, g0, b, b0 2 ��⇥ exist such that

kb+ (1� k)g 2 P(µ0), k0b0 + (1� k0)g0 2 P(µ0),

(1� k)

Z
µ dg(µ) > (1� �)µ0, (1� k0)

Z
µ dg0(µ) > (1� �)µ0,

s 2 (1� k)si + k

Z

supp(b)

si ^ V db, s0 2 (1� k0)si + k0
Z

supp(b0)

si ^ V db0.

Let s⇤ := �s + (1 � �)s0, k⇤ := �k + (1 � �)k0, g⇤ := � 1�k
1�k⇤ g + (1 � �) 1�k0

1�k⇤ g
0, and

b⇤ := � k
k⇤ b+ (1� �) k0

k⇤ b
0. Then, by Lemma 1, (k⇤, g⇤, b⇤) witness a �-equilibrium with

expected payo↵ s⇤ influencing payo↵ si. Thus, &(si) is convex.

C.2 Signaling Credibility

In this section, we present the formal analysis of the modified game in which S can

signal her credibility through the choice of the o�cial reporting protocol.

We start by introducing the modified game and notation. At the beginning, S

privately learns her credibility type t 2 T = {o, i}, that is, if the message will be

determined according to the o�cial protocol (t = o) or if it will be possible to influence

it (t = i). Then, the game proceeds exactly as in our main model.

We focus on perfect Bayesian equilibria in which R’s o↵-path beliefs satisfy a stan-

dard “no signaling what you don’t know” restriction. To formalize the relevant solution

concept, let ⌅ denote the set of all o�cial reporting protocols, that is, measurable maps

⇠ : ⇥ ! �M ; endow ⌅ with some measurable structure such that singletons are mea-
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surable. Then, let (⇠o, ⇠i) 2 ⌅T denote S’s signaling strategy;22 let the measurable

maps � : ⇥⇥T ⇥⌅! �M , ↵ : M ⇥⌅! �A, and ⇡ : M ⇥⌅! �⇥ denote S’s influ-

encing strategy, R’s strategy, and R’s belief map, respectively, that take into account

the announced reporting protocol ⇠ 2 ⌅; and let �̃ : ⇥ ⇥ ⌅ ! [0, 1] denote R’s mea-

surable belief mapping from an announced o�cial reporting protocol to S’s posterior

credibility. Then, a � signaling PBE (�-SPBE) is a tuple (⇠o, ⇠i,�,↵, �̃,⇡) such

that (letting �⇠ := �(·, ⇠) and similarly for ↵, �̃, and ⇡):

1. �̃ is derived from � via Bayes’ rule, given signal t 7! ⇠t, whenever possible.

2. (⇠,�⇠,↵⇠,⇡⇠) is a �̃⇠-equilibrium (for prior µ0) for each ⇠ 2 ⌅.

3. ⇠t maximizes st(·) over ⌅, for each t 2 {o, i}, where

so : ⌅! R

⇠ 7!
Z

⇥

Z

M

uS(↵⇠(m)) d⇠(m|·) dµ0,

si : ⌅! R

⇠ 7!
Z

⇥

Z

M

uS(↵⇠(m)) d�⇠(m|·) dµ0.

We call (max⌅ so,max⌅ si) = (so(⇠o), si(⇠i)) the corresponding S payo↵ vector. A

pooling �-SPBE is one in which ⇠o = ⇠i.

Note the above definition is equivalent to perfect Bayesian equilibria in which R

updates joint beliefs over T ⇥ ⇥, satisfying a “no signaling what you don’t know”

refinement. Indeed, because the o�cial protocol announcement cannot convey infor-

mation about the state, the T -marginal �̃⇠ (where we identify a belief on T with the

probability it puts on o) determines the joint belief �̃⇠ ⌦ µ0. Then, given the form

of R’s incentive constraints after a message is received, it is enough to track only the

⇥-marginal ⇡⇠.

Recall, w : �⇥ ! R is the quasiconvex envelope of w, that is, the pointwise

highest quasiconvex and lower semi-continuous function that is everywhere below w,

or, equivalently, �w = �w. It follows directly from Lipnowski and Ravid (2020) that

a sender-worst 0-equilibrium exists and delivers S payo↵ w(µ0).

22To simplify notation, here we focus on pure signaling strategies. Analogous results holds for mixed
signaling strategies.
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The following proposition establishes the equivalence between �-equilibrium payo↵

vectors and �-SPBE payo↵ vectors for S.

Proposition 4. Fixing (so, si) 2 R2
, the following are equivalent:

(a) (so, si) is a �-SPBE S payo↵ vector;

(b) (so, si) is a pooling �-SPBE S payo↵ vector;

(c) (p, so, si) is a �-equilibrium summary for some p 2 P(µ0).

Proof. First, (b) trivially implies (a).

Now, let us show (c) implies (b). To do so, consider some �-equilibrium (⇠, �,↵, ⇡)

generating summary (p, so, si). Observe that for each ⇠0 2 ⌅ \ {⇠}, some uncountable

Borel M⇠0 ⇢ M exists such that
R
⇥ ⇠0(M⇠0 |·) dµ0 = 0.23 It then follows readily from

Theorem 2 of Lipnowski and Ravid (2020) that some 0-equilibrium (⇠0, �⇠0 ,↵⇠0 , ⇡⇠0)

exists giving S payo↵ w(µ0) with messages restricted to M⇠0 , that is, with �⇠0(M⇠0 |·) =
1. We now proceed to construct a pooling �-SPBE. Define an influencing sender

strategy � and credibility belief function �̃ by letting, for each ⇠0 2 ⌅,

(�⇠0 , �̃⇠0) :=

8
<

:
(�, �) : ⇠0 = ⇠

(�⇠0 , 0) : ⇠0 6= ⇠.

Next, fix some µ⇤ 2 argmin�⇥ w and some R best response a⇤ to µ⇤ with uS(a⇤) =

w(µ⇤). Define a receiver strategy ↵ and belief map (concerning the state) ⇡ by letting,

for each ⇠0 2 ⌅ and m 2 M ,

(↵⇠0(m), ⇡⇠0(m)) :=

8
>>><

>>>:

(↵(m), ⇡(m)) : ⇠0 = ⇠

(↵⇠0(m), ⇡⇠0(m)) : ⇠0 6= ⇠, m /2 M⇠0

(�a⇤ , µ⇤) : ⇠0 6= ⇠, m 2 M⇠0 .

By construction, (⇠, ⇠,�,↵, �̃,⇡) satisfies conditions 1 and 2 of the definition of �-

SPBE. Moreover, observe that, by Lemma 6, some �, � 2 �⇥ exist such that si �
23For any Borel probability measure ⌘ on [0, 1], construct an uncountable Borel ⌘-null X ✓ [0, 1] as

follows. First, express ⌘ = �⌘d + (1� �)⌘c for some � 2 [0, 1] and ⌘d, ⌘c 2 �[0, 1] with ⌘d discrete and
⌘c atomless; define the co-countable set X̂ := {x 2 [0, 1] : ⌘d{x} = 0}. Let F denote the (continuous)
CDF of ⌘c. If F is constant on some nondegenerate interval I ✓ [0, 1], then X := X̂ \ I is as desired.
Otherwise, X := X̂ \ F�1(C) is as desired, where C ⇢ [0, 1] is the Cantor set.
Finally, such M⇠0 exists because

R
⇥ ⇠0 dµ0 is a Borel probability measure on M , and the measurable

space M is isomorphic to [0, 1] by the Borel isomorphism theorem.

33



max{w(�), w(�)} and µ0 2 co{�, �}. Hence, si � w(µ0) because w is quasiconvex.

Therefore, condition 3 of the definition of a �-SPBE is satisfied because si(⇠) = si >
w(µ0) = si(⇠0) and so(⇠) = so > min�⇥ w = so(⇠0) for all ⇠0 2 ⌅ \ {⇠}. Therefore,

(⇠, ⇠,�,↵, �̃,⇡) is a pooling �-SPBE with S’s payo↵ vector (so, si) as desired.

It remains to be shown (a) implies (c). To that end, suppose (so, si) is some

�-SPBE payo↵ vector, as witnessed by �-SPBE (⇠o, ⇠i,�,↵, �̃,⇡) generating payo↵

vector (so, si), and let the functions so, si be as defined in the definition of a �-SPBE;

recall so, si  si and si(⇠i) = si. For any ⇠ 2 ⌅ with �̃⇠ = 1, that si(⇠)  si implies

we can assume without loss (modifying ↵⇠(m) and ⇡⇠(m) for some m 2 M with
R
⇥ ⇠(m|·) dµ0 = 0, and modifying �⇠) that si(⇠) = si. Therefore, si(⇠i) = si(⇠o) = si.

Thus, for each ⇠ 2 {⇠o, ⇠i}, Lemma 1 delivers k⇠ 2 [0, 1] and g⇠, b⇠ 2 ��⇥ satisfying

k⇠b⇠ + (1� k⇠)g⇠ 2 P(µ0),

(1� k⇠)

Z
µ dg⇠(µ) > (1� �̃⇠)µ0,

g⇠{si 2 V } = b⇠{si � minV } = 1,

si � so(⇠) 2 k⇠
�̃⇠


si �

Z
si ^ V db⇠

�
.

But then consider

k := �(µ0)k⇠o + [1� �(µ0)] k⇠i 2 [0, 1),

b := �(µ0)k⇠o
k b⇠o +

h
1� �(µ0)k⇠o

k

i
b⇠i 2 ��⇥,

g :=
⇣
1� [1��(µ0)](1�k⇠i )

1�k

⌘
g⇠o +

[1��(µ0)](1�k⇠i )

1�k g⇠i 2 ��⇥.

Direct computations with (k, g, b) then show, by Lemma 1, that (kb+ (1� k)g, so, si)

is a �-equilibrium summary.
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