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We can often predict the behavior of those closest to us more accurately than that
of complete strangers, yet we routinely engage in strategic situations with both: our
social network impacts our strategic knowledge. Peer-confirming equilibrium describes
the behavioral consequences of this intuition in a noncooperative game. We augment
a game with a network to represent strategic information: if two players are linked
in the network, they have correct conjectures about each others’ strategies. In peer-
confirming equilibrium, there is common belief that players (i) behave rationally and
(ii) correctly anticipate neighbors’ play. In simultaneous-move games, adding links to
the network always restricts the set of outcomes. In dynamic games, the outcome set
may vary non-monotonically with the network because the actions of well-connected
players help poorly-connected players coordinate. This solution concept provides a use-
ful language for studying public good provision, highlights a new channel through which
central individuals facilitate coordination, and delineates possible sources of miscoor-
dination in protests and coups.

KEYWORDS: Networks, strategic uncertainty, conjectural equilibrium, forward in-
duction.

1. INTRODUCTION

SOCIAL NETWORKS are important in a wide range of economic contexts. From peer ef-
fects to innovation adoption to job searches, our social ties—both strong and weak—have
a profound impact on what we know and how we act.1 These relationships may also af-
fect our expectations of others in strategic interactions. Our everyday experiences guide
our expectations for the future, and we inevitably interact with some people far more fre-
quently than with others. This suggests that our conjectures about close friends and neigh-
bors should be more accurate than those about complete strangers. Social networks there-
fore have a natural role in describing how individuals coordinate their actions. Our paper
explores the relationship between social network structure and strategic coordination.

We introduce a solution concept, peer-confirming equilibrium, that makes the depen-
dence of strategic information on social ties explicit. A network, represented as an undi-
rected graph G, describes players’ strategic information and is part of the basic data of
the game. Players respond optimally to conjectures about other players’ strategies, and a
link between two players indicates that their conjectures about each other are accurate.
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Unlike much of the economics literature on networks, the network does not indicate any
relationship between players’ payoff functions nor a channel for communication. A strat-
egy profile constitutes a peer-confirming equilibrium for the network if it is consistent
with three criteria:

(a) Each player responds optimally to her conjecture about others’ strategies.
(b) Players’ conjectures about neighbors’ behavior are correct.
(c) The above two facts are common belief among the players.

Strategic uncertainty is greatest when the network is empty: no one knows anyone else’s
strategy. In this case, our definition yields exactly the set of rationalizable strategy pro-
files. The outcome set in a simultaneous-move game is monotone in the network: adding
links restricts the set of permissible profiles. At the other extreme, a complete graph, our
solution concept is equivalent to Nash equilibrium.

Peer-confirming equilibrium highlights a new relationship between social networks and
strategic behavior. In several examples, we explore how the network structure and other
details of the game jointly influence the set of equilibria. For instance, the action of a
fully connected player can convey information about others’ choices, but with different
payoff structures this may or may not lead to coordination on a Nash equilibrium. In a
public goods provision game, with each player simultaneously making a contribution, a
single player with links to all others can induce Nash equilibrium play. If the fully con-
nected player contributes a positive amount, her choice implicitly communicates the true
marginal value of contributions to all other players. This contrasts sharply with an exam-
ple we call “the potluck game,” in which players try to bring as many different dishes as
possible to a party, and a fully connected player’s action conveys relatively little informa-
tion. A fully connected player does more to aid coordination when the action space is rich
and best responses are appropriately sensitive to others’ behavior.

We then consider an application to political protests or coups, modeled as binary action
coordination games (e.g., Angeletos, Hellwig, and Pavan (2007)). The success of a protest
depends upon the effective coordination of many dispersed agents, succeeding only if
enough of them join the effort. If not, those who participate may pay a high price for
opposing the entrenched regime. Coordination is clearly a challenge, as history is replete
with examples of failed coups and repressed political movements.2 Instead of studying
uncertainty about payoffs or about the exogenous “strength” of the regime, we consider
uncertainty about others’ strategies. In this case, fully connected players are key: a single
player linked to all others leads to Nash equilibrium play. However, this coordination
is fragile. If we remove a single link from the fully connected player, failed coups can
occur in a peer-confirming equilibrium. Nevertheless, the network structure can still offer
insight into the behavioral patterns we might expect. In a peer-confirming equilibrium,
any two players whose neighborhoods jointly cover the entire population must coordinate
on the same action. This suggests that social “elites” will coordinate with each other even
if the population as a whole fails to do so.

Following these examples, we develop the analogous solution concept for dynamic
games. Our definition coincides with subgame perfect equilibrium in a complete network
and extensive-form rationalizability in an empty network. Neither of these concepts nests
the other, so for dynamic games the outcome set is no longer monotone in the network.
This reflects a subtle interaction between the network structure and forward induction
reasoning. A player can use her action to signal the intentions of other players to whom

2Powell and Thyne (2011) comprehensively document hundreds of coups and coup attempts around the
world over the last several decades, roughly half of which were successful.



PEER-CONFIRMING EQUILIBRIUM 569

she is connected: assuming she made a rational choice, her opponents make inferences
about her strategic information. If the other players are not themselves well-connected,
they have no information to contradict this signal, and our player can credibly convey in-
formation about what others will do. Adding links to the network may actually expand the
set of peer-confirming equilibria because it inhibits this kind of strategic signaling.

Signaling of strategic information allows us to refine the predictions of both subgame
perfect equilibrium and extensive-form rationalizability in a two-stage version of the
protest game. Suppose a “leader” first publicly commits to protest or not, and only then
do the remaining players choose whether to join. In an empty network, every profile is ra-
tionalizable. In a complete network, there are multiple equilibria—with a successful coup
in some but not others. In contrast, a star network centered on the leader permits only
one peer-confirming equilibrium outcome: all players participate in a successful protest.
In this network, the leader’s choice to protest is a convincing signal that the protest will
succeed. Knowing this, the leader always protests because doing so induces others to join.

Beyond our conceptual contribution, peer-confirming equilibrium offers an empirically
relevant tool to refine rationalizability—one with clear testable implications. For instance,
to give subjects appropriate feedback in repeated play of a simultaneous-move game, an
experimenter could provide information on the actions of particular individuals, accord-
ing to a chosen network structure. Our theory predicts a smaller range of outcomes when
the network is more dense, and by varying the payoff structure in a coordination game,
one could test whether the presence of a fully connected player facilitates coordination as
predicted. Outside the laboratory, social ties give us a meaningful and systematic way to
restrict conjectures. From sharing gossip to sending marketing referrals to coordinating
political activism, knowledge of friends’ typical behavior is an important input for our own
decisions. Increasingly, economists are able to measure social networks, and our solution
concept suggests new avenues to make use of these data. Through our framework, one
can assess the players and connections that are most crucial for coordination and use this
to inform policy.

1.1. Related Work

Our paper introduces a new dimension to the growing literature on economics and so-
cial networks. Empirically, social ties are an important source of information (Marmaros
and Sacerdote (2002), Banerjee, Chandrasekhar, Duflo, and Jackson (2013)), and the
choices of friends and neighbors often have spillover effects (Bandiera and Rasul (2006),
Carrell, Sacerdote, and West (2013)). Inspired by these findings, theoretical work exten-
sively studies network games with externalities (Ballester, Calvó-Armengol, and Zenou
(2006), Bramoullé and Kranton (2007), Galeotti, Goyal, Jackson, Vega-Redondo, and
Yariv (2010)), social learning in networks (Golub and Jackson (2010), Lobel and Sadler
(2015)), and models of network formation (Jackson and Wolinsky (1996), Galeotti and
Goyal (2010)). We explore the implications of social structure for strategic coordination.
Unlike the literature on network games, our network does not represent relationships be-
tween players’ payoff functions, and unlike the literature on social learning, our network
does not represent conduits for information flows. The connections we study represent
knowledge about how other people intend to act. Actions can and do convey information
to others, particularly in dynamic games, creating a superficial similarity to observational
learning models. However, the transmission of information implied in peer-confirming
equilibrium is less direct than this: there need not be any private signals about which play-
ers make inferences. Rather, the relevant information is implicit in players’ conjectures
about each other.
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Our solution concept augments a game with a network to describe players’ informa-
tion concerning each other’s actions. This contrasts with related work by Chwe (2000), in
which a network describes players’ beliefs concerning others’ payoff types. It also contrasts
with work by Tsakas (2013) and Bach and Tsakas (2014), which—providing foundations
for existing solution concepts—employ a network to describe players’ conjectures con-
cerning each other’s beliefs. While the goal in their work is quite different from ours, a
common theme emerges: local conditions on players’ strategic knowledge can have global
consequences.

Through our applications, we also relate to a large literature that studies the coordina-
tion of political protests and coups. Much of this work applies the framework of global
games (Carlsson and van Damme (1993), Morris and Shin (1998)), where the information
contained in private signals about regime strength determines the extent of coordination.
Recent contributions show how dynamic learning can lead to a multiplicity of equilib-
ria, with alternating periods of peace and protest activity (Angeletos, Hellwig, and Pavan
(2007)), and how an entrenched regime may use propoganda to its advantage, even when
private information is precise (Edmond (2013)). Rather than focus on uncertainty about
fundamental information (e.g., information about regime strength), we isolate the role of
strategic uncertainty. Both likely play an important role in political movements, and both
are therefore important to our understanding of these phenomena.

Formally, our solution concept is a specialization of rationalizable conjectural equi-
librium (Rubinstein and Wolinsky (1994)). Rubinstein and Wolinsky motivated RCE as
the result of learning through repeated play when individuals receive only coarse signals
about the outcome in each iteration. As Esponda (2013) describes, RCE “intends to cap-
ture the steady state of a learning process that combines learning and introspection.”
In a peer-confirming equilibrium, these signals correspond to the strategies of a subset
of players: we can interpret peer-confirming equilibrium as what should result when we
limit feedback to observing neighbors’ behavior. Our conceptual contribution is to link in-
dividuals’ feedback to an underlying social network, suggesting a foundation for players’
expectations about one another. More recently, Fudenberg and Kamada (2015) introduce
another related concept, rationalizable partition-confirmed equilibrium. In simultaneous-
move games, this concept is equivalent to rationalizable conjectural equilibrium, and so
our concept specializes this as well. However, in dynamic games, our players engage in
forward induction reasoning, so the concepts are distinct. Peer-confirming equilibrium
provides a natural lens through which to examine situations in which most strategic in-
formation comes from our peers. While some earlier work focuses on the robustness of
equilibrium to different forms of feedback, asking what information is required to reach
Nash equilibrium, ours focuses on alternative predictions that peer-confirming equilib-
rium can furnish.

Work on rationalizability (Pearce (1984), Bernheim (1984), Battigalli and Siniscalchi
(2002)) is a clear antecedent to our study of sophisticated play under strategic uncertainty,
as is the broader literature on epistemic game theory (Dekel and Siniscalchi (2015)).
Some of this research explores the consequences of rational play together with various
belief restrictions (e.g., Aumann and Brandenburger (1995), Battigalli and Siniscalchi
(2003)), while other work examines joint restrictions on players’ beliefs and realized play
(e.g., Section 5 of Battigalli and Siniscalchi (2002), Friedenberg (2017), Catonini (2017)).
Although we do not conduct a formal epistemic analysis, our paper is closer to the latter
stream. An important distinction between the epistemic approach and ours is that our
“additional parameter” is a much simpler object: the collection of all strategic type spaces
for a game is infinite dimensional and varies with the game form, while the collection of
networks is finite and varies only with the player set.
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2. PCE IN SIMULTANEOUS-MOVE GAMES

Let � = 〈N�(Si)i∈N� (ui)i∈N〉 denote a simultaneous-move game with complete infor-
mation. The set of players is N , the set of strategies for player i is Si, and the payoff
function for player i is ui.3 In all of our applications, we take Si to be player i’s set of pure
strategies.4 We augment � with a network structure, which we represent as an undirected
graph G. We write ij ∈G if players i and j are linked, and we write Gi for the set of all
other players to whom i is linked. We impose strategic sophistication and use the graphG
to further restrict the set of permissible strategy profiles. This section formalizes a solu-
tion concept in which players best respond to conjectures about others’ strategies, players
have correct conjectures about their neighbors in G, and these two facts are commonly
believed.

To properly state our definition, we introduce notation to talk about players’ conjectures
and best replies. Let S = ∏

i∈N Si denote the set of strategy profiles, and let S−i = ∏
j �=i Sj

denote the set of partial profiles of strategies for players other than i. A conjecture for
player i ∈N is a probability distribution μi ∈ �(S−i), representing beliefs about what the
other players will do. A strategy s∗i ∈ Si is a best reply to the conjecture μi if

s∗i ∈ arg max
si∈Si

∫
S−i
ui(si� ·)dμi�

We write ri(μi)⊆ Si for the set of all best replies to μi; this is the set of strategies player i
can rationally adopt if her beliefs about other players’ strategies are given by μi.

The graph G places restrictions on players’ conjectures, and we need additional nota-
tion to state these restrictions. For each player i ∈N and strategy profile σ ∈ S, we define
the set of strategies consistent with i’s strategic information at σ as

Sσ�G−i = {s−i ∈ S−i : sj = σj ∀j ∈Gi}�
In words, the set Sσ�G−i is the set of partial profiles in which i’s neighbors in G take actions
consistent with σ . When σ is played, the set Sσ�G−i represents the set of profiles to which i
might assign positive probability in her conjecture μi: beliefs about neighbors’ actions are
correct. Similarly, for σ ∈ Σ⊆ S, we define

Σσ�G−i = Sσ�G−i ∩ {
s−i ∈ S−i : (σi� s−i) ∈ Σ}

�

The setΣσ�G−i is the subset of Sσ�G−i that is consistent with the collection of strategy profilesΣ.
If i is sure that the true strategy profile is in Σ, and σ is the true profile, then Σσ�G−i is the
set of profiles to which i can assign positive probability in her conjecture μi.

Finally, we use the above notation to describe a best reply map for the network G. For
each player i ∈N , each measurable Σ⊆ S, and each σ ∈ Σ, we define the set of player i’s
viable conjectures relative to Σ at σ as

�σ�Gi (Σ)= {
μi ∈ �(S−i) : μi

(
Σσ�G−i

) = 1
}
�

3Here, N is finite, each Si is a measurable space, and each ui is a bounded, measurable function.
4A user of our solution concept may wish to study a mixed extension of a game, letting Si = �Ai be a set

of mixed strategies. In this case, our definition implicitly assumes that all players randomize independently.
In particular, i having correct beliefs about neighbor j’s play (as peer-confirming equilibrium requires) does
more than impose correct marginal beliefs over aj , but also implies that i views aj as independent of others’
play. We thank an anonymous referee for this observation.
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This is the set of conjectures for player i that place probability 1 on a strategy profile in Σ
and on i’s neighbors playing σ .5 The set of network-consistent best replies to Σ is

BG(Σ)= {
σ ∈ Σ : ∀i ∈N�∃μi ∈ �σ�Gi (Σ) s.t. σi ∈ ri(μi)

}
�

An element of BG(Σ) is a strategy profile in which each player best responds to a conjec-
ture that is consistent with her neighbors playing σ and everyone playing something in Σ.
The function BG(Σ) acts as a best reply correspondence on the space of strategy profiles,
and with it we can now define the set of peer-confirming equilibria.

DEFINITION 1: Given a simultaneous-move game � and a networkG, a strategy profile
σ is a (rationalizable) peer-confirming equilibrium if it is contained in a measurable set
Σ⊆ S such that Σ= BG(Σ). We write RG for the set of all peer-confirming equilibria for
the network G.

In a peer-confirming equilibrium, every player best responds to a conjecture that is
correct about her neighbors’ strategies and consistent with all others playing a peer-
confirming equilibrium. Observe that the map BG is monotone with respect to set inclu-
sion: if Σ is smaller, the set of viable conjectures is smaller, so that the set of best replies
is smaller. For sufficiently well-behaved games, this means we can compute RG through
a process of iterated deletion of strategy profiles. For instance, if Si is compact and ui is
continuous for each i, then an equivalent definition of RG is6,7

RG ≡
∞⋂
k=0

BkG(S)�

A few properties are immediate from the definition.

PROPOSITION 1: In a simultaneous-move game, the set of peer-confirming equilibria RG
satisfies the following:

(a) If G is empty, then RG is the set of (correlated) rationalizable strategy profiles.
(b) If G is complete, then RG is the set of Nash equilibria.
(c) If G⊆G′, then RG ⊇RG′ .

As we add links to the network G, the set of conjectures that players can entertain
shrinks. With fewer permissible conjectures, there are fewer best replies. In an empty
graph, the definition is formally equivalent to the set of (correlated) rationalizable strate-
gies (Pearce (1984), Bernheim (1984)): players can form any conjecture that is consistent
with common belief of rationality. At the other extreme, a complete network implies that
all players best respond to the actual strategies being played, and we reach Nash equilib-
rium. In between, the structure of the network creates nontrivial restrictions on the set of
permissible strategy profiles.

5Notice that players are allowed to hold correlated conjectures, that is, elements of �σ�Gi (Σ) need not be
product measures. Just as is the case for correlated rationalizability, some actions of player i may be a best
response only to such correlated conjectures.

6Here, BkG denotes the composition map. So B0
G(S)= S, and BkG(S)= BG(Bk−1

G (S)) for every k ∈N.
7The equivalence follows from monotonicity of BG and upper hemicontinuity of the best response corre-

spondences {ri}i∈N .
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A network of relationships can serve more than one role. There is typically signifi-
cant overlap between individuals’ economic relationships, as in the literature on network
games (e.g., Galeotti et al. (2010)), and their social ties. We say j is payoff-irrelevant to
i if ui(σj�σ−j) = ui(sj�σ−j) for all strategy profiles σ and all actions sj ∈ Sj . Otherwise,
player j is payoff-relevant to i. The network of payoff-relevance G̃—with an edge be-
tween players if and only if one is payoff-relevant to the other—captures relationships
typically studied in the network games literature. In practice, we should expect the two
networks G and G̃ to have many links in common. If G is sufficiently dense, all players
know the strategies of those who are payoff-relevant, and local information concerning
strategies is sufficient to ensure Nash play. At the opposite extreme, if players possess no
personally useful strategic information, then their strategic information does nothing to
restrict play.8

PROPOSITION 2: In a simultaneous-move game, the set of peer-confirming equilibria RG
satisfies the following:

(a) If j /∈Gi whenever player j is payoff-relevant to player i, then RG is the set of (corre-
lated) rationalizable strategy profiles.

(b) If j ∈ Gi whenever player j is payoff-relevant to player i, then RG is the set of Nash
equilibria.

PROOF: See the Appendix. Q.E.D.

Proposition 2 mirrors the first two parts of Proposition 1. Part (a) tells us that, absent
any connections to payoff-relevant players, we cannot ensure coordination beyond what
rationality and common belief of rationality imply. We may as well have an empty net-
work. Part (b) says that, if only neighbors matter for incentives, peer-confirming equilib-
rium admits no miscoordination. While a player with few neighbors faces much strategic
uncertainty, players being connected to the “right” people is ultimately what matters for
attaining coordinated outcomes.

Given the above proposition, a natural conjecture is that the only links inG that matter
are those for which at least one player is payoff-relevant to the other, that is, elements of
G ∩ G̃. This conjecture is false, as we demonstrate at the end of this section through our
“Follow the Leader” example.

2.1. Examples

We present examples to clarify the definition and illustrate how the set of peer-
confirming equilibria varies with G. Even when G is insufficiently dense to obtain Nash
equilibrium play, the connections that do exist limit the kinds of miscoordination that can
occur. Individual players may benefit from being more connected in G because of the
strategic information they possess.

Crowding Out Investment

Three players have an investment opportunity subject to crowding out effects. The play-
ers simultaneously decide whether to invest or not. A player who invests (action I) incurs

8This may be surprising given that the graph can still be highly connected. The intuition is that player i
cannot make useful inferences about j’s other neighbors from j’s play, unless those neighbors are relevant to
player j.



574 E. LIPNOWSKI AND E. SADLER

FIGURE 1.—Two possible networks in the investment game.

a positive cost c ∈ ( 1
2 �1). If at least one player invests, a unit surplus is generated, and

this is divided evenly among those who invest. All players who choose not to invest (ac-
tion N) earn a default payoff of zero. There are three pure strategy Nash equilibria—
(I�N�N), (N� I�N), and (N�N�I)—corresponding to each possible permutation of one
player investing while the others refrain. All eight pure strategy profiles are rationalizable:
significant miscoordination can occur if players do not accurately anticipate each other’s
strategies.

Now consider peer-confirming equilibria for the two graphs in Figure 1. In graph (a),
players 1 and 2 are linked, while player 3 has no connections. The permissible pure strat-
egy profiles are then (I�N�N), (I�N� I), (N� I�N), (N� I� I), (N�N�I), and (N�N�N).
The first two players never invest together, but all other inefficient outcomes are possi-
ble. Player 3 may crowd out the investment of one of the first two players, or no one may
invest because every player expects someone else to do so.

When we add a link between players 1 and 3 as in graph (b), this further reduces
the set of permissible profiles. The peer-confirming equilibria are (I�N�N), (N� I�N),
(N�N�I), and (N� I� I). Now, the only possible miscoordination is between players 2
and 3. This network structure confers an “advantage” to player 1, as she is the only player
who is guaranteed a nonnegative payoff. Moreover, the additional link results in an impor-
tant qualitative difference in the outcome set: someone always invests. If neither player 2
nor player 3 plans to invest, player 1 knows this and therefore invests.

Follow the Leader

Three players face a binary choice between action 0 and action 1. Player 1 is indifferent
between the two actions, and each of player 2 and player 3 earns a positive payoff if and
only if she matches the action of player 1. In a pure strategy Nash equilibrium, all players
choose the same action; any profile is rationalizable.

This example helps illustrate how local information can lead to global consequences.
Suppose player 2 is linked to both other players, but player 3 is not linked to player 1. In a
peer-confirming equilibrium, it is clear that 2 must match 1: player 2 correctly anticipates
player 1’s strategy, so she chooses the action to match. Player 3 correctly anticipates the
action that player 2 is taking, but this action is not relevant to player 3’s payoff. Since
3 lacks a link to 1, we might think that 3 can entertain any conjecture about player 1,
and therefore does not necessarily match. This naïvete is ruled out by peer-confirming
equilibrium. Player 3 is certain that 2 will match 1, and since she correctly anticipates 2’s
behavior, she does the same for 1’s. Nash equilibrium therefore arises, despite the missing
link in the network. Under our solution concept, players make sophisticated inferences
about those to whom they are not adjacent based on the choices of those to whom they
are.
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Notice that the above example features a link between two players (2 and 3) who are
mutually payoff-irrelevant. If we remove this link, the set of PCE strategy profiles strictly
grows to include every profile in which 1 and 2 match. Therefore, in spite of Proposition 2,
a peer who exerts no payoff externality can still be an important source of strategic infor-
mation. Such transmission of strategic information again becomes impossible if no player
is even indirectly connected to a payoff-relevant player.9

3. COORDINATION AND CONNECTIVITY

Players with many connections can often facilitate coordination by others. We say that
a player is fully connected if she is adjacent to every other player in G. Fully connected
players necessarily best respond to the true strategy profile. Therefore, the choice of a
fully connected player has the potential to transmit a great deal of strategic information.
Whether this actually occurs is sensitive to details of the game. In this section, two exam-
ples highlight how a fully connected player’s role changes with the structure of a game. If
the action space is rich, and best responses are appropriately sensitive to others’ actions,
a fully connected player can lead to Nash equilibrium play. With coarser actions, when
best responses do less to identify others’ play, a fully connected player has relatively little
impact on the set of peer-confirming equilibria.

3.1. Public Goods Provision

Each player i in a population of size N chooses how much to invest in a public good
xi ∈ [0�1]. The payoff to player i is the benefit from the total investment less the cost of
her own investment:

ui(x)= 2

√√√√ N∑
j=1

xj − xi�

The marginal benefit of i’s own investment is

1√√√√ N∑
j=1

xj

− 1�

which immediately implies that in any Nash equilibrium, total investment is exactly 1;
conversely, any such (pure) strategy profile is a Nash equilibrium. Player i can ratio-
nalize any investment level xi ∈ [0�1] if she expects other players’ investments to satisfy∑

j �=i xj = 1 − xi. Hence, the range of total investment that can appear in a rationalizable
strategy profile is [0�N].

We characterize precisely how the range of total investment in a peer-confirming equi-
librium varies with the structure of the graphG. The upper bound depends on the largest
independent set of players, while the lower bound depends on the presence or absence of
a fully connected player.

9Formally, suppose Ĝ ⊆ G is such that every link in G \ Ĝ belongs to a G-connected component whose
players are pairwise payoff-irrelevant. Then (as can be shown by adapting the proof of the first part of Propo-
sition 2), we will always have RĜ =RG. We thank an anonymous referee for this observation.
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DEFINITION 2: A subset M of players is independent if no two players in M are adja-
cent in G (i.e., j /∈Gi for all i� j ∈M). An independent subset M is largest if there is no
independent subset M ′ with |M ′|> |M|.

PROPOSITION 3: Let M denote a largest independent subset of players in G. In the public
goods provision game:

(a) The maximal investment in any peer-confirming equilibrium is |M|.
(b) If there exists a fully connected player in G, then the minimal investment in any peer-

confirming equilibrium is 1. Otherwise, the minimal investment is 0.

PROOF: First note that a strategy profile x ∈ [0�1]N is a PCE if and only if, for each
i ∈N :

• xi ≤ 1 − ∑
j∈Gi xj if xi > 0;

• ∑
j∈N xj ≥ 1 if i is fully connected.

The above conditions are necessary for a network-consistent best reply by player i, and
therefore for a PCE. To see they are sufficient, consider two cases. If there is a fully
connected player who invests, then

∑
i∈N xi = 1, so that x is a Nash equilibrium. Suppose

no fully connected player invests; every other player i has some non-neighbor ĩ. We can
support the profile x as a PCE with each non-fully connected i ∈N believing the play is a
Nash equilibrium with ĩ investing the residual 1 − xi − ∑

j∈Gi xj (and any fully connected
players having correct beliefs).

Next, we show that every PCE total investment level is attainable with no two adja-
cent players investing. Indeed, if i and some neighbor both invest a positive amount, the
adjusted profile x′ given by

x′
j :=

⎧⎪⎪⎨
⎪⎪⎩
xi +

∑
k∈Gi

xk : j = i�

0 : j ∈Gi�

xj : otherwise�

attains the same level of total investment in PCE, with strictly fewer investing players.
Iterating this construction proves the claim.

Combining the above two claims, X is a PCE total investment level if and only if there
is an independent set M of players such that:

• 0 ≤X ≤ |M|;
• if some i ∈N is fully connected, then X ≥ 1.

Both parts of the proposition follow directly. Q.E.D.

Proposition 3 gives us insight not only into the range of possible investment levels,
but also into the distribution of investment across the players. The presence of a fully
connected player ensures that at least the Nash equilibrium level of investment is made,
but if such a player actually invests, then no more is invested. If a fully connected player
invests a positive amount, it signals the true marginal value of investment to all other play-
ers, leading to Nash equilibrium play. When fully connected players do not invest, only
then can we obtain a high level of total investment. When this occurs, the fully connected
players free-ride while many peripheral players mistakenly believe that investment is their
responsibility.
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We can also use peer-confirming equilibrium to study other variants of the public goods
game. For instance, we might consider the “best-shot” utility

ui(x)= 2
√

max
j∈N

xj − xi�

or the “weakest-link” utility

ui(x)= 2
√

min
j∈N

xj − xi�

Some results for the best-shot public goods game are similar to those already presented.
Two adjacent players will never both choose positive investment, since at least one of
them (one who is investing weakly less) would rather invest nothing. The set of players
investing is thus an independent set, so that the same upper bound on total investment
holds. This bound is tight, as each player in an independent set could think she is the sole
investor in a Nash equilibrium. By an identical argument to that above, the minimum to-
tal investment level is zero if there is no fully connected player. Characterizing minimum
investment when there is a fully connected player is more delicate in the best-shot pub-
lic goods model, as non-investment by a fully connected player will provide strategically
meaningful information about other players (namely, that at least one player is investing
at least 1

4 , so that the fully connected player is willing to not invest).
The weakest-link game produces a qualitatively different set of outcomes, which is per-

haps unsurprising since it features strategic complements rather than strategic substitutes.
If i and j are adjacent, then xi ≤ xj in any network-consistent best reply for i. Symmetry
and induction imply that players in the same connected component of Gmust choose the
same investment level in any peer-confirming equilibrium. Players could coordinate on
any level in [0�1], but a connected graph implies a Nash equilibrium outcome. If there
are multiple connected components, each component may coordinate independently on
any investment level in [0�1]—supported by the potentially incorrect belief that the other
components choose the same investment level.

3.2. The Potluck Game

Each ofN players plans to attend a potluck event, and each will bring one ofN possible
dishes. Players have a common utility function that is monotonically increasing in the
number of distinct dishes brought to the event. In any pure strategy Nash equilibrium,
all players bring a different dish, resulting in N distinct dishes at the event. Any strategy
profile is rationalizable, and players could end up with N pots of the same dish. What
networks will facilitate having a higher number of distinct dishes?

We approach this question looking at worst-case outcomes: what is the smallest number
of dishes that can appear in a peer-confirming equilibrium? In any profile, two linked
players must bring different dishes, and Nash beliefs can support any such profile as a
peer-confirming equilibrium. Consequently, the question of how many dishes are brought
becomes a question about graph colorings. Recall that the chromatic number of a graph
is the minimal number of colors required to color each vertex so that no two adjacent
vertices have the same color. The following proposition is immediate from this definition.

PROPOSITION 4: The minimal number of dishes in a peer-confirming equilibrium is the
chromatic number of G.
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Contrasting this with the results for public goods provision reveals how peer-confirming
equilibrium is sensitive to the details of a particular game. Fully connected players have a
far less significant effect on the outcome set in the potluck game than in the public goods
provision game. A fully connected player has complete information about the strategy
profile being played. We can guarantee equilibrium play if the fully connected player’s
best response provides a sufficient statistic for the entire strategy profile. For instance, in
the public goods provision game, the marginal value of investment is a sufficient statistic,
and the fully connected player’s action conveys this marginal value whenever she makes
a positive level of investment. In the potluck game, a star network is nearly as bad as the
empty network for coordination (with as few as two dishes being served) because the fully
connected player’s action conveys little useful information to the other players.

4. POLITICAL PROTEST AND ELITE COORDINATION

Successful protests or coups require coordination among many people, and mistakes
are costly. Miscoordination can result in prison time or worse for participants in failed ef-
forts, but there may also be high potential gains. When are protests most likely to occur?
When are they likely to succeed? When is there a high risk of miscoordination? Which
types of miscoordination might we expect? Such questions are often studied using binary
action coordination games. Peer-confirming equilibrium can offer a new perspective, al-
lowing us to isolate the role of strategic uncertainty in this setting.

We study a simple binary action coordination game: players move simultaneously, pay-
offs are symmetric, and there is complete information. Each player in a population of
finite size N chooses whether to protest to effect political change. If at least M ≥ 2 play-
ers protest, the regime is overthrown, and each protester earns a payoff y > 0. If fewer
than M players protest, the protesters are arrested, incurring a cost c > 0. Those who do
not protest earn a default payoff of 0. Any profile of actions is rationalizable, and there
are two pure strategy Nash equilibria: all protest or none protest.

Fully connected players in the graph G are key facilitators of coordination in peer-
confirming equilibria. Much like in the public goods provision example, a player who is
adjacent to all others conveys valuable information through his choice, and we reach a
Nash equilibrium. Even without a fully connected player, however, peer-confirming equi-
librium ensures some nontrivial coordination. Suppose there exist two players i and j such
that Gi ∪Gj =N , that is, players i and j are linked, and every player is linked to at least
one of them. We might imagine two distinct communities or political parties with i and j
as leaders or representatives. While equilibrium play is not guaranteed, we show that the
two leaders must take the same action in any peer-confirming equilibrium.

PROPOSITION 5: In the political protest game:
(a) If there is a fully connected player, then all players choose the same action in any peer-

confirming equilibrium.
(b) If Gi ∪Gj = N , then players i and j choose the same action in any peer-confirming

equilibrium.

PROOF: The first claim is straightforward. The fully connected player protests if and
only if the protest will succeed. The other players therefore coordinate on the same ac-
tion.10

10Alternatively, the first claim will follow directly from the second claim, taking i to be the fully connected
player and letting j range over N \ {i}.
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Toward the second claim, suppose Gi ∪Gj =N . Without loss, assume that i and j have
no neighbors in common, as Proposition 1 tells us this can only expand the set of peer-
confirming equilibria. Let Σ denote the set of peer-confirming equilibria. Given a strategy
profile σ , write mk(σ) for the number of neighbors of k ∈N who protest under σ .

Assume, for a contradiction, that there exists some peer-confirming equilibrium in
which exactly one of {i� j} protests; without loss, say i protests and j does not. Then define

mi := min
{
mi(σ) : σ ∈RG� i protests under σ� j does not protest under σ

}
�

mj := max
{
mj(σ) : σ ∈RG� i protests under σ� j does not protest under σ

}
�

As RG ⊆ BG(RG), we can deduce from player i’s choice thatmi+mj ≥M−1, and from
player j’s choice that mj +mi <M − 1, a contradiction. Hence, the two must choose the
same action. Q.E.D.

The action of a fully connected player provides a signal allowing others to coordinate.
With such a player, we do not necessarily expect more or fewer protests, but the ones that
occur are more likely to succeed. After defining peer-confirming equilibrium for dynamic
games in the next section, we show that a fully connected player becomes even more
significant in facilitating protests if she can publicly commit to an action before other
players decide.

If the population is split into two groups, with leaders who interact, we see a particular
pattern of miscoordination. The two leaders always move together, but the rest of the
players need not. Each leader could protest, with the mistaken belief that enough of the
other group will support this action. Alternatively, each leader could refrain, with the
mistaken belief that too few in the other group plan to protest. This suggests a mechanism
for coordination among elites even as many others choose different actions.

5. PCE IN DYNAMIC GAMES

In this section, we generalize peer-confirming equilibrium to dynamic games. To sim-
plify the analysis, we restrict attention to pure strategies in finite multistage games of
observable action.11 Wherever possible, we mirror the notation already introduced in Sec-
tion 2.

Consider an extensive-form game � = 〈N�H�Z� (Ah
i )h∈H�i∈N� (ui)i∈H〉. As before, N is

a finite set of players. The sets H and Z are the non-terminal and terminal histories,
respectively; write H =H ∪Z for the (finite) set of all histories. For each h ∈H, the set
Ah
i is a finite, nonempty set of actions for player i. We write Ah = ∏

i∈N A
h
i for the set of

action profiles at history h. Finally, for each i ∈N , the function ui : Z → R gives player
i’s utility as a function of the terminal history.

For convenience, we represent elements of H as finite sequences of elements in A =⋃
h∈H A

h. We necessarily have ∅ ∈ H, and for any h ∈H and a ∈ A, we have (h�a) ∈ H
if and only if a ∈ Ah. Given two histories h�h′ ∈ H, we write h � h′ if h is an initial
subsequence of h′, that is, h′ = (h�a1� a2� � � � � ak) for some sequence of action profiles
(a�)

k
�=1.

11Osborne and Rubinstein (1994) refer to such a game as “extensive game[s] with perfect information and
simultaneous moves.” The definition here is slightly different, though strategically equivalent. We dispense
with their player correspondence by allowing players’ action sets at a given history to be singletons.
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The following notation helps us talk about strategies and their relationship to histories.
For each i ∈ N , write Si = ∏

h∈H A
h
i for player i’s set of (pure) strategies. A strategy for

player i gives the action she takes at any history. For any subset J ⊆N , we similarly write
SJ = ∏

j∈J Sj for the strategies of players in J, and we define S ≡ SN . For any h ∈ H and
J ⊆ N , we write SJ(h) for the set of partial strategy profiles sJ ∈ SJ that allow history
h to be reached. Each profile in SJ(h) prescribes the same behavior up to history h and
arbitrary behavior thereafter and at histories incompatible with h. Similarly, for any J ⊆N
and sJ ∈ SJ , write H(sJ)= {h ∈H : sJ ∈ SJ(h)} for the set of non-terminal histories that sJ
allows. The setH(sJ) is the set of non-terminal histories that are potentially reached when
players in J play according to sJ . Finally, for any s ∈ S and h ∈H, we write ζh(s) ∈ Z for
the unique terminal history � h that corresponds to the strategy profile s being followed
starting from history h, and uhi (s) := ui ◦ ζh(s).

Next, we give notation to formalize players’ beliefs and best replies. A conditional prob-
ability system (CPS) for player i is a vector of distributions μi = (μhi )h∈H ∈ [�(S−i)]H that
satisfies the following properties:

(a) For all h ∈H, we have μhi (S−i(h))= 1.
(b) If h� h′ and E ⊆ S−i(h′), we have

μhi (E)= μhi
(
S−i

(
h′))μh′

i (E)�

We interpret μhi as player i’s beliefs about opponents’ strategies at history h. Condition
(a) states that the player assigns probability 1 to what she has already observed: if we are
at history h, the other players’ strategies must allow history h to be reached. Condition
(b) states that player i updates her beliefs according to Bayes’s rule as play progresses.
The strategy s∗i ∈ Si is a sequential best reply to μi if, for all h ∈H, we have

s∗i ∈ arg max
si∈Si

∫
S−i
uhi (si� ·)dμhi �

In words, at every history, it maximizes player i’s expected payoff going forward. As be-
fore, we write ri(μi)⊆ Si for player i’s set of sequential best replies to μi.

We represent the network of connections between players as an undirected graph G,
yielding the augmented game 〈��G〉. For any j ∈N , σ ∈ S, and h ∈H, define

Sσj (h)= {
sj ∈ Sj : sj

(
h′) = σj

(
h′) ∀h′ ∈H with h′ � h}

�

The set Sσj (h) is just the set of strategies for player j that agree with σ going forward
from h. For each i ∈N , σ ∈ S, and h ∈H, the set of continuation plays consistent with
i’s strategic information at σ is

Sσ�G−i (h)= {
s−i ∈ S−i : sj ∈ Sσj (h) ∀j ∈Gi

}
�

Starting from history h, this is the set of opponents’ strategies in which all players in Gi

follow σ going forward. As we did for simultaneous-move games, we introduce notation
for play in Sσ�G−i (h) that is compatible with Σ⊆ S: for each i ∈N , σ ∈ S, Σ⊆ S, and h ∈H,
we define

Σσ�G−i (h)= Sσ�G−i (h)∩ {
s−i ∈ S−i : (σi� s−i) ∈ Σ}

�

We also simply write Σσ�G−i in place of Σσ�G−i (∅) for the set of opponent strategy profiles
consistent with Σ and i’s initial strategic information at σ .
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Given a strategy profile σ ∈ S and a set of strategy profiles Σ ⊆ S, for each player
i ∈N we define the set of viable conjectures relative to Σ at σ , denoted �σ�Gi (Σ). This set
consists of all conditional probability systems μi such that, for all h ∈H:

(a) μhi (S
σ�G
−i (h))= 1;

(b) if Σσ�G−i ∩ S−i(h) �= ∅, then μhi (Σ
σ�G
−i (h))= 1.

Condition (a) requires that, at each history h ∈H, player i’s beliefs assign probability 1
to the event that i’s neighbors follow σ going forward. Condition (b) states that, if some
strategy consistent with Σ and i’s strategic information at σ allows us to reach history h,
then i’s beliefs at history h assign probability 1 to Σσ�G−i . This means that, if player i starts
the game believing the strategy profile is in Σσ�G−i , she must maintain this belief throughout
the game as long as she observes no conclusive proof to the contrary. This is sometimes
referred to as strong belief.

Using the set of viable conjectures, we can define the network-consistent best replies
to Σ:

BG(Σ)= {
σ ∈ Σ : ∀i ∈N�∃μi ∈ �σ�Gi (Σ) s.t. σi ∈ ri(μi)

}
�

The setBG(Σ) includes all strategy profiles inΣ for which every player follows a sequential
best reply to some viable conjecture. We can now state our definition of peer-confirming
equilibrium in dynamic games.

DEFINITION 3: The set of peer-confirming equilibria for 〈��G〉 is

RG ≡
∞⋂
k=0

BkG(S)�

A profile σ ∈ S is a peer-confirming equilibrium if σ ∈RG.

Analogously to Proposition 1, the set of peer-confirming equilibria for dynamic games
has the following properties.

PROPOSITION 6: In a dynamic game, the set of peer-confirming equilibria RG satisfies the
following:

(a) If G is empty, then RG is the set of extensive-form rationalizable (a.k.a. strongly ratio-
nalizable) strategy profiles.12

(b) If G is complete, then RG is the set of (pure strategy) subgame perfect equilibria.
(c) The set of peer-confirming equilibria of � is contained in the set of peer-confirming

equilibria for the normal form of � (the latter being viewed as a simultaneous-move game).

PROOF: See the Appendix. Q.E.D.

While simple, Proposition 6 already reveals nuance to peer-confirming equilibrium
in dynamic games. Peer-confirming equilibrium specializes to extensive-form rational-
izability in the empty network and to subgame perfect equilibrium in the complete
network. In general, these are non-nested solution concepts. Hence, we can obtain no
analogue of Proposition 1(c) for dynamic games: the peer-confirming equilibrium set is

12The literature exhibits several slightly different definitions of extensive-form rationalizability. See the dis-
cussion preceding the proposition’s proof in the Appendix for clarification.
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non-monotonic in the network. This is due to the notion of strong belief—narrowing the
set of beliefs a player might entertain can limit the refining power of forward induction
(Battigalli and Friedenberg (2012)). Far from a technical complication, this feature adds
economic content to peer-confirming equilibrium. As we see in a dynamic protest game
in the following section, forward induction reasoning and local strategic information can
interact, refining away some equilibrium outcomes. In spite of this, the following result
shows that equilibria which are unambiguously good for all decision makers will never get
refined away.

PROPOSITION 7: If σ ∈ S has the property that σ ∈ arg maxs∈S(h) ui(s) for every h ∈H and
i ∈N such that |Ah

i |> 1, then σ is a peer-confirming equilibrium for every network G.

PROOF: See the Appendix. Q.E.D.

6. SIGNALING OTHERS’ INTENTIONS

Applying our solution concept yields new insights in a dynamic version of the political
protest game (see Section 4 for a static analogue). As before, there is a population of
N players, each of whom makes a choice whether to protest. If at least M ∈ [3�N − 1]
players protest, each protester earns y > 0. If fewer than M protest, each protester then
incurs the cost c > 0. Unlike the earlier model, players do not move simultaneously. One
player is a “leader” and makes a publicly observable choice before anyone else. After the
leader decides whether to protest, the other players make simultaneous choices.

We contrast the sets of peer-confirming equilibria for two networks: a complete network
and a star network centered on the leader (see Figure 2). Proposition 6 implies that in the
former case, we obtain the set of pure strategy subgame perfect equilibria. In particular,
the complete network admits equilibria in which a protest is successful and equilibria in
which there is no protest.

In the star network, we actually get a smaller set of outcomes. To understand why, think
about the reasoning of the other players after observing the leader commit to protest.
The leader is adjacent to all others in the star network, implying she has an accurate con-
jecture about everyone’s behavior. If the leader is rational, she only commits to protest
if she expects at least M − 1 others to follow. Therefore, the other players who observe
the leader protest believe that the protest will succeed, so the unique best response for all
players is to protest. Knowing this, the leader can always induce others to protest by com-
mitting herself to do so. Hence, the only peer-confirming equilibrium in the star network
is for all players to protest.

FIGURE 2.—A complete network (a) and a star network (b), leader in gray.
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PROPOSITION 8: In the dynamic protest game with a leader-centered star network, all play-
ers protest in peer-confirming equilibrium.

PROOF: First, by Proposition 7, the strategy profile in which everybody protests at every
history is a peer-confirming equilibrium. Therefore, Σk := BkG(S) is nonempty for every
k ∈ Z+.

Let � ∈N denote the leader. For all J ⊆N \{�} andm ∈ Z+, let PJ(m)⊆ SJ be the set of
partial strategy profiles with the feature that, if the leader protests, then at leastm people
from player subset J will protest as well.

The leader’s best response property (together with the fact that the leader is adjacent
to all other players) tells us that Σ1 ∩ ({NoProtest} × PN\{�}(M − 1)) = ∅. That is, if an
attempted protest by the leader would succeed, then the leader will indeed protest.

Therefore, ∀i ∈N \ {�}, σ ∈ Σ1, μi ∈ �σ�Gi (Σ1):

μProtest
i

({Protest} × PN\{��i}(M − 2)
) = 1

=⇒ σi(Protest)= Protest� if σi ∈ ri(μi)�
That is, i �= � infers from a leader protest that a protest would succeed (at least with i’s
support), and therefore optimally protests herself.

In summary, ∀σ ∈ Σ2, ∀i ∈ N \ {�}, σi(Protest) = Protest. The leader’s best response
property then tells us that the leader protests in any σ ∈ Σ3. As Σ3 ⊆ Σ2, it follows that
everybody protests on path in any σ ∈ Σ3, and therefore in any peer-confirming equilib-
rium. Q.E.D.

Why does the above reasoning fail in the complete network? If the leader protests when
no one else plans to do so, then the other players—who correctly anticipate each other’s
strategies—can deduce from their strategic information that the leader erred. In the star
network, the other players have no strategic information to contradict their belief in the
leader’s rationality, so they must conclude that a protest will succeed. This highlights the
subtle role that strategic information can play in facilitating coordination. In some cases,
having less information can help players coordinate on a particular outcome because the
past choices of some players become more meaningful signals of the future behavior of
others. In the context of our application, peer-confirming equilibrium illustrates the in-
formative role of leadership in revolutions (Shadmehr and Bernhardt (2017)).

This example also highlights that extensive-form PCE delivers a novel form of forward
induction. Under forward induction reasoning, “surprise events are regarded as arising
out of purposeful choices of the opponents,” so that “a player may try to draw inferences
about future play from a past surprising choice made by an opponent.”13 In all previous
applications of which we are aware, the related inferences always concern the future be-
havior of the player whose choice was surprising. That is, past behavior of player i has
no predictive power for the future behavior of player j �= i; in particular, forward induc-
tion reasoning is irrelevant if no one moves twice along any path. Under peer-confirming
equilibrium, observed behavior of player i can help predict—using the joint identifying
assumption that i is rational and has correct beliefs about her neighbors’ play—future
choices of player i’s neighbors. As our protest example shows, this ability to signal strate-
gic information can affect real outcomes of a game, even when players move once.

13Dekel and Siniscalchi (2015, p. 676).
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Chwe (2000) offers an alternative perspective on the role of social networks in coordi-
nating protests. In his paper, players are uncertain whether others are “willing” to protest
(i.e., have payoff type which leaves protest undominated), and links in a communication
network allow players to inform others about their types. The focus is on “sufficient net-
works” in which it is possible for protest to happen in equilibrium—even when all players
are willing, uncertainty about others’ types may render protest impossible. In that paper,
having more connections always facilitates protest, to which uncertainty about others’
payoff types is the main impediment. Minimal sufficient networks have a nested structure
in which a clique of leaders is able to share information with everyone else. Our protest
example features no payoff uncertainty: all players are “willing” to protest with proba-
bility 1. Rather than focus on whether protest is possible, our example explores whether
it is necessary. Here, there is no direct communication, but the leader’s action conveys
information beyond her own plans.

7. RELATIONSHIP TO OTHER SOLUTION CONCEPTS

This section explores the relationship between peer-confirming equilibrium and other
solution concepts. In simultaneous-move games, peer-confirming equilibrium becomes
a special case of rationalizable conjectural equilibrium (RCE) in which the network de-
termines the corresponding information partition. In simultaneous-move games, peer-
confirming equilibrium is likewise a special case of rationalizable partition-confirmed
equilibrium (RPCE). However, in dynamic games, our forward induction refinement
places restrictions on off-path beliefs that are not present in RPCE, leading to funda-
mental differences.

7.1. Rationalizable Conjectural Equilibrium

Rationalizable conjectural equilibrium is defined in static settings (Rubinstein and
Wolinsky (1994)).14 Given a realized strategy profile s, each player i observes an associ-
ated signal gi(s). Each player’s signal induces a partition of the space of strategy profiles;
informally, players can only distinguish between outcomes if they are in different partition
elements.

Just as the network is transparent to the players in (the interpretation implicit in) our
definition, the signal maps are transparent to the players under RCE. In RCE, players
are rational, players correctly anticipate their own realized signals, and these facts are
commonly believed. Player i forms a conjecture over the choices s−i of other players and
plays a best response. In equilibrium, this conjecture must put probability 1 on the same
realized signal as the true action profile. If gi is one-to-one for each player i, the concept
reduces to (pure strategy) Nash equilibrium. If gi is constant for each player i, the concept
reduces to (correlated) rationalizability.

Peer-confirming equilibrium is a special case that imposes additional structure—the
network determines players’ signals. Setting gi(s)= (sj)j∈Gi , the definition of RCE exactly
reduces to a PCE. Since the actions of neighbors are fully identified by the signal, con-
jectures must assign probability 1 to neighbors’ true actions. Note that, like in RCE, our
solution concept allows correlated conjectures: a conjecture is a distribution on the set of
opponent action profiles.

14RCE is defined on the normal form of a game. For ease of comparison, we interpret it here in the context
of simultaneous-move games.
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7.2. Rationalizable Partition-Confirmed Equilibrium

In RPCE, each player has correct beliefs over a partition of the possible terminal nodes
in the game. As Fudenberg and Kamada (2015) observe, in a simultaneous-move game,
rationalizable conjectural equilibrium and rationalizable partition-confirmed equilibrium
are equivalent, because the set of terminal nodes is simply the set of action profiles. Con-
sequently, in a simultaneous-move game, peer-confirming equilibrium specializes RPCE.

In dynamic games, this relationship no longer holds. The key difference lies in restric-
tions on off-path beliefs. Fudenberg and Kamada (2015) state their restrictions in their
definition of accordance: on the equilibrium path, players update according to Bayes’s
rule; off path, a player assigns probability 1 to profiles supported in her prior. Given the
mildness of the belief restriction, every subgame perfect equilibrium is an RPCE, whatever
the players’ partitions. In a peer-confirming equilibrium, players are forced to rationalize
their off-path beliefs.

Consider the two-stage protest game of the previous section. Mapping the star network
to a terminal node partition, the leader gets to observe the terminal node exactly, while
the other players observe only the leader’s action in addition to their own. We can trivially
obtain no protest in a RPCE with the leader correctly anticipating that no one will follow
a choice to protest, and all other players believing that no one else will protest, regardless
of which of the two possible information sets they observe. If the leader deviates, nothing
forces the other players to abandon their belief that the protest will fail.

Theorem 2 in Fudenberg and Kamada (2015) further highlights the difference with
peer-confirming equilibrium. The set of RPCE is monotone with respect to the fineness
of the terminal node partition. When the partition is determined by a network, this means
that the set of RPCE is monotone in the network: adding links weakly shrinks the set of
RPCE. As we saw in the previous two sections, PCE does not enjoy the same monotonicity
property.

8. FINAL REMARKS

Peer-confirming equilibrium gives us an intuitive and practical way to use the structure
of social relationships to refine outcome predictions in games. We typically have clearer
expectations about the behavior of our friends, neighbors, and closest colleagues than
about others, and peer-confirming equilibrium acknowledges that this should influence
model predictions. Through this concept, we gain insights about who in a network is im-
portant for coordination—fully connected individuals are often pivotal, but this finding is
sensitive to details of the underlying game—and how a game’s payoff structure interacts
with strategic information. These insights suggest testable propositions for future study in
empirical work.

We also highlight a new channel through which actions convey information. When
knowledge about players’ strategies is incomplete, one player’s action can provide a signal
about others’ choices. In a static game, the signal is implicit: knowing a player’s intended
action entails knowing something about her beliefs about others’ strategies. Under the
right circumstances, the behavior of a fully connected player can effectively serve as a suf-
ficient statistic for everyone’s behavior, enabling coordination on equilibrium. As we saw
in the protest example, even without a fully connected player, we can draw nontrivial con-
clusions about who coordinates with whom. In dynamic games, signaling is more explicit,
though its effects are more intricate. Our solution concept sometimes leads to sharper
predictions than either extensive-form rationalizability or subgame perfect equilibrium,
which may make it well-suited for applied work.
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The intuition behind peer-confirming equilibrium clearly suggests broader application
to games in which a network also captures payoff relationships. In some of these cases,
the usefulness of our concept is unclear. For instance, network formation games typically
use cooperative solution concepts like pairwise stability because noncooperative concepts
produce an enormous multiplicity (Jackson and Wolinsky (1996)). In other games, partic-
ularly those involving local strategic complements and substitutes (e.g., Ballester, Calvó-
Armengol, and Zenou (2006), Bramoullé and Kranton (2007)), applications look more
promising.

We see potential applications of our concept to the study of organizations and commu-
nication games. Empirically, coordination on a common understanding of linguistic con-
ventions is a nontrivial problem (e.g., Weber and Camerer (2003), Selten and Warglien
(2007)), and PCE offers one way to formally describe who understands whose messages.
Hence, we believe PCE may serve as a useful modeling ingredient to study the value of
investments in codes and other communication resources. Another possible application is
to use PCE to endogenize the network itself. In conjunction with a model of network for-
mation, it is tempting to consider a richer extension of peer-confirming equilibrium in dy-
namic games with different networks obtaining at different points in the game. Whether
such an extension adds any meaningful richness to the strategic analysis remains to be
seen.

In many network games, measures of player centrality—degree centrality, Katz–
Bonacich centrality, eigenvector centrality—characterize equilibrium behavior. Such cen-
trality measures are conspicuously absent from the characterizations in our examples. We
rely instead on an alternative set of graph concepts—connectedness, independent sets,
graph colorings—that rarely appear in economic network models. This highlights a funda-
mental difference in the way that payoffs and strategic information propagate in networks.
This may be partly driven by the all-or-nothing nature of links in our framework—one ei-
ther knows another player’s strategy or not. With an appropriate notion of tie strength
that captures how well one knows another player’s strategy, more traditional centrality
measures may emerge, and we feel this presents an intriguing agenda for future work.

A strong assumption which is implicit in the definition of peer-confirming equilibrium is
that players know the network structure. For some applications, non-local network knowl-
edge seems realistic, for example, voters may anticipate that politicians of the same state
from the same party will face little strategic uncertainty concerning each other. However,
the assumption seems unreasonable for other applications. Generalizing peer-confirming
equilibrium to incorporate beliefs about the underlying network seems like a natural next
step. One concern for extending the model in this way is that beliefs about network struc-
ture can be complex. However, our examples offer hope that, at least for some settings,
the PCE set depends only on simple network features (e.g., chromatic number, existence
of a fully connected player). This may lend tractability to models of incomplete network
information, requiring the players (and analyst) only to track such low-dimensional net-
work features.

APPENDIX A: OMITTED PROOFS

Proof of Proposition 2

PROOF: Toward the first part, we first apply Proposition 1 to see that RG ⊆ Σ, where
Σ ⊆ S is the set of correlated rationalizable profiles. It therefore suffices to show that
Σ⊆ BG(Σ). To that end, consider any σ ∈ Σ and i ∈N . By definition of rationalizability,
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Σ is a product set, and there exists some μi ∈ �(Σ−i) such that σi ∈ ri(μi). Now, define the
modified belief,

μσi := (margN\[{i}∪Gi]μi)⊗
⊗
j∈Gi

δσj �

By construction, μσi ∈ �σ�Gi (Σ). By hypothesis, no member of Gi is payoff-relevant to i, so
that

∫
S−i ui(si� ·)dμσi = ∫

S−i ui(si� ·)dμi for every si ∈ Si. In particular ri(μσi )= ri(μi) � σi.
As σ ∈ Σ and i ∈N were arbitrary, Σ⊆ BG(Σ), as required.

Toward the second part, suppose σ is a peer-confirming equilibrium. From the defi-
nition, for each player i, there is a conjecture μi, assigning probability 1 to σj for each
j ∈Gi, such that

σi ∈ arg max
s∈Si

∫
S−i
ui(s� s−i)dμi(s−i)�

From the definition of payoff-relevance, we have

∫
S−i
ui(s� s−i)dμi(s−i)= ui(s�σ−i)�

since ui(s� s−i)= u(s�σ−i) whenever sj = σj for each j ∈Gi. Therefore,

σi ∈ arg max
s∈Si

ui(s�σ−i)�

Consequently, in any profile contained in RG, players employ best replies to the true
strategy profile, implying a Nash equilibrium. Proposition 1 then implies that the peer-
confirming equilibrium set and the Nash equilibrium set coincide exactly. Q.E.D.

Proof of Proposition 6

For part (a) of the proposition, a remark on terminology is in order. The literature does
not exhibit a unified definition of extensive-form rationalizability. Here, we follow Pearce
(1984) in imposing rationality of player i’s continuation play even at histories precluded by
i’s own strategy, and we follow Battigalli and Siniscalchi (2002) in allowing for correlated
conjectures. Thus, our notion of EFR refines that of Battigalli and Siniscalchi (2002), but
in an inessential way: it results in exactly the same admissible plans of action, in the sense
of Rubinstein (1991).

PROOF: (a) From the definitions, ∀i ∈N , σ ∈ S, and product sets Σ= ∏
j∈N Σj ⊆ S:

Sσ�∅−i (h)= S−i� ∀h ∈H
=⇒ Σσ�∅−i (h)= proj−iΣ= Σ−i� ∀h ∈H
=⇒ �σ�∅i (Σ) is the set of CPSs μi such that for all h ∈H�

if Σ−i ∩ S−i(h) �= ∅� then μhi (Σ−i)= 1�



588 E. LIPNOWSKI AND E. SADLER

Therefore, in an empty network, B∅ takes product sets to product sets, and our algorithm
specializes to essentially the same algorithm that defines extensive-form rationalizability
in Battigalli and Siniscalchi (2002).15

(b) Denote the complete network K = {ij : i� j ∈N� i �= j}.
From the definitions, ∀i ∈N , σ ∈ S, and Σ⊆ S:

Sσ�K−i (h)=
∏
j �=i
Sσj (h)=: Sσ−i(h)� ∀h ∈H

=⇒ Σσ�K−i (h)= Sσ−i(h)∩ {
s−i ∈ S−i : (σi� s−i) ∈ Σ}

� ∀h ∈H
=⇒ �σ�Ki (Σ) is the set of CPSs μi such that for all h ∈H :

• μhi
(
Sσ−i(h)

) = 1;
• if Σ∩ [{σi} × S−i(h)

] �= ∅� then μhi
{
s−i ∈ S−i : (σi� s−i) ∈ Σ} = 1�

Applying the above, �σ�Ki (S) is the set of CPSs μi such that ∀h ∈ H, μhi (S
σ
−i(h)) = 1.

Therefore, Σ̂ := BK(S) is the set of subgame perfect equilibria of �.
Suppose σ ∈ Σ̂, and consider any i ∈N . Note that �σ�Ki (Σ̂) �= ∅ as Σ̂ �= ∅ (as witnessed by

σ). Then an arbitrary μi ∈ �σ�Ki (Σ̂) will have ri(μi) � σi by condition (a) in �σ�·i ’s definition
and the fact that σ is a subgame perfect equilibrium. Therefore,BK(Σ̂)= Σ̂. It follows that
Σ̂=RK .

(c) To avoid overloaded notation, we temporarily add the decoration ·̃ above any defi-
nitions applied to the normal form.

For any i ∈N and σ ∈ Σ⊆ S:
• S̃σ�G−i = Sσ�G−i (φ) =⇒ Σ̃σ�G−i ⊇ Σσ�G−i =⇒ �̃σ�Gi (Σ)⊇ �σ�Gi (Σ).
• r̃i(μ

φ
i )⊇ ri(μi) for every CPS μi, and every μφi ∈ �(S−i) extends to some CPS μi.

Taken together, these tell us that B̃G(Σ)⊇ BG(Σ) for any Σ⊆ S. Moreover, recall that B̃G
is monotonic.

Now, if k ∈ Z+ and B̃kG(S)⊇ BkG(S), then monotonicity of B̃G tells us:

B̃k+1
G (S)= B̃G

(
B̃kG(S)

) ⊇ B̃G
(
BkG(S)

) ⊇ BG
(
BkG(S)

) = Bk+1
G (S)�

By induction, B̃kG(S)⊇ BkG(S), ∀k ∈ Z+. Taking intersections, R̃G ⊇RG. Q.E.D.

Proof of Proposition 7

PROOF: We first invest in some notation. Given i ∈ N , s�σ ∈ S, and h̄ ∈ H, define
sih̄σi ∈ Si via

∀h ∈H� sih̄σi(h) :=
{
si(h) : h� h̄�
σi(h) : h� h̄�

Similarly, define s−ih̄σ−i := (sjh̄σj)j �=i and sh̄σ := (sjh̄σj)j∈N .

15“Essentially” because of our slightly refined notion of sequential rationality. As opponent’s plans of action
remaining at each stage are sufficient to compute own best responses, it is immediate that the set of remaining
plans of action is identical to that of Battigalli and Siniscalchi (2002).
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Given σ ∈ S, say Σ ⊆ S is σ-comprehensive if ∀σ̂ ∈ Σ, h̄ ∈ H(σ̂), we have σ̂h̄σ ∈ Σ,
too. That is, Σ is σ-comprehensive if, when we edit a strategy profile from Σ by replacing
some on-path continuation play with σ , the edited profile still belongs to Σ.

Claim: If Σ⊆ S is σ-comprehensive, then so is BG(Σ).
Verification: Take σ̄ ∈ BG(Σ), h̄ ∈H. We want to show σ∗ := σ̄h̄σ ∈ BG(Σ).
Take any i ∈N . By hypothesis, ∃μ̄i ∈ �σ̄�Gi (Σ) such that σ̄i ∈ ri(μ̄i). Define

φ : S−i → S−i�

s−i �→ s−ih̄σ−i�

and define μ∗
i ∈ [�(S−i)]H via μ∗h

i := μ̄hi ◦φ−1 for all h ∈H.
Now, μ̄i is a CPS such that μ̄hi (S

σ̄�G
−i (h)) = 1. Therefore, μ∗

i is a CPS such that
μ∗h
i (S

σ∗�G
−i (h)) = 1 by construction. Next, if μ̄hi (Σ

σ̄�G
−i ) = 1 for some h ∈ H, then

μ∗h
i (Σ

σ∗�G
−i ) = 1 because Σ is σ-comprehensive. Therefore, μ∗

i ∈ �σ∗�G
i (Σ). Finally, that

σ̄i ∈ ri(μ̄i), together with the sequential first-best hypothesis on σ , implies σ∗
i ∈ ri(μ∗

i ). So
σ∗ ∈ BG(Σ), proving the claim.

Claim: If Σ⊆ S is σ-comprehensive and contains σ , then BG(Σ) � σ .
Verification: Take any i ∈N . As Σ �= ∅, ∃μ̃i ∈ �σ�Gi (Σ).
We now define a map ψ : S−i ×H → S−i.
Given s̃−i ∈ S−i, define (sh−i)h∈H :=ψ(s̃−i� ·) recursively as follows. ∀h ∈H:
• If ∃h0 ∈H such that16 h0 � h and h ∈H(sh0

−i), then let sh−i := sh0
−i .• Otherwise, let sh−i := s̃−ihσ .

Now, define μi ∈ [�(S−i)]H via μhi := μ̃hi ◦ψ(·�h)−1.
As μ̃i ∈ �σ�Gi (Σ) and Σ is σ-comprehensive, it follows that μi ∈ �σ�Gi (Σ), too. By con-

struction, μhi (S
σ
i (h))= 1 ∀h ∈H. Finally, as σ is a subgame perfect equilibrium, it follows

that σi ∈ ri(μi). Therefore, σ ∈ BG(Σ), proving the claim.
By induction, the two claims tell us that ∀k ∈ Z+, BkG(S) is σ-comprehensive and con-

tains σ . Taking intersections, RG � σ . Q.E.D.

APPENDIX B: AN ALTERNATIVE CHARACTERIZATION OF PCE

Here, we provide an alternative characterization of peer-confirming equilibrium in mul-
tistage games.

PROPOSITION 9: For each k ∈ Z+, we have SkG = BkG(S), where S0
G := S, and, for each

k ∈ N,

SkG :=
{
σ ∈ S : ∀i ∈N�∃μi ∈

k−1⋂
l=0

�σ�Gi
(
SlG

)
s.t. σi ∈ ri(μi)

}
�

In particular, RG = ⋂∞
k=0 S

k
G.

PROOF: We induct on k; the base case k = 0 holds by definition. Suppose k ∈ N with
Sk−1
G = Bk−1

G (S)=: Σ.

16Note that, if there are multiple such h0, then they have the same sh0
−i . The construction is thus well-defined.
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Take any σ ∈ SkG. We clearly have σ ∈ Σ, since SkG ⊆ Sk−1
G . To show σ ∈ BG(Σ), consider

any i ∈N . Since σ ∈ SkG, there exists μi ∈ ⋂k−1
l=0 �

σ�G
i (SlG)⊆ �σ�Gi (Σ) such that σi ∈ ri(μi).

Hence, by definition σ ∈ BG(Σ).
Now take any σ ∈ BG(Σ). Since σ ∈ Σ, given any i ∈N , there exists μi ∈

⋂k−2
l=0 �

σ�G
i (SlG)

such that σi ∈ ri(μi), and there exists μ̂i ∈ �σ�Gi (Σ) such that σi ∈ ri(μ̂i). Define the condi-
tional probability system μi by

μhi =
{
μ̂hi if Σσ�G−i ∩ S−i(h) �= ∅�
μi if Σσ�G−i ∩ S−i(h)= ∅�

By construction, both σi ∈ ri(μi) and μi ∈ ⋂k−1
l=0 �

σ�G
i (SlG) hold.17 Hence, σ ∈ SkG. Q.E.D.

The above result, whose proof is a straightforward adaptation of that of Battigalli (1997,
Theorem 1), is perhaps helpful in interpreting the assumptions implicit in PCE for dy-
namic games, and is at least suggestive of an epistemic characterization. The set S1

G is
the set of strategies compatible with each player responding rationally to her beliefs, and
each player being correct and certain (at all histories) concerning the continuation play
of her neighbors. For a given k ∈ N, then, Sk+1

G is meant to capture the play compatible
with S1

G, strong belief in S1
G� � � � , and strong belief in SkG. So, informally, we interpret PCE

as capturing sequential rationality, full correct conjectures concerning neighbors’ future
play, and common strong belief thereof.
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