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Abstract

In an ongoing relationship of delegated decision making, a principal consults a biased agent to assess 
projects’ returns. In equilibrium, the principal allows future bad projects to reward fiscal restraint, but cannot 
commit to indefinite rewards. We characterize equilibrium payoffs (at fixed discounting), showing that 
Pareto optimal equilibria are implemented via a two-regime ‘Dynamic Capital Budget’. Rather than facing 
backloaded rewards—as in dynamic agency models with commitment power—the agent loses autonomy as 
time progresses.
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1. Introduction

Many economic activities are arranged via delegated decision making. In practice, those with 
the necessary information to make a decision may differ—and, indeed, have different interests—
from those with the legal authority to act. Such relationships are often ongoing, comprising 
many distinct decisions, the conflict of interest persisting throughout. A state government that 
funds local infrastructure may be more selective than the local government equipped to evaluate 
its potential benefits. A university bears the cost of a hired professor, relying on the department 
to determine candidates’ quality. The Department of Defense funds specialized equipment for 
each of its units, but must rely on those on the ground to assess their need for it. Our focus is 
on how such repeated delegation should optimally be organized, and on how the relationship 
evolves over time.

The above relationships, hindered by conflicting interests, also suffer from limited means to 
align those interests. Beyond the limits of monetary incentives—indeed, the state government 
would not have the mayor pay out of pocket to build a city park—formal contingent contracting 
may be difficult for two reasons. First, it may be impractical for the informed party to produce 
verifiable evidence supporting its recommendations. Second, it might be unrealistic for the con-
trolling party to credibly cede authority in the long-run, i.e. to commit. Even so, the prospect of 
a future relationship may align the actors’ interests: both parties may be flexible in the short run, 
with a view to a healthy relationship.

We study an infinitely repeated game in which a principal (“she”) has authority over a decision 
in an uncertain world; she relies on an agent (“he”) to assess the state. Each period, the principal 
chooses whether to initiate a project, which may be good (i.e. high enough value to offset its 
cost) or bad. The principal is ignorant of the current project’s quality, but the agent can assess it. 
The players have partially aligned preferences: both prefer a good project to any other outcome, 
but they disagree on which projects are worth adopting. The principal wishes to fund only good 
projects, while the agent always prefers to fund. For instance, consider the ongoing relationship 
between local and state governments. Each year, a county can request state government funds for 
the construction of a park. The state, taking into account past funding decisions, decides whether 
or not to fund it. The park would surely benefit the county, but the state must weigh this benefit 
against the money’s opportunity cost. To assess this tradeoff, the state relies on the county’s local 
expertise. We focus on the case in which the principal needs the agent: the ex-ante expected 
value of a project is not enough to offset its cost. Thus, if the county were never selective in its 
proposals, the state would not want to fund every park.

In our game, cooperation requires that players vary their future behavior in response to current 
behavior. The dynamic nature of the relationship is therefore its central feature. A crucial friction 
our players face, however, is that the principal cannot commit. Promising the agent too much 
freedom would harm the principal, and may therefore not be credible. If a state government 
makes a policy of funding each and every future park the county requests, then the state will 
eventually be tempted to renege. The state government cannot credibly reward a county’s fiscal 
restraint today by promising carte blanche in the future.

Our first main result says that the delegation relationship becomes more conservative as time 
progresses. In the early stages of the relationship, the principal always cedes control to the agent, 
who in turn adopts every good project that arrives but occasionally adopts bad projects as well. 
The agent clearly benefits from this freedom, but the principal faces a tradeoff: while many 
projects are adopted, the average adopted project has a low yield, i.e. value per unit cost. Eventu-
ally, the agent’s goodwill permanently runs dry. After this happens, the principal rarely delegates; 
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the agent may adopt some good projects if allowed, but will never again squander an opportunity 
on a bad project.

Thus, combining three sensible ingredients—limited liability, limited information, and limited 
commitment—yields meaningful, new conclusions for the evolution of the relationship. Indeed, 
if utility were perfectly transferable without restriction, the agent could be charged the cost of a 
project to restore first-best total surplus with trivial dynamics. Without transfers or with limited 
liability, if the agent’s cost of exercising restraint were observable (and the principal’s first-best 
value unattainable given agent incentives), we would expect him to be rewarded over time, as in 
Ray (2002).1 Maintaining unobservability, some papers focus on applications for which princi-
pal commitment power is appropriate. Guo and Hörner (2018), for instance, obtain a remarkably 
complete characterization of the optimal contract, even in the case of persistent valuations. Their 
optimal contract yields divergent long-run outcomes, permanently punishing or rewarding the 
agent based on early random occurrences—even if the principal would rather abandon the rela-
tionship than deliver this reward. By contrast, in situations where the controlling party retains 
control as the interaction progresses—and therefore cannot pre-commit to unlimited spending—
we should expect a transition to a more conservative relationship.

Our second main result is a complete characterization of the equilibrium payoff set. If the 
principal faced no credibility concerns—as is the case in Guo and Hörner (2018) and Li et al. 
(2017)—the techniques of Spear and Srivastava (1987) would apply.2 Accordingly, those two 
papers obtain the set of possible payoffs via a dynamic program, with the agent’s promised value 
as the state variable. This approach is not appropriate for our setting. As the principal would 
rather renege when called to deliver too many bad projects, there are (endogenous) limits to the 
value the agent can be promised. Lacking a general method to explicitly compute this set for a 
repeated game of incomplete information (at fixed discounting), we must combine the recursive 
methods of Abreu et al. (1990) with specific features of our stage game to arrive at a tractable 
problem.

The above characterization yields our third main result, which uncovers the form of the 
optimal intertemporal delegation rule. In keeping with the intuition (as in, say, Jackson and Son-
nenschein (2007)) that linking decisions aligns incentives, delegation is organized via a budgeting 
rule. The uniquely3 principal-optimal equilibrium, the Dynamic Capital Budget, comprises two 
distinct regimes. At any time, the parties engage in either Capped Budgeting or Controlled Bud-
geting.

In the Capped Budget regime, the principal always delegates, and the agent initiates all good 
projects that arrive. At the relationship’s outset, the agent has an expense account for projects, 
indexed by an initial balance and an account balance cap. The balance captures the number of 
projects that the agent could adopt immediately without consulting the principal. Any time the 
agent takes a project, his balance declines by 1. While the agent has any funds in his account, the 
account accrues interest. If the agent takes few enough projects, the account will grow to its cap. 
At the cap, the agent is still allowed to take projects, but his account grows no larger (even if he 

1 Ray (2002) provides a general result capturing this common phenomenon. See also Lazear (1981) and Harris and 
Holmström (1982).

2 The principal of Guo and Hörner (2018) has commitment power by assumption, as discussed above. Meanwhile, the 
principal of Li et al. (2017) can credibly promise any value to the agent, as the agent has a means (via effort decisions) 
to punish her otherwise.

3 More precisely, the two-regime structure on path and the exact character of the Capped Budget regime are uniquely 
required by optimality. See Corollary 3.
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waits). Not being rewarded for fiscal restraint, the agent immediately initiates a project, and his 
balance again declines by 1.

If the agent overspends, a Controlled Budget regime begins: the principal only delegates 
sometimes in this regime, but the agent never adopts a bad project again. This inevitable 
outcome—indeed, Theorem 1 tells us Capped Budgeting can only be temporary—is Pareto infe-
rior to the Capped Budget regime. It is necessary though: the threat of entering the latter regime 
sustains optimal delegation in the earlier stages of the relationship.

Related literature This paper studies delegated decision making.4 A principal must rely on a 
biased, informed agent to make a decision, but the principal cannot use monetary compensation 
or other ex-post rewards to incentivize the agent. In deciding how much freedom to give, the 
principal faces a tradeoff between leveraging the agent’s private information and shielding herself 
from his conflicting interests. A key insight from this literature is that some ex-post inefficiency 
may be optimal, providing better incentives to the agent ex-ante.

This insight leads to a natural question when parties interact over time: How should the future 
of a delegation-based relationship be distorted to provide incentives today? We join a growing lit-
erature on dynamic delegation which seeks to answer this question. Most closely related are Guo 
and Hörner (2018) and Li et al. (2017).5 Guo and Hörner (2018) study optimal dynamic mech-
anisms without money in a setting where the principal can commit. The paper first considers a 
setting in which the agent’s valuation is independent across time. Each period, the uninformed 
principal decides whether to provide a costly, perishable good to the agent. This setting is essen-
tially the same as our model, but with the key difference that the principal can commit ex-ante 
to an intertemporal allocation rule. The benchmark model of Li et al. (2017) is a repeated game 
of project selection: each period, a biased agent and an uninformed principal together select a 
project, at which point they simultaneously choose an implementation effort. This latter effort 
decision gives their principal effective commitment power, by giving each player a way to unilat-
erally punish the other.6 In each of the above two models, the optimal mechanism generates path 
dependence in long-run outcomes. The players enter one of two absorbing regimes (each with 
positive probability): one where the agent suffers, and one where the agent receives his first-best 
outcome indefinitely. Thus, given principal commitment, early random events have long-lasting 
consequences for the relationship.

The key contribution of our paper to this literature is to understand dynamic delegation absent 
commitment power. With commitment power, it is well-known (see Spear and Srivastava (1987)) 
that the optimal contract may be derived as the solution of a dynamic program, using the agent’s 
promised utility as a state variable. This result, employed both by Guo and Hörner (2018) and Li 
et al. (2017), is inapplicable in settings of limited commitment. Instead, we work directly with the 
machinery of Abreu et al. (1990) for repeated games and work to simplify the principal’s incen-
tive constraints. More than requiring different methods, our limited-commitment setting yields 

4 The seminal work is by Holmström (1984). For more recent work, see Armstrong and Vickers (2010) and Ambrus 
and Egorov (2017), as well as Frankel (2014) and the thorough review therein.

5 Guo (2016), Alonso and Matouschek (2007), and de Clippel et al. (2019) also look at delegation models with some 
dynamic aspect, and Nocke and Whinston (2010) focus, relatedly, on dynamic considerations in an antitrust setting. In 
particular, de Clippel et al. (2019) studies a multi-agent analogue of our model, characterizing when the principal can 
attain her first-best payoff in equilibrium. In explicitly characterizing Pareto optimal equilibrium play, we highlight why 
first-best is never attainable with one agent.

6 Indeed, the optimal contracting analogue of this model—wherein the principal can commit to her strategy—generates 
the same path of play as their principal-optimal equilibrium.
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substantively different economic predictions for dynamic delegation. While there are certainly 
common features between players’ relationship in our model and in these other models—for 
instance, both entailing a two-regime structure—commitment changes the exact nature of each 
regime. While full commitment entails perfect cooperation in the early stages of the relation-
ship, our agent will adopt even bad projects when his account is at its cap. Turning to the second 
regime, the agent may be either punished or rewarded indefinitely (depending on early shocks) 
given principal commitment, whereas our players’ relationship is certain to become more conser-
vative. Our principal, unable to credibly reward her agent in the long-run, must balance long-run 
punishment and medium-term reward to elicit good behavior today.

The method of analysis in our paper—explicitly analyzing the operator of Abreu et al. (1990)
to identify optimal equilibrium play—is substantially similar to that of Fong and Li (2017) in an 
employment setting and Padró i Miquel and Yared (2012) in a political economy setting. Given 
that the relationships they study are strategically distinct, however, it is unsurprising that the 
relationships feature different dynamics, even though their papers and ours all concern dynamic 
moral hazard. Focusing on the long-run implications for the relationship, the differences between 
our results (with the relationship eventually drying out) and the literature become clear. When the 
firm and worker of Fong and Li (2017) are not too impatient, there is a positive probability that 
the relationship settles into one of indefinite high effort; and permanent cycling of intervention 
and non-intervention is a necessary feature of optimal equilibrium in Padró i Miquel and Yared 
(2012).

Our results add to the literature on relationship building under private information. While fo-
cusing on a different misalignment of preferences, Möbius (2001) and Hauser and Hopenhayn 
(2008) look at a model of trading favors, in which a player’s opportunity to do a favor is pri-
vate.7 The form of conflict is qualitatively different there: unlike in our model (wherein adopting 
good projects benefits everybody), every action that benefits one player harms another in the 
stage game. This difference changes equilibrium dynamics: the favor-trading model features a 
self-generating Pareto frontier, whereas our first main theorem implies that our model does not. 
Numerical work by Hauser and Hopenhayn (2008) indicates that forgiveness is a feature of every 
Pareto optimal equilibrium in the favor-trading model. In a similar model in which one of the two 
players has commitment power, Bird and Frug (2019) analytically characterize an optimal con-
tract, validating that forgiveness naturally arises. In our model of partially aligned preferences, 
though, there are fundamental limits to forgiveness: our players eventually permanently face a 
Pareto dominated outcome.

The allocation of future responsibility is a common incentivizing device in the dynamic cor-
porate finance literature. In Biais et al. (2010), for instance, the principal commits to investment 
choices and monetary transfers to the agent, who privately acts to reduce the chance of large 
losses for the firm.8 While our setting is considerably different, their optimal contract and our 
Pareto optimal equilibria exhibit similar dynamics: our account balance plays the same role in 
our model that real sunk investment plays in theirs.

Lastly, there is a connection between the present work and the literature on linked decisions. 
Jackson and Sonnenschein (2007) show that the ability to connect a large number of independent 

7 Also see Abdulkadiroglu and Bagwell (2013), Nayyar (2009), Espino et al. (2018), and Thomas and Worrall (1990)
on the same theme. Our model features one-sided incomplete information like Thomas and Worrall (1990), but two-sided 
lack of commitment like the others.

8 Also see Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007), Edmans et al. (2012), and Malenko (2019).
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Fig. 1. Stage game played by the principal and agent at each period. At the end of the period, the principal observes the 
agent’s choice but not project quality. We assume 0 < θ < (1 − h)θ + hθ̄ < c < θ̄ .

decisions helps align incentives.9 Frankel (2016b) shows that a principal with commitment power 
optimally employs a discounted quota to discipline an agent with state-independent preferences, 
and that such quotas are strictly incentive compatible for the agent under partial alignment. In 
our model—without such commitment power—a form of dynamic budgeting is optimal but is 
tempered by the principal’s need for credibility.

2. The model

We consider an infinite-horizon game played between a principal (Principal) and an agent 
(Agent). Time is discrete and indexed by k = 0, 1, 2, .... The principal and the agent play the 
same stage game in every period. See Fig. 1.

Each period, the principal chooses whether or not to delegate a project adoption choice to the 
agent. That is, P publicly decides whether to freeze project adoption or to delegate it. If P freezes, 
then no project is adopted and both players accrue a zero payoff that period. If P delegates, then 
A privately observes which type of project is available and decides whether or not to initiate the 
available project. The current period’s project is good (i.e. of type θ̄) with probability h ∈ (0, 1)

and bad (i.e. of type θ ) with complementary probability, independent across periods. If the agent 
initiates a project of type θ , payoffs (θ −c, θ) accrue to the principal and agent, respectively. Note 
that the cost is independent of the project’s type, and the difference between the agent’s payoff 
and the principal’s payoff does not depend on the agent’s private information. The principal 
observes whether or not the agent initiated a project, but she never sees the project’s type.

First, given θ − c < 0 < θ̄ − c, the principal prefers good projects to nothing, but prefers 
inactivity to bad projects. Second, given 0 < θ < θ̄ , the agent prefers any project to no project, 
but also prefers good ones to bad ones.

Notation. Let θE := (1 − h)θ + hθ̄ , the ex-ante expected project value.

Given our applications, we assume that the conflict of interest prevails ex-ante: θE < c. That 
is, good projects are sufficiently rare that the principal would rather adopt no project than adopt 

9 Also see Casella (2005), Frankel (2016a), and Rubinstein (1979).
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every project. If the players interacted only once, the agent would not be selective. Indeed, the 
stage game has a unique sequential equilibrium: the principal freezes, and the agent takes a 
project if allowed.

While the players rank projects in the same way, the key tension in our model is a disagree-
ment over which projects are worth taking. We interpret this payoff structure as the principal 
innately caring about the agent’s (unobservable) payoff, in addition to the cost that she alone 
bears. The agent cares only about the benefit generated by a project, while the principal cares 
about said benefit net of cost; we find revenue and profit to be useful interpretations of the play-
ers’ payoffs.

The players share a common discount factor δ ∈ (0, 1), and they maximize expected dis-
counted profit and expected discounted revenue, respectively. So, if the available project in 
each period k ∈ Z+ is θk , and projects are adopted in periods K ⊆ Z+, then the principal and 
agent enjoy profit and revenue,

π = (1 − δ)
∑

k∈K
δk(θk − c) and v = (1 − δ)

∑

k∈K
δkθk, respectively.

Before proceeding to characterize the equilibrium payoff set, we document one more piece of 
notation, and we make an interpretable assumption which will guarantee existence of interesting 
equilibria.

Notation. Let ω := h(θ̄ − θ) = θE − θ , the marginal value of search.

The constant ω captures the marginal option value of seeking another project rather than taking 
an existing bad project.

Assumption 1.

δω ≥ (1 − δ)θ or, equivalently, δθE ≥ θ .

Henceforth, we take Assumption 1 as given. This assumption, a lower bound on the discount 
factor δ, highlights the power of intertemporal tradeoffs to incentivize good behavior from the 
agent. If the agent is sufficiently patient, the marginal value of searching for a good project 
outweighs the myopic benefit of an immediate bad project.10

While the ex-ante misalignment of preferences (i.e. c > θE) tells us that the only station-
ary equilibrium of our repeated game is an unproductive one—i.e. never has any (good or bad) 
projects adopted—Assumption 1 guarantees existence of productive equilibria. Indeed, it is nec-
essary and sufficient for the following to be an equilibrium: before the first project is adopted, the 
principal delegates and the agent adopts only good projects; after the first project is adopted, they 
play the stage game equilibrium. Assumption 1 exactly delivers the agent’s incentive constraint 
to willingly resist a bad project.

Lastly, we define another lower bound on the discount factor.

Definition 1. Let δ̄ := θ̄(c−θE)

θ̄
(
c−θ

)
−c

(
θE−θ

) , the players’ patience threshold.

10 As we show in the appendix (Lemma 9), Assumption 1 is equivalent to there existing an equilibrium with some good 
projects, and no bad projects, being adopted.
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When the discount factor is at least δ̄, we will show that there exist equilibria in which the 
first-period project is adopted with certainty (in other words, an equilibrium with initial project 
adoption).11 This case yields rich dynamics for the relationship.

Expressing payoffs Every strategy profile entails an expected discounted number of adopted 
good projects g = (1 − δ)E 

∑
k∈K δk1{θk=θ̄} and an expected discounted number of adopted bad 

projects b = (1 − δ)E 
∑

k∈K δk1{θk=θ}, where K ⊆ Z+ is the realized set of periods in which the 
principal delegates and the agent adopts a project. Given those, one can compute the agent value 
(a.k.a. revenue) as

v = θ̄g + θb

and the principal value (a.k.a. profit) as

π = (θ̄ − c)g − (c − θ)b.

For ease of bookkeeping, it is convenient to track equilibrium-supported revenue v and bad 
projects b, both in expected discounted terms. The vector (v, b) encodes both agent value v and 
principal profit,

π(v, b) := (θ̄ − c)g − (c − θ)b

= (θ̄ − c)
v − θb

θ̄
− (c − θ)b

=
(

1 − c

θ̄

)
v − c

(
1 − θ

θ̄

)
b.

In (v, b) space, the principal’s indifference curves have constant slope m0 := θ̄−c
c(θ̄−θ)

.

2.1. Equilibrium values

As the stage game has a unique sequential equilibrium (with no projects being adopted), our 
repeated game admits no productive stationary equilibrium.

To understand the payoffs that can be attained in equilibrium, we proceed by defining an 
equilibrium concept and using the specific structure of our game to characterize the equilibrium 
payoff set.

Throughout the paper, equilibrium will be taken to mean perfect public equilibrium (PPE),12

in which the players’ stage game strategies respond only to the history of public outcomes and 
public randomization devices.

Definition 2. Each period, one of three public outcomes occurs: the principal freezes; the princi-
pal delegates and the agent initiates no project; or the principal delegates and the agent initiates 
a project. A period-k public history, hk , is a sequence of k public outcomes (along with realiza-
tions of public randomization devices for each period).

11 Holding (θ̄ , θ, h) fixed, δ̄ runs from 0 to 1 as c ranges from θE to θ̄ . In this sense, our results are not patient limit 
results.
12 This is, in a sense, without loss. As we will show that all equilibrium payoffs are attainable in pure strategies, standard 
results (see Mailath and Samuelson, 2006, Proposition 10.1.1) can be adapted to show that every sequential equilibrium 
has a payoff-equivalent equilibrium in public strategies.
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A public principal strategy specifies, for each public history, a probability of delegation. A
public agent strategy specifies, for each public history, a project type-contingent probability of 
project adoption.

A perfect public equilibrium (PPE) is a sequential equilibrium in which both players use 
public strategies.

Toward a characterization The main objective of this paper is to characterize the set of 
equilibrium-supported payoffs,

E∗ := {(v, b) : ∃ equilibrium with revenue v and bad projects b} ⊆ R2
+.

As neither the principal nor the agent can commit to a strategy (i.e. sequential rationality is 
required for both), we must rely on the specific structure of our game to characterize the limits 
of the relationship and, in particular, which payoffs can be supported in equilibrium.

Throughout the paper, we make extensive use of two simple observations about our model. 
First, notice that (0, 0) ∈ E∗, since the profile σ static, in which the principal always freezes and 
the agent takes every permitted project, is an equilibrium. Said differently, there is always an un-
productive equilibrium—i.e. one with no projects. This equilibrium provides min-max payoffs to 
both players, so that they can only benefit from their recurring interaction. Second, as the follow-
ing lemma clarifies, off-path strategy specification is unnecessary in our model. If appropriate 
on-path incentive constraints are satisfied, we can alter behavior off-path to yield an equilibrium. 
With the lemma in hand, we do not specify off-path behavior in a given strategy profile.

Lemma 1. Fix a strategy profile σ , and suppose that:

1. The agent has no profitable deviation from any on-path history.
2. At all on-path histories, the principal has nonnegative continuation profit.

Then, there is an equilibrium σ̃ that generates the same on-path behavior (and, therefore, the 
same value profile).

Proof. Let σ static be the stage Nash profile—i.e. the principal always freezes, and the agent takes 
a project immediately whenever permitted. Define σ̃ as follows:

• If P has never deviated from σ , play according to σ .
• If P has ever deviated from σ , play according to σ static.

The new profile, which generates the same path of play as σ , is incentive-compatible for the 
agent: after a previous P deviation because σ static is, absent a previous P deviation because σ
is. It is also incentive-compatible for the principal: following a past deviation because σ static is, 
absent a past deviation because σ is and has nonnegative continuation profits while σ static yields 
zero profit. !

Dynamic incentives We proceed by characterizing the incentives of both players in our dynamic 
setting. To understand the players’ incentives at any given moment, we must first understand how 
their future payoffs respond to their current choices. To describe the law of motion of revenue 
v [or, respectively, bad projects b], we keep track of continuation values, conditional on public 
outcomes:
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• vF , next period’s agent continuation value if the principal freezes today;
• vN , the agent continuation value if the principal delegates today and the agent abstains from 

project adoption;
• vP , the agent continuation value if a project is undertaken today; and
• bF , bN, bP defined analogously for continuation (expected discounted) bad projects.

Continuation values cannot depend on the quality of an adopted project, nor on the quality of 
a forgone project, which are not publicly observable. Finally, we describe the players’ present 
actions (after any public randomization occurs) as follows:

• The principal makes a delegation choice p ∈ [0, 1], the probability with which she delegates 
to the agent in the current period.

• The agent chooses ā ∈ [0, 1] and a ∈ [0, 1], the probabilities which he currently initiates 
available good and bad projects, respectively, conditional on being allowed to.

Appealing to self-generation arguments, as in Abreu et al. (1990), and to Lemma 1, equilib-
rium is characterized by the following three conditions:

1. Promise keeping:

(v, b) = phā
[
(1 − δ)(θ̄ ,0) + δ(vP , bP )

]
+ p(1 − h)a

[
(1 − δ)(θ ,1) + δ(vP , bP )

]

+p[h(1 − ā) + (1 − h)(1 − a)]δ(vN , bN) + (1 − p)δ(vF , bF ).

We decompose continuation outcomes (v, b) after any period into what happens in each of 
four events: (i) the agent invests in a good project; (ii) the agent invests in a bad project; (iii) 
no project is adopted by the agent’s choice; and (iv) no project is adopted on the principal’s 
authority. Each weighted by their equilibrium probabilities and subject to the restriction that 
continuation values respond only to public information.

2. Agent incentive compatibility:

a ∈ argmaxâ∈[0,1] â
[
(1 − δ) θ + δvP

]
+

(
1 − â

)
δvN,

ā ∈ argmaxâ∈[0,1] â
[
(1 − δ) θ̄ + δvP

]
+

(
1 − â

)
δvN .

The agent chooses whether or not to invest in a project by balancing the immediate gain with 
the changes in her continuation payoff. In particular, if the agent is willing to resist taking a 
project immediately (a < 1), it must be that the punishment in continuation payoff for taking 
a project, δ(vN − vP ), is severe enough to deter the myopic gain of (1 − δ)θ .

3. Principal participation13:

π(v, b) ≥ 0.

The principal could, at any moment, unilaterally move to a permanent freeze and secure 
herself a profit of zero. Therefore, at any history, she must be securing at least that much in 
equilibrium.

13 This is, of course, a relaxation of the principal’s incentive constraint. Even in light of Lemma 1, the principal must 
be indifferent between freezing and delegating for p ∈ (0, 1) to be incentive-compatible. In the appendix, we show that 
it is without loss for the principal to never privately mix. With this in mind, the present relaxed incentive constraint is all 
that matters.
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3. Aligned equilibrium

Our game has no productive stationary equilibrium. If the principal allows history-independent 
project adoption, the agent cannot be stopped from taking limitless bad projects. In the present 
section, we ask to what extent this core tension can be resolved by allowing non-stationary 
equilibria.

Definition. An aligned equilibrium is an equilibrium in which no bad projects are ever adopted 
on-path.

As an example, consider the following straightforward strategy profile στ , indexed by a num-
ber of freeze periods, τ ∈ Z+. The principal initially delegates, and the agent adopts the first 
project if and only if it is of type θ̄ . If the agent abstains today, στ begins again tomorrow. If 
the agent takes a project today, then the principal freezes for τ periods. After τ periods of no 
delegation, στ begins again.

When the principal delegates to the agent, the agent always serves the principal’s interests. The 
freeze of length τ is used to incentivize the agent to exert restraint. If (and only if) the freeze du-
ration is high enough to make an unlucky (i.e. facing a θ project) agent exercise restraint—which 
Assumption 1 guarantees will happen for high enough τ—this profile will be an equilibrium. The 
optimal equilibrium in this class leaves the incentive constraint δ(v − δτv) ≥ (1 − δ)θ binding,14

as lowering τ yields a Pareto improvement. For this minimal choice of punishment, recalling that 
vP is the agent’s continuation value after adopting a project,

v = (1 − δ)hθ̄ + δh(vP − v) + δv = δv + h(1 − δ)(θ̄ − θ) =⇒ v = ω.

The agent’s continuation value whenever the principal delegates is exactly equal to his marginal 
value of search.

This simple class illuminates the forces at play in our model. The principal wants many good 
projects to be initiated, but she cannot give the agent free rein. If she wants to stop him from 
investing in bad projects, she must threaten him with mutual surplus destruction. Subject to 
wielding a large enough stick to encourage good behavior, she efficiently wastes as little oppor-
tunity as possible.

This sensible equilibrium is in fact optimal among all aligned equilibria.

Proposition 1 (Aligned Optimum). The highest agent value in any aligned equilibrium is ω, the 
marginal value of search.15

The intuition behind the proposition, formally proven in the appendix, is straightforward. If 
the agent’s current expected value exceeds his marginal value of search, then asking an agent 
to wait (i.e. to exercise restraint when facing a bad project) requires growth in his continuation 
value. Eventually, after enough bad luck, this promised value can only be fulfilled by allowing 
some bad projects.

14 In the case that such τ is not an integer, we can use public randomization between two integer values of τ to make 
δ[v −E(δτ )v] = (1 − δ)θ . Under Assumption 1, the intermediate value theorem tells us such a stochastic τ exists.
15 As for all results in the main text, this result holds under Assumption 1. Absent Assumption 1, there can be no aligned 
equilibrium yielding v > 0.
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Corollary 1. The aligned optimal profit is ω
(

1 − c
θ̄

)
, which is independent of players’ patience 

and strictly below the principal’s first-best profit h(θ̄ − c).

To keep the agent honest, the principal must destroy some future surplus when the agent over-
spends. As the players become more patient, the punishment must be made more draconian to 
provide the same incentives. When only good projects are adopted, this added severity punishes 
the principal too, so that no welfare gains are achieved.

We know there is an equilibrium providing the principal with payoffs near her first-best—
and thus Pareto dominating all aligned equilibria, by Corollary 1—if the players are sufficiently 
patient.16 The corollary therefore tells us that aligned equilibria are inadequate: bad projects are 
a necessary ingredient of a well-designed relationship.

4. Relationship dynamics

The previous section showed us that a relationship of ongoing delegation should, at least for 
some parameter values, admit some bad projects. This complicates analysis in two ways. First, 
there is an extra degree of freedom in providing agent value: not just when to have the agent 
adopt projects, but also which types to have him adopt. Second, the principal’s incentives are 
now relevant. If, after some history, the agent plans to adopt too many bad projects, the principal 
will strictly prefer to unilaterally freeze.

Our ultimate goal, which we will achieve in Section 5, is to characterize Pareto efficient equi-
libria and the value they produce. In the present section, we derive some key qualitative properties 
of the path of play of such equilibria.

The next theorem describes the dynamics of an efficient relationship between the two players. 
In the early stages of the relationship, every good project is adopted, but some bad ones are as 
well: the per-period revenue is high, but the average project taken in this stage has a return on 
investment strictly below θ̄

c . As the relationship progresses and stochastic project types unfold, 
the regime eventually changes.17 In the later stages of the relationship, some good projects are 
missed, but no bad projects are adopted: the per-period revenue is now lower, but the average 
project has a higher return on investment. Said differently, the players transition from a high-
revenue, low-yield relationship to a low-revenue, high-yield relationship.

Theorem 1 (Relationship Dynamics). In any Pareto efficient equilibrium, there is a stochastic, 
finite time K such that:

• In period k < K: the agent’s continuation value strictly exceeds ω, the principal delegates, 
and the agent adopts the current project if it is good.

• In period k ≥ K: The agent’s continuation value is weakly below ω, and the agent does not 
adopt the current project if it is bad.

16 While this follows from our later results (e.g. Theorem 1), it could alternatively be deduced from a folk theorem. 
Indeed, while the identifiability condition of Fudenberg et al. (1994) does not apply directly, one can first remove two 
dominated stage game A strategies (i.e. those in which he does not adopt good projects) to apply their results.
17 While the more detailed analysis of Theorem 2 and its consequences rely on our exact monitoring structure, the two-
regime structure of Theorem 1 is more robust. Indeed, adapting the proof, one can show that the result would obtain even 
if the players could observe some public signal about project quality ex post, provided that said signal were sufficiently 
uninformative.
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Moreover, if δ ≥ δ̄, then K > 0.18

Proof. We prove the theorem through a series of smaller claims. First note that v̄ := max{v :
(v, b) ∈ E∗} < θE . Indeed, the unique b such that (θE, b) is feasible is b = 1 − h, yielding nega-
tive profit to the principal. Now, let ε := 1−δ

δ

(
θE−v̄

2

)
> 0 and q := ε

v̄+ε ∈ (0, 1).

Claim 1: If the agent’s continuation value is v before a public randomization, then the value v̂
after public randomization is weakly below v + ε with probability at least q .

Proof: Letting q̂ := P {v̂ ≤ v + ε} yields v = (1 − q̂)E{v̂|v̂ > v + ε} + q̂E{v̂|v̂ ≤ v + ε} ≥ (1 −
q̂)(v + ε) + q̂0 = (v + ε) − q̂(v + ε), so that q̂ ≥ ε

v+ε ≥ q .

Claim 2: If (i) (v, b), (v1, b1) are equilibrium payoffs with (v, b) ∈ co{(v1, b1), (0, 0)}19; (ii) 
(v, b) is some on-path continuation value pair for some Pareto efficient equilibrium; and (iii) 
v ≥ ω; then (v, b) = (v1, b1).

Proof: If not, then (v, b) = (λv1, λb1) for some λ ∈ (0, 1). There is a unique (vN , bN) ∈
co{(v1, b1), (ω, 0)} with vN = v. By construction, bN < b, so that the equilibrium—E∗ being 
convex—value pair (vN, bN) provides the exact same agent value as (v, b) but at a strictly higher 
principal value. Replacing the continuation play with some continuation equilibrium providing 
(vN , bN) maintains equilibrium, contradicting Pareto optimality of the original equilibrium.

Claim 3: If the agent’s continuation value is v ≥ ω after public randomization on the path of 
some Pareto efficient equilibrium, then the next period’s continuation value (before public ran-
domization) following a good project today is weakly exceeded by v − 2ε.

Proof: Suppose the agent’s continuation value is v ≥ ω after public randomization; let b be the 
expected discounted number of bad projects. Let stage play p, ā, a, and continuation payoffs 
vF , vN, vP , bF , bN, bP be as described in Section 2.

By convexity, (v, b) = (1 −p)(1 − δ)(0, 0) +[1 − (1 −p)(1 − δ)](v1, b1) for some (v1, b1) ∈
E. Therefore, p = 1 by Claim 2; the principal must be delegating.

Now, if ā < 1 then agent IC would tell us a = 0, so that

(v, b) = h
{
ā

[
(1 − δ)(θ̄ ,0) + δ(vP , bP )

]
+ (1 − ā)δ(vN , bN)

}
+ (1 − h)δ(vN , bN)

= (1 − ā)δ(vN , bN) + ā
{
h

[
(1 − δ)(θ̄ ,0) + δ(vP , bP )

]
+ (1 − h)δ(vN , bN)

}

∈ (1 − ā)δ(vN , bN) + āE∗.

To see the last containment, consider two cases. If ā = 0, there is nothing to show. If ā ∈ (0, 1), 
then Pareto optimality (relative to an alternative mixture) requires that

π
(
h

[
(1 − δ)(θ̄ ,0) + δ(vP , bP )

]
+ (1 − h)δ(vN , bN)

)
= π (δ(vN , bN)) ,

in which case h 
[
(1 − δ)(θ̄ ,0) + δ(vP , bP )

]
+ (1 − h)δ(vN , bN) ∈ E∗.

Again by Claim 2, it cannot be that (v, b) ∈ (1 − ā)δ(vN , bN) + āE∗. So ā = 1; the agent takes 
every good project. Hence,

18 Whether or not δ ≥ δ̄ (see Definition 1), one of two cases prevails. Either the analysis of Sections 4 and 5 goes through 
without change, or a best aligned equilibrium (see Proposition 1) is Pareto dominant.
19 We use “co” to refer to the convex hull of a set.
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v ≥ (1 − δ)θE + δvP , by agent IC.

=⇒ δv − δvP ≥ (1 − δ)θE − (1 − δ)v

=⇒ v − vP ≥ 2ε, proving the claim.

Claim 4: In any Pareto efficient equilibrium, there is (with probability 1) some period K such 
that the agent’s continuation value is weakly exceeded by ω.

Proof: Combining Claims 1 and 3, there is a probability of at least qh of the continuation value 
decreasing by at least ε in a given period. Therefore, for any k ∈ N and continuation value in 
[ω, ω + kε], there is a probability of at least (qh)k of the continuation value decreasing below ω
in the next k periods. As [0, v̄] is bounded, the continuation value almost surely falls below ω at 
some time.

Claim 5: If the agent’s continuation value is v ≤ ω at some on-path history of a Pareto efficient 
equilibrium, his value is less than or equal to ω forever.

Proof: Let b be the expected discounted number of bad projects from the current history. Ap-
pealing to Proposition 1, it must be that b = 0. Otherwise, we could replace the continuation 
play with a continuation equilibrium generating (v, 0) and preserve equilibrium. Therefore, by 
promise-keeping, it must be that every on-path future history (v1, b1) has b1 = 0 as well. Again 
by Proposition 1, v1 ≤ ω.

Together, Claims 4 and 5 show that such a finite time K exists. Finally, in the case that δ ≥ δ̄, 
Lemma 13 in the appendix tells us that the agent’s ex-ante expected payoff is strictly higher 
than ω in some equilibrium; while Lemma 12 tells us that B is differentiable at ω, and therefore 
maxv∈[0,ω] π(v, B(v)) = π(ω, B(ω)) < π(ω + ε, B(ω + ε)) for sufficiently small ε > 0. There-
fore, any Pareto optimal equilibrium has an initial agent value strictly above ω, i.e. K > 0. !

From the agent’s perspective, the early stages of the relationship are unequivocally better 
than the later stages; his freedom declines over time. From the principal’s perspective, the profit 
implications are ambiguous; she wants to produce a high agent revenue (just as she does in the 
early stages), but she also wants a high yield as in the later stages.

5. Characterizing equilibrium

We now know that the delegation relationship transitions toward conservatism in some (pos-
sibly distant) future, but this is an incomplete description. How much productive delegation 
happens in the early, more flexible phase? When will bad projects be financed? While Theo-
rem 1 tells us a lot about the trajectory of the relationship, it is silent on these more detailed 
questions about the nature of repeated delegation.

In this section, we explicitly describe the equilibrium value set of our repeated game—our 
main theorem. From this, we then derive some key implications for behavior in Pareto optimal 
equilibria.

5.1. The equilibrium value set

First, we offer a complete characterization of the equilibrium value set. The heart of the proof 
is the characterization of the equilibrium payoff frontier B , formally carried out in the appendix. 
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Fig. 2. The two bold line segments, and the curve between them, trace out the frontier B . The equilibrium value set is the 
convex region between B and the dashed zero-profit line. The dashed lines trace different isoprofits. The dot above v∗
highlights the uniquely principal-optimal vector. The Pareto frontier runs from there to the dot above v̄ . The dot above ω
highlights the uniquely optimal aligned equilibrium vector.

The overall structure of the argument proceeds as follows. First, allowing for public random-
ization guarantees convexity of the equilibrium payoff frontier. As a consequence, whenever the 
agent is to adopt only good projects in some period, the principal optimally inflicts the minimum 
punishment that provides appropriate agent incentives. Next, because the principal has no pri-
vate action or information, we show that the frontier is self-generating and neither player need 
privately mix. Finally, we show that initial freeze is inefficient for values above ω, and that bad 
project adoption is wasteful, except when used to provide very high agent values.

Recall that m0 = θ̄−c
c(θ̄−θ)

is the slope of the principal’s isoprofit lines.

Theorem 2 (Equilibrium Value Set). There is a value v̄ ≥ ω and a continuous function B :
[0, v̄] → R+ such that E∗ = {(v, b) ∈ [0, v̄] ×R : B(v) ≤ b ≤ m0v}, and:

• On [0, ω], B is zero.
• On [ω, δv̄ + (1 − δ)ω], B is strictly convex with

B(v) = δ

[
(1 − h)B

(
v − (1 − δ)ω

δ

)
+ hB

(
v − (1 − δ)ω − (1 − δ)θ

δ

)]
.

• On [δv̄ + (1 − δ)ω, v̄], B is affine.

Moreover, if δ ≥ δ̄ (see Definition 1), then: v̄ > ω, B(v̄) = (1 −δ)(1 −h) +δB
(

v−(1−δ)ω−(1−δ)θ
δ

)
, 

and π (v̄,B(v̄)) = 0.

One simple scalar equation describes the full equilibrium set. (See Fig. 2.) The driving observa-
tion is that, with no ex-post monitoring of project types, the agent’s binding incentive constraint 
completely pins down the law of motion for the agent’s continuation value.

With E∗ in hand, its Pareto frontier and the principal-optimal equilibrium value are immediate.
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Corollary 2. Let v̄, B be as in the statement of Theorem 2, and suppose δ ≥ δ̄. There is then a 
value v∗ ∈ (ω, (1 − δ)v̄ + δω] such that:

• The uniquely profit-maximizing equilibrium value profile is (v∗, B(v∗)).
• The Pareto frontier of E∗ is {(v, B(v)) : v∗ ≤ v ≤ v̄}.

Proof. Let π∗ : [0, v̄] → R be given by π∗(v) = π(v, B(v)). Then argmaxvπ
∗(v) is a sub-

set of [ω, v̄] because π∗|[0,ω] is strictly increasing; a subset of [ω, (1 − δ)v̄ + δω] because 
π∗|[(1−δ)v̄+δω,v̄] is strictly decreasing20; nonempty because π∗ is continuous; and a singleton 
(say v∗) because π∗|[ω,(1−δ)v̄+δω] is strictly concave. The frontier characterization follows be-
cause π∗ is increasing on [0, v∗] and decreasing on [v∗, v̄].

It remains to verify that v∗ += ω. By Lemma 12 in the appendix, B is differentiable at ω with 
B ′(ω) = 0. Therefore, π∗ is differentiable at ω with derivative 1 > 0 and so cannot be maximized 
at ω. !

When the players are sufficiently patient, the Pareto frontier is not self-generating. In partic-
ular, generating (v∗, B(v∗)) requires that the principal delegate today and, if the agent adopts 
a project, a Pareto-inferior future payoff vector of (vP , B(vP )) obtains for vP < v∗. This fea-
ture is an imprint of the partial alignment our players face. Stopping the agent from adopting 
every available project necessitates freezing at some future histories, but the principal suffers 
(relative to the current period’s flow payoffs) from freezing too. Favor-trading models (Möbius, 
2001; Hauser and Hopenhayn, 2008) do not share this partial alignment, and so can still have a 
self-generating Pareto frontier.

5.2. Features of equilibrium behavior

We are now, with the equilibrium payoff set in hand, equipped to say more about the players’ 
behavior under Pareto efficient equilibria. As Theorem 2 and its Corollary 2 show, every Pareto 
efficient equilibrium value (with agent value v0 ∈ [v∗, v̄]) can be implemented in an equilibrium 
with the features described in the following definition.

Definition 3. Fix an equilibrium σ , and define the associated stochastic process {vk, v̂k}∞k=0, 
where vk [resp. v̂k] is the agent’s time k continuation before [after] that period’s public random-
ization.

Define the following features of an equilibrium:

• Say σ has no superfluous randomization if:

vk ∈ [ω, δv̄ + (1 − δ)ω] ∪ {v̄} =⇒ v̂k = vk with probability 1;
vk ∈ (δv̄ + (1 − δ)ω, v̄) =⇒ v̂k ∈ [δv̄ + (1 − δ)ω, v̄] with probability 1.

20 By Theorem 2, the function B is affine on [(1 − δ)ω + δv̄, ̄v], and so π∗ is as well. As π∗ is nonnegative, concave, 
and (again by Theorem 2) zero at its endpoints if δ ≥ δ̄, there are only two possibilities: π∗ is the constant zero function, 
or π∗ is strictly decreasing on [(1 − δ)v̄ + δω, ̄v]. As π∗(ω) = (1 − c

θ̄
)ω > 0, the latter holds.
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• Say σ has good behavior with minimal punishment if:

v̂k ∈ [ω, δv̄ + (1 − δ)ω) =⇒






P delegates;
A adopts the project if and only if it is good;
vk+1 = v̂k−(1−δ)ω

δ if the agent does not adopt project k;
vk+1 = v̂k−(1−δ)ω−(1−δ)θ

δ if the agent adopts project k.

• Say σ has gift-giving as a last resort if:

v̂k > (1 − δ)ω + δv̄ =⇒






P delegates;
A adopts project k;
vk+1 = v̂k−(1−δ)ω−(1−δ)θ

δ .

• Say σ has absorbing punishment if:

vk ≤ ω =⇒ v), v̂) ≤ ω ∀) ≥ k with probability 1.

To gain some intuition as to why the above should be features of efficient play, consider how 
the principal might like to provide different levels of revenue. The case of revenue v ≤ ω is 
simple: Proposition 1 tells us that the principal can provide said revenue efficiently, via aligned 
equilibrium. The case of v = v̄ is straightforward too: to keep her current promise to the agent, 
the principal is forced to allow a project today, no questions asked. The described form of B
between the two obtains from having the agent defend the principal’s interests whenever possible. 
Reminiscent of Ray (2002), costly incentive provision is backloaded as much as possible. The 
principal’s limited commitment constrains this backloading, capping how much revenue can be 
provided while asking the agent to defend the principal’s interests.

Uniqueness As the next result shows, this limited backloading is a necessary feature of any 
Pareto optimal equilibrium. That is, the path of play implicit in Theorem 2—until the absorbing, 
conservative phase of the relationship is reached—is essentially unique.21

Corollary 3. Every Pareto efficient equilibrium entails (i) no superfluous randomization, (ii) 
good behavior with minimal punishment, (iii) gift-giving as a last resort, and (iv) absorbing 
punishment.

Proof. First recall that any Pareto efficient equilibrium will never have continuation value strictly 
above the graph of B at any on-path history. Indeed, replacing the continuation value with one 
yielding the same agent value and strictly fewer bad projects will preserve equilibrium and yield 
a Pareto improvement.

With this in mind, (iii) and (iv) follow directly from promise keeping, and (i) and half of 
(ii)—namely, minimum punishment—follow from strict convexity of B|[ω,δv̄+(1−δ)ω]. We only 
need to show that the agent adopts only good projects whenever v̂ ∈ (ω, δv̄ + (1 − δ)ω).

For values of at least ω, freeze is never optimal Now, Theorem 2 tells us

D(v) := δ
[
(1 − h)B

(
v−(1−δ)ω

δ

)
+ hB

(
v−(1−δ)ω−(1−δ)θ

δ

)]

21 “Essentially” because immediate public randomization can be used over (δv̄ + (1 − δ)ω, ̄v) but may not be required 
at values near v̄, if δ is small enough. This region vanishes in the continuous time limit we consider in Section 6.
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Fig. 3. Necessary features of Pareto optimal equilibrium.

−
[
(1 − δ)(1 − h) + δB

(
v−(1−δ)ω−(1−δ)θ

δ

)]

= (1 − h)δ
[
B

(
v−(1−δ)ω

δ

)
− B

(
v−(1−δ)ω−(1−δ)θ

δ

)]
− (1 − h)(1 − δ)

is strictly increasing in v ∈ [ω, δv̄ + (1 − δ)ω] (since B is convex, strictly so around 
v−(1−δ)ω−(1−δ)θ

δ ) and globally nonpositive there, since asking the agent to adopt only good 
projects is optimal. Consequently, D(v) < 0 for v < δv̄ + (1 − δ)ω. Therefore, unrestrained 
project adoption will not take place on the path of a Pareto efficient equilibrium while the agent’s 
continuation value is in [ω, δv̄ + (1 − δ)ω). Next, the agent must adopt all good projects there 
(by Theorem 1). Finally, Lemma 5 in the appendix tells us that the agent never mixes over good 
project adoption in Pareto optimal equilibrium, so that no bad projects are adopted. Point (ii) 
follows. !

Fig. 3 highlights the features of Pareto efficient equilibrium behavior codified in Corollary 3. 
The bottom line depicts the current promised revenue to the agent. The middle line describes 
features of stage play as a function of this promised revenue. In particular, note that for revenues 
higher than δω, efficient equilibrium requires that the principal delegates with certainty. If the 
revenue is not at its highest value, the agent then exercises restraint. Finally, the top line illus-
trates the impact of public randomization. When the promised revenue lies in [ω, (1 − δ)ω+ δv̄], 
efficient equilibrium requires that public randomization is not used. Given the benefits of back-
loading, any needless noise in the agent’s continuation value is strictly costly.

Note that continuation play in the conservative phase of the relationship is not unique. For in-
stance, there are aligned optimal equilibria which involve cyclical temporary freeze (as described 
in Section 3 above and Section 6 below), and those which instead employ stochastic permanent 
freeze.

Bad projects At the end of Section 3, we saw that bad projects would, for some parameter 
values, be a necessary part of Pareto efficient equilibrium. Initially, one might have suspected that 
the choice of whether or not to employ bad projects to provide incentives to the agent amounts 
to evaluating a profit tradeoff by the principal. Theorem 2 tells us that the principal faces no 
such tradeoff. Whenever a promise of future bad projects can be credible,22 it is a necessary 
component of an optimal contract.

22 Note that all results in the paper that invoke the assumption δ ≥ δ̄ would remain true if the condition were replaced 
with an (endogenous) assumption that initial project adoption is credible. This is apparent from the results’ proofs. 
For ease of notation, and validated by Lemma 13, we have stated Theorems 1 and 2 and Corollaries 2 and 4 with the 
(primitive) assumption that δ ≥ δ̄.



E. Lipnowski, J. Ramos / Journal of Economic Theory 188 (2020) 105040 19

Corollary 4. If δ ≥ δ̄ (see Definition 1), then every Pareto efficient equilibrium entails some bad 
projects.

This follows directly from Corollary 2 (in particular, that v∗ > ω). Intuition for this result 
comes from considering equilibria as described in Corollary 3, with agent value v = ω+ε strictly 
higher than, but very close to, the marginal value of search. The principal, with objective pro-
portional to m0v − b, benefits from the higher agent value ω + ε > ω. Corollary 3 tells us that 
the cost this entails—a bounded discounted number of bad projects—will only accrue in an ex-
ponentially distant future. Thus the principal strictly prefers an equilibrium with ω + ε to the 
aligned optimum.

The takeaway is straightforward: if bad projects can be credibly promised in equilibrium, then 
they unambiguously should be. The principal should offer them to the agent later to sustain better 
incentives today, prolonging the benefits of delegation.

6. Implementation: dynamic capital budgeting

There are efficiency gains to be had from allowing bad projects, but one must carefully balance 
the principal’s credibility constraint for it to remain an equilibrium. The implementation we 
discuss in this section, the Dynamic Capital Budgeting (DCB) contract, is an attempt to achieve 
this balance.

6.1. A continuous time limit

For the purposes of this section, we find it convenient to work with a (heuristic) continuous 
time limit of our game in which the players interact very frequently, but good projects remain 
scarce. Letting the time between decisions, together with the proportion of good projects, vanish 
enables us to present our budget rule cleanly, in the language of calculus.

Suppose the players discount time t ∈ R+ at a rate of r > 0 and good projects arrive with 
Poisson rate η > 0. Assume bad projects are abundant, in the sense that (regardless of history) a 
bad project is available to adopt whenever a good project is not. The players meet at intervals of 
length + > 0, so that period k corresponds to t ∈ [k+, (k + 1)+]. Play within this interval is as 
follows:

• At time k++, a public randomization device realizes, and the principal decides whether to 
delegate or freeze.

• Over the course of (k+, (k + 1)+), the agent sees the project arrival process. He then has in 
hand the best available project type:

θk :=
{

θ̄ if at least one good project arrived during (k+, (k + 1)+),

θ otherwise.

• If the principal delegated at time k++, then the agent decides whether or not to adopt the 
project of type θk at time (k + 1)+−. If the principal froze, the agent has no choice to make.

An initiated project of type θ provides the players a lump-sum revenue of θ , at a lump-sum cost 
(to the principal) of c.

Up to a strategically irrelevant scaling of payoffs, the above continuous time game is equiv-
alent to one in discrete time with parameters δ+ := e−r+, h+ := 1 − e−η+. Given fixed 
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θ̄ > c > θ > 0, we can invoke an appropriate lower bound23 on η
r to guarantee that Assump-

tion 1 holds and that δ+ ≥ δ̄ for sufficiently small +.
Fix a sequence of period lengths + → 0 such that the equilibrium value set converges.24 Let 

v̄0 be the highest agent value in the limit.
Adapting Theorem 2 tells us that v̄0 > ω0, where ω0 := η(θ̄ −θ) = lim δ+

1−δ+
ω+, the marginal 

value of (instantaneous) search. Corollary 3 then tells us that the path of play in Pareto efficient 
equilibrium has several interpretable features in the limit. ‘No superfluous randomization’ tells 
us that, when the agent’s continuation value is at least ω0, no public randomization is currently 
used. ‘Good behavior with minimal punishment’ says that, if vt ∈ [ω0, v̄), then the principal 
delegates, the agent value law of motion is

{
v follows v̇t = r(vt − ω0) while the agent doesn’t adopt a project,
v jumps to vt − rθ if the agent adopts a project,

and the agent adopts only good projects. ‘Gift-giving as a last resort’ means that, when the con-
tinuation value hits v̄, the principal continues to delegate to the agent, who immediately adopts 
a project (almost surely a bad one), and the agent’s value jumps to v̄ − rθ . Lastly, ‘absorbing 
punishment’ tells us that, once the agent’s continuation value is below ω0, it stays there forever.

6.2. Defining the DCB contract

The DCB contract is characterized by a budget cap x̄ ≥ 0 and initial budget balance x ∈
[−1, x̄], and consists of two regimes. At any time, players follow Controlled Budgeting or 
Capped Budgeting, depending on the agent’s balance, x. The account balance can be understood 
as the number of projects the agent can initiate without immediately affecting the principal’s 
delegation decisions.25

Capped budget (x > 0)
The account balance grows at the interest rate r as long as x < x̄. Accrued interest is used to 

reward the agent for fiscal restraint. Since the opportunity cost of taking a project decreases in 
the account balance, the reward for diligence is increasing (exponentially) to maintain incentives. 
While there are funds in A’s account, P fully delegates project choice to A. However, every 
project that A initiates reduces the account balance to x −1 (whether or not the latter is positive). 
Good projects being scarce, there are limits to how many projects the principal can credibly 
promise. When the balance is at the cap, the account can grow no further; accordingly, the agent 
takes a project immediately, yielding a balance of x̄ − 1.

Controlled budget (x ≤ 0)
The Controlled Budget regime is tailored to provide low revenue, low enough to be feasibly 

provided in aligned equilibrium. When x < 0, the agent is over budget, and the principal pun-
ishes the agent—more severely the further over budget the agent is—with a freeze, restoring the 

23 η
r >

θ

θ̄−θ
will imply Assumption 1. Given this, ηr (θ̄ − θ)(1 − c

θ̄
) > c − θ will imply δ+ ≥ δ̄.

24 Some such sequence exists, where convergence is taken with respect to the Hausdorff metric. Indeed, each E∗
+

belongs to the compact set {E ⊆ Ē : E nonempty closed convex}, where Ē := {(v, b) ∈R2+ : v ≤ ηθ̄ + bθ , π(v, b) ≥ 0}.
25 While the continuous time model eases exposition, it is not necessary for a DCB implementation. In the discrete time 
analogue, public randomization is used when the agent’s balance lies between x̄ and (1 − δ)x̄; the implementation is 
otherwise unchanged.
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Fig. 4. One realization of the balance’s path under Controlled Budgeting (with x̄ = 10). Bad projects are clustered, and 
the account eventually runs dry.

balance to zero. The continuation contract when the balance is x = 0 is some optimal aligned 
equilibrium.

Definition. The Dynamic Capital Budgeting (DCB) contract σ x,x̄ is as follows:

1. The Capped Budget regime: x > 0.
• While x ∈ (0, x̄): P delegates, and A takes any available good projects and no bad ones. 

If A initiates a project, the balance jumps from x to x − 1; if A does not take a project, x
grows according to ẋ = rx > 0.

• When x hits x̄: P delegates, and A takes a project immediately. If A adopts a project, the 
balance jumps from x̄ to x̄ − 1; if A doesn’t take a project, the balance remains at x̄.

2. The Controlled Budget regime: x ≤ 0.
• If x ∈ [−1, 0): P freezes for duration 1

r log ω0
ω0−θ |x| .

• After this initial freeze, P repeats the same policy forever: delegate until the next project, 
and then freeze for duration τ̄ = 1

r log ω0
ω0−θ .

In this regime, A adopts every good project and no bad projects.

Consider a sample path of the relationship between a physics department and its university. 
At the department’s inception, the university allocates a budget of three hires, with a cap of ten. 
Over time, the physics department searches for candidates. Every time the department finds an 
appropriate candidate, it hires—and the provost rubber stamps it—spending from the agreed-
upon budget. Fig. 4 represents one possible realized path of the account balance over time.

The department finds two suitable candidates to hire in its first year; some interest having 
accrued, the department budget is now at two hires. After the first year, the department enters a 
dry spell: finding no suitable candidate for six years, the department hires no one. Due to accrued 
interest, the account budget has increased dramatically from two to over eight hires. In its ninth 
year, the account hits the cap and can grow no further. The department can immediately hire up 
to nine physicists and continue to search (with its remaining budget) or it can hire ten candidates 
and enact a regime change by the provost. The department chooses to hire one physics professor 
(irrespective of quality) immediately, and continue to search with a balance of nine.

Over the next few years, the department is flush and hires many professors. First, for three 
years, the department hits its cap several times, hiring many mediocre candidates. After its 
eleventh year, the department faces a lucky streak, finding many great physicists over the fol-
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lowing years, bringing the budget to one hire. In the next twelve years, the department finds few 
candidates worth hiring. However, the interest accrual is so slow that the physics department still 
depletes its budget, in the twenty-eighth year. Throughout this initial phase, the department hires 
a total of twenty-four physics professors (many more than the account cap of ten).

At this point, the relationship changes permanently. After a temporary hiring freeze, the 
provost allows the department to resume its search, but follows any hire with a two-year hir-
ing freeze. The relationship is now of a much more conservative character.

Notice that bad projects are clustered: the high balance x̄ − 1 just after a bad project means 
that the balance is likely to reach x̄ again before the next arrival of a good project. So the next 
adopted project is likely bad. Given exponential growth, this effect is stronger the higher is the 
cap. In the Capped Budget regime, for a given account cap, the balance has non-monotonic profit 
implications. If the account runs low, there is an increased risk of imminently moving toward 
the low-revenue Controlled Budget regime. If the account runs high, the principal faces more 
bad projects in the near future. Controlled Budgeting is absorbing: once the balance falls low 
enough—which it eventually does—the agent will never take a bad project again.

Proposition 2. Fixing an account cap and initial balance x̄ > x > 0, consider the Dynamic 
Capital Budget contract σ x,x̄ .

1. Expected discounted revenue is v(x) = ω0 + rθx.
2. Expected discounted number of bad projects is b(x) = bx̄(x), uniquely determined by the 

delay differential equation

(1 + η
r )b(x) = η

r b(x − 1) + xb′(x),

with boundary conditions:

b|(−∞,0] = 0

b(x̄) − b(x̄ − 1) = 1.

3. σ x,x̄ is an equilibrium if and only if it exhibits nonnegative profit at the cap—that is,

π̄(x̄) := π

(
ω0 + rθ x̄, b(x̄)

)
≥ 0.

Proof. The first point follows from substituting into the v promise-keeping constraint, and ver-
ifying (by direct computation) that σ 0,x̄ yields revenue ω0. The second point follows from 
Proposition 4 in Section 9.

For the third part, v(x) − v(x − 1) = [ω0 + rθx] − [ω0 + rθ(x − 1)] = rθ at every x, so 
that the agent is always indifferent between taking or leaving a bad project. Thus, σ x,x̄ is an 
equilibrium if and only if it satisfies principal participation after every history. Revenue is linear, 
and b is (again by Proposition 4) convex. Therefore, profit is concave in x, in addition to being 
nonnegative at nonpositive balances. So, profit is nonnegative for all on-path balances if and only 
if it is nonnegative at the top. !

6.3. Optimality of the DCB contract

Finally we note that the DCB contract (with appropriate cap and initial balance) implements 
exactly the Pareto efficient equilibria. In this sense, our model gives an agency foundation to 
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dynamic budgeting of capital expenditures. From the analysis of Subsection 6.1, the following is 
immediate.

Theorem 3. Every Pareto efficient equilibrium payoff can be implemented as a DCB contract 
with cap x̄ := v̄−ω0

rθ and some initial balance.

Adapting Corollary 3 gives a partial uniqueness result as well: every Pareto efficient equilib-
rium follows a two-regime structure, with Capped Budgeting (the cap being computed as above) 
as its first regime.

6.4. Comparative statics

In light of Theorem 3, a principal-optimal contract is characterized by two elements: how 
much freedom the principal can credibly give the agent (the cap), and how much freedom the 
principal initially gives the agent (the initial balance). The first describes the equilibrium payoff 
set, while the second selects a principal-optimal equilibrium therein. In this subsection, we ask 
how these features change as the environment the players face varies. As parameters of the model 
change, and the pool of projects becomes more valuable, the agent enjoys greater sovereignty, 
with both the balance cap and the optimal initial balance increasing.

Proposition 3. For any profile of parameters that satisfy our Assumptions (as in footnote 23), 
define the account cap X̄(θ̄ , θ , c), and the initial account balance X∗(θ̄ , θ , c) employed for 
principal-optimal equilibrium. Both functions are increasing in the revenue parameters θ̄, θ , 
and decreasing in the cost parameter c.

The proof is in Section 10 of the appendix. Of particular interest is the role of θ in determining 
the optimal DCB account structure. On one hand, the principal suffers less from a bad project 
when θ is higher; on the other, the agent is more tempted. We show that the former effect always 
dominates in determining how much freedom the principal optimally gives the agent.

7. Concluding remarks

In this paper, we have presented an infinitely repeated instance of the delegation problem. 
Our principal’s credibility concerns—an important ingredient of our leading applications—
complicate the problem and yield substantively different economic outcomes.

Our first main result speaks to the evolution of the relationship under Pareto efficient equilib-
rium. Early on, the relationship is highly productive but low-yield: the agent adopts every good 
project, but some bad projects as well. As the relationship matures, it is high-yield but less pro-
ductive: the agent adopts only good projects, but some good opportunities go unrealized. In this 
sense, the relationship transitions toward conservatism. This evolution is reflected in the exact 
form of an efficient intertemporal delegation rule, our Dynamic Capital Budget contract, which 
comprises two regimes. In the first regime, the agent “funds” projects from an expense account, 
adopting every available good project but, when his balance is high, adopting projects indiscrim-
inately. Eventually, the account runs dry, and the players transition to the second regime, wherein 
they play a (Pareto inefficient) aligned equilibrium.

A key assumption of our model is that our principal receives no ex-post feedback about project 
quality, whether or not a project is adopted. This extreme assumption is an abstraction meant to 
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capture relationships in which any such feedback is of extremely poor quality—arguably the re-
lationships most typically organized via delegation. It is also simplifying, enabling the complete 
characterization of the equilibrium payoff set, and so too of Pareto optimal equilibrium play. 
Our first main result is robust to this assumption. Even if the principal receives some feedback 
about project quality, the efficient relationship will still have two phases, as long as the feed-
back is uninformative enough. While in the early stages of the relationship every good project is 
adopted (and some bad ones as well), and the relationship’s per-period revenue is high, it even-
tually moves to a Pareto inferior absorbing event, where some good projects are missed and no 
bad projects are adopted.

While our main applications concern organizational economics outside of the firm, our results 
also speak to the canonical firm setting. There, the conflict of interest in our model could reflect 
an empire-building motive on the part of a department, or it may be an expression of the Baumol 
(1968) sales-maximization principle. If the relationship between a firm and one of its departments 
proceeds largely via delegation, then we shed light on the dynamic nature of this relationship. In 
doing so, we provide a foundation for dynamic budgeting within the firm.

Appendix

This appendix provides formal proof for the results on which the main text draws. First, we 
provide a characterization of the equilibrium payoff set of the discrete-time game. Next, we prove 
several useful properties of the Delay Differential Equation which characterizes the frontier of 
the limit equilibrium set. Finally, we derive comparative statics results for the optimal cap and 
initial balance of a Dynamic Capital Budget contract.

8. Appendix: characterizing equilibrium values

In the current section, we characterize the equilibrium value set in our discrete time repeated 
game. As in the main text, we find it convenient to study payoffs in terms of agent value and bad 
projects. Accordingly, for any strategy profile σ , we let

v(σ ) = Eσ

[

(1 − δ)

∞∑

k=0

δk1{a project is adopted in period k}θk

]

;

b(σ ) = Eσ

[

(1 − δ)

∞∑

k=0

δk1{a project is adopted in period k}1θk=θ

]

.

Below, we will analyze the perfect public equilibrium (PPE) value set,

E∗ =
{(

v(σ ), b(σ )
)
: σ is a PPE

}
⊆ R2

+.

8.1. Self-generation

To describe the equilibrium value set E∗, we rely heavily on the machinery of Abreu et al. 
(1990), called APS hereafter. To provide the players a given value y = (v, b) from today onward, 
we factor it into a (possibly random) choice of what happens today, and what the continuation 
will be starting tomorrow. What happens today depends on the probability (p) that the principal 
delegates, the probability (ā) of project adoption if a project is good, and the probability (a) of 
project adoption if a project is bad. The continuation values may vary based on what happens 
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today: the principal may choose to freeze (yF ), the principal may delegate and agent may take 
a project (yP ), or the principal may delegate and agent may not take a project (yN ). Since the 
principal does not observe project types, these are the only three public outcomes.

We formalize this factorization in the following definition and theorem.

Definition 4. Given Y ⊆ R2:

• Say y ∈ R2 is purely enforceable w.r.t. Y if there exist p, ā, a ∈ [0, 1] and yF , yP , yN ∈ Y

such that26:
1. (Promise keeping):

y = (1 − p)δyF + ph
{
ā

[
(1 − δ)(θ̄ ,0) + δyP

]
+ (1 − ā)δyN

}

+p(1 − h)
{
a

[
(1 − δ)(θ ,1) + δyP

]
+ (1 − a)δyN

}

= (1 − p)δyF + p

{
hā

[
(1 − δ)(θ̄ ,0) + δ(yP − yN)

]

+(1 − h)a
[
(1 − δ)(θ ,1) + δ(yP − yN)

]
+ δyN

}
.

2. (Incentive-compatibility):

p ∈ arg max
p̂∈[0,1]

(1 − p̂)δπ(yF ) + p̂

{
hā

[
(1 − δ)(θ̄ − c) + δ[π(yP ) − π(yN)]

]

+(1 − h)a
[
(1 − δ)(θ − c) + δ[π(yP ) − π(yN)]

]
+ δπ(yN) − δπ(yF )

}
,

ā ∈ arg max
â∈[0,1]

â
{
(1 − δ)θ̄ + δ[v(yP ) − v(yN)]

}
,

a ∈ arg max
â∈[0,1]

â
{
(1 − δ)θ + δ[v(yP ) − v(yN)]

}
.

• Say y ∈ R2 is enforceable w.r.t. Y if there exists a Borel probability measure µ on R2 such 
that
1. y =

∫
R2 ŷ dµ(ŷ).

2. ŷ is purely enforceable almost surely with respect to µ(ŷ).
• Let W(Y) := {y ∈R2 : y is enforceable with respect to Y }.
• Say Y ⊆ R2 is self-generating if Y ⊆ W(Y).

Adapting methods from Abreu et al. (1990), one can readily characterize E∗ via self-
generation, through the following collection of results.

Lemma 2. Let W be as defined above.

• The set operator W : 2R
2 −→ 2R

2
is monotone.

• E∗ is the largest bounded self-generating set.
• W(E∗) = E∗.

26 With a slight abuse of notation, for a given y = (y1, y2) ∈R2, we will let v(y) := y1 and b(y) := y2.
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• Let Y0 ⊆ R2 be any bounded superset of E∗.27 Define the sequence (Yn)
∞
n=1 recursively by 

Yn := W(Yn−1) for each n ∈N . Then 
⋂∞

n=1 Yn = E∗.

8.2. A cleaner characterization

In light of the above, understanding the operator W will enable us to describe E∗. That said, 
the definition of W is cumbersome. For the remainder of the current section, we work to better 
understand it.

Before doing anything else, we restrict attention to a useful domain for the map W .

Notation. Let Y := {Y ⊆ R2
+ : 00 ∈ Y, Y is compact and convex, and π |Y ≥ 0}.

We need to work only with potential value sets in Y. Indeed, the feasible set Ē belongs to 
Y, and it is straightforward to check that W takes elements of Y to Y. Since Y is closed under 
intersections, we then know from the last bullet of Lemma 2, that E∗ ∈Y.

In seeking a better description of W , the following auxiliary definitions are useful.

Definition 5. Given a ∈ [0, 1]:

• Say y ∈R2
+ is a-Pareto enforceable w.r.t. Y if there exist yP , yN ∈ Y such that:

1. (Promise keeping):

y = h
[
(1 − δ)(θ̄ ,0) + δ(yP − yN)

]
+ (1 −h)a

[
(1 − δ)(θ ,1) + δ(yP − yN)

]
+ δyN .

2. (Agent incentive-compatibility):

1 ∈ arg max
â∈[0,1]

â
{
(1 − δ)θ̄ + δ[v(yP ) − v(yN)]

}
,

a ∈ arg max
â∈[0,1]

â
{
(1 − δ)θ + δ[v(yP ) − v(yN)]

}
.

3. (Principal participation): π(y) ≥ 0.
• Let Wa(Y ) := {y ∈R2

+ : y is a-Pareto enforceable w.r.t. Y }.
• Let Wf (Y ) := δY .
• Let Ŵ (Y ) := Wf (Y ) ∪ ⋃

a∈[0,1] Wa(Y ). If Y is compact, then so is Ŵ(Y ).28

The set Ŵ (Y ) captures the enforceable (without public randomizations) values w.r.t. Y if:

1. The principal uses a pure strategy.
2. We relax principal IC to a participation constraint.
3. If the principal delegates and the project is good, then the agent takes the project.

The following proposition shows that, for the relevant Y ∈ Y, it is without loss to focus on 
coŴ instead of W . The result is intuitive. The first two points are without loss because the 
principal’s choices are observable. Toward (1), her private mixing can be replaced with public 

27 This can be ensured, for instance, by letting Y0 contain the feasible set.
28 Indeed, it is the union of δY and a projection of the compact set {(a, y) ∈ [0, 1] ×R2 : y is a-Pareto enforceable w.r.t. 
Y }.
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mixing with no effect on A’s incentives. Toward (2), if the principal faces nonnegative profits 
with any pure action, she can be incentivized to take said action with stage Nash (min-max 
payoffs) continuation following the other choice. Toward (3), the agent’s private mixing is not 
(given (2)) important for the principal’s IC, and so we can replace it with public mixing between 
efficient (i.e. no good project being passed up) first-stage play and an initial freeze.

Lemma 3. If Y ∈Y, then W(Y) = coŴ (Y ).

Proof. First, notice that δY ⊆ W(Y) ∩ coŴ (Y ). It is a subset of the latter by construction, and 
of the former by choosing yP = yN = 00, p = 0, ā = a = 1, and letting yF range over Y .

Take any y ∈ Ŵ (Y ) \ δY . Then y is a-Pareto enforceable w.r.t. Y for some a ∈ [0, 1], say 
witnessed by yP , yN ∈ Y . Letting p = 1, ā = 1, and yF = 00 ∈ Y , it is immediate that p, ā, a ∈
[0, 1] and yF , yP , yN ∈ Y witness y being purely enforceable w.r.t. Y . Therefore, y ∈ W(Y). So 
Ŵ (Y ) ⊆ W(Y). The latter being convex, coŴ(Y ) ⊆ W(Y) as well.

Take any extreme point y of W(Y) which is not in δY . Then y must be purely enforceable 
w.r.t. Y , say witnessed by p, ā, a ∈ [0, 1] and yF , yP , yN ∈ Y . First, if pā = 0, then29

y = (1 − p)δyF ∈ co{00, δyF } ⊆ δY ⊆ Ŵ (Y ).

Now suppose pā > 0, and define a∗ := a

ā
∈ [0, 1] and

y∗ := h
[
(1 − δ)(θ̄ ,0) + δ(yP − yN)

]
+ (1 − h)a∗ [

(1 − δ)(θ ,1) + δ(yP − yN)
]
+ δyN .

Observe that yP , yN witness y∗ ∈ Wa∗(Y ):

1. Promise keeping follows immediately from the definition of y∗.
2. Agent IC follows from agent IC in enforcement of y, and from the fact that incentive con-

straints are linear in action choices. As ā > 0 was optimal, ā∗ = 1 is optimal here as well.
3. Principal participation follows from principal IC in enforcement of y, and from the fact that 

π(yF ) ≥ 0 because π |Y ≥ 0.

Therefore y∗ ∈ Wa∗(Y ), from which it follows that

y = (1 − p)δyF + pāy∗ ∈ co{δyF , y∗, 00} ⊆ coŴ (Y ).

As every extreme point of W(Y) belongs to coŴ (Y ), and the latter is convex and (by 
Carathéodory’s theorem) closed, all of W(Y) belongs to coŴ(Y ). !

In view of the above proposition, we now only have to consider the much simpler map Ŵ . As 
the following lemma shows, we can even further simplify, by showing that there is never a need 
to offer excessive punishment. That is, it is without loss to (1) make the agent’s IC constraint (to 
resist bad projects) bind if he is being discerning, and (2) not respond to the agent’s choice if he 
is being indiscriminate.

Lemma 4. Fix a ∈ [0, 1], Y ∈Y, and y ∈ R2:
Suppose a < 1. Then y ∈ Wa(Y ) if and only if there exist zP , zN ∈ Y such that:

29 If pā = 0, then either p = 0 or ā = 0. If ā = 0, then agent IC implies a = 0. So either p = 0 or a = ā = 0; in either 
case, promise keeping then implies y = (1 − p)δyF .
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1. (Promise keeping):

y = h
[
(1 − δ)(θ̄ ,0) + δ(zP − zN)

]
+ (1 − h)a

[
(1 − δ)(θ ,1) + δ(zP − zN)

]
+ δzN .

2. (Agent exact incentive-compatibility):

δ[v(zN) − v(zP )] = (1 − δ)θ .

3. (Principal participation): π(y) ≥ 0.

Suppose a = 1. Then y ∈ Wa(Y ) if and only if there exists zN ∈ Y such that:

1. (Promise keeping):

y = (1 − δ)[h(θ̄ ,0) + (1 − h)(θ ,1)] + δzN

2. (Principal participation): π(y) ≥ 0.

Proof. In the first case, the “if” direction is immediate from the definition of Wa. In the second, 
it is immediate once we apply the definition of W1 with zP = zN . Now we proceed to the “only 
if” direction.

Consider any y ∈ Wa(Y ), with yP , yN witnessing a-Pareto enforceability. Define

ȳ := [h + a(1 − h)]yP + (1 − h)(1 − a)yN ∈ Y.

So ȳ is the on-path expected continuation value.
In the case of a < 1, define

q := (1 − δ)θ

δ[v(yN) − v(yP )] (∈ [0,1], by IC)

zP := (1 − q)ȳ + qyP

zN := (1 − q)ȳ + qyN .

By construction, δ[v(zN) − v(zP )] = (1 − δ)θ , as desired.30

In the case of a = 1, let zN := ȳ and zP := zN .
Notice that zP , zN witness y ∈ Wa(Y ). Promise keeping comes from the definition of ȳ, prin-

cipal participation comes from the hypothesis that Wa(Y ) 2 y, and IC (exact in the case of a < 1) 
comes by construction. !

In the first part of the lemma, δ[v(yN) − v(yP )] ∈ (1 − δ)[θ , θ̄ ] has been replaced with 
δ[v(zN) − v(zP )] = (1 − δ)θ . That is, it is without loss to make the agent’s relevant incentive 
constraint—to avoid taking bad projects—bind. This follows from the fact that Y ⊇ co{yP , yN }. 
The second part of the lemma says that, if the agent is not being at all discerning, nothing is 
gained from disciplining him.

The above lemma has a clear interpretation: without loss of generality, the principal uses the 
minimal possible punishment. The lemma also yields the following:

30 In the case of a ∈ (0, 1), q = 1 (by agent IC), so that zP = yP and zN = yN . The real work was needed for the case 
of a = 0.



E. Lipnowski, J. Ramos / Journal of Economic Theory 188 (2020) 105040 29

Lemma 5. Suppose a ∈ (0, 1), Y ∈Y, and y ∈ Wa(Y ). Then there is some y∗ ∈ W0 such that

v(y∗) = v(y) and b(y∗) < b(y).

That is, y∗
1 = y1 and y∗

2 < y2.

Proof. Appealing to Lemma 4, there exist zP , zN ∈ Y such that:

1. (Promise keeping):

y = h
[
(1 − δ)(θ̄ ,0) + δ(zP − zN)

]
+ (1 − h)a

[
(1 − δ)(θ ,1) + δ(zP − zN)

]
+ δzN

2. (Agent exact incentive-compatibility):

δ[v(zN) − v(zP )] = (1 − δ)θ

3. (Principal participation): π(y) ≥ 0.

Given agent exact IC, we know v(zN) >v(zP ). Let z∗
P :=

(
v(zP ),min

{
b(zP ),

v(zP )

v(zN)
b(zN)

})
. 

As either z∗
P = zP or z∗

P ∈ co{00, zN }, we have z∗ ∈ Y .
Let y∗ := h 

[
(1 − δ)(θ̄ ,0) + δ(z∗

P − zN)
]
+ δzN . Then

v(y) − v(y∗) = (1 − h)a
{
(1 − δ)θ + δ[v(z∗

P ) − v(zN)]
}

− hδ[v(z∗
P ) − v(zP )]

= (1 − h)a
{
(1 − δ)θ + δ[v(zP ) − v(zN)]

}
− hδ0 = 0,

while

b(y) − b(y∗) = (1 − h)a {(1 − δ) + δ[b(zP ) − b(zN)]} − hδ[b(z∗
P ) − b(zP )]

= (1 − h)a
{
(1 − δ) + δ[b(z∗

P ) − b(zN)] + δ[b(zP ) − b(z∗
P )]

}

− hδ[b(z∗
P ) − b(zP )]

= (1 − h)a
{
(1 − δ) + δ[b(z∗

P ) − b(zN)]
}
+[h + (1 − h)a]δ[b(zP ) − b(z∗

P )]
≥ (1 − h)a > 0.

Now, notice that z∗
P , zN witness y∗ ∈ W0(Y ). Promise keeping holds by fiat, agent IC holds 

because v(z∗
P ) = v(zP ) by construction, and principal participation follows from

π(y∗) − π(y) = −π(0, b(y) − b(y∗)) > 0. !

The above lemma is a strong bang-bang result. It is not simply sufficient to restrict attention to 
equilibria with no private mixing; it is necessary too. Any equilibrium in which the agent mixes 
on-path is Pareto dominated.

8.3. Self-generation for frontiers

Through Lemmata 3, 4, and 5, we simplified analysis of the APS operator W applied to the 
relevant value sets. In the current subsection, we profit from that simplification in characterizing 
the efficient frontier of E∗. First, we make a small investment in some new notation.
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Notation. Let B denote the space of functions B : R −→ R+ ∪ {∞} such that: (1) B is convex, 
(2) B(0) = 0, (3) B’s proper domain dom(B) := B−1(R+) is a compact subset of R+, (4) B is 
continuous on dom(B), and (5) π(v, B(v)) ≥ 0 for every v ∈ dom(B).

Just as Y is the relevant space of value sets, B is the relevant space of frontiers of value sets.

Notation. For each Y ∈Y, define the efficient frontier function of Y :

BY : R−→ R+ ∪ {∞}
v 4−→ min{b ∈ R+ : (v, b) ∈ Y }

It is immediate that for Y ∈Y, the function BY belongs to B.

Notation. Define the following functions:

T :B−→B
B̂ 4−→ BW

(
co[graph(B̂)]) = BcoŴ

(
co[graph(B̂)]),

Tf :B−→B
B̂ 4−→ BWf

(
co[graph(B̂)]) = Bδ

(
co[graph(B̂)]),

and for 0 ≤ a ≤ 1, Ta :B−→B
B̂ 4−→ BWa

(
co[graph(B̂)]).

These objects are not new. The map T [resp. Tf , Ta] is just a repackaging of W [resp. Wf , Wa], 
made to operate on frontiers of value sets, rather than on value sets themselves.

Lemmata 3, 4, and 5 help simplify our analysis of T , which in turn helps us characterize the 
efficient frontier of E∗. We now proceed along these lines.

The following lemma is immediate from the definition of the map Y 4→ BY .

Lemma 6. If {Yi}i∈I ⊆Y, then Bco
[⋃

i∈I Yi

] is the convex lower envelope of infi∈I BYi .
31

The following proposition is the heart of our main characterization of the set E∗’s frontier. It 
amounts to a complete description of the behavior of T .

Lemma 7. Fix any B ∈B and v ∈R. Then:

1. T B = cvx
[
min

{
Tf B,T0B,T1B

}]
.

2. For i ∈ {f, 0, 1},

TiB(v) =
{

ŤiB(v) if π
(
v, Ť +

i B(v)
)

≥ 0

∞ otherwise,

where

31 The convex lower envelope of a function F is cvxF , the largest convex upper-semicontinuous function below it. 
Equivalently, cvxF is the pointwise supremum of all affine functions below F .
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Ťf B(v) := δB
(v

δ

)
,

Ť0B(v) := δ

[
hB

(
v − (1 − δ)θE

δ

)
+ (1 − h)B

(
v − (1 − δ)[θE − θ]

δ

)]

= δ

[
hB

(
v − (1 − δ)ω − (1 − δ)θ

δ

)
+ (1 − h)B

(
v − (1 − δ)ω

δ

)]
,

Ť1B(v) := (1 − h)(1 − δ) + δB

(
v − (1 − δ)θE

δ

)

= (1 − h)(1 − δ) + δB

(
v − (1 − δ)ω − (1 − δ)θ

δ

)
.

Proof. That T B = cvx
[
min

{
Tf B, infa∈[0,1] TaB

}]
is a direct application of Lemma 6. Then, 

appealing to Lemma 5, TaB ≥ T0B for every a ∈ (0, 1). This proves the first point.

In what follows, let Y := co[graph(B)] so that T B = BW(Y).

• Consider any y ∈ W0(Y ):
Lemma 4 delivers zP , zN ∈ Y such that

y = h
[
(1 − δ)(θ̄ ,0) + δ(zP − zN)

]
+ δzN ,

(1 − δ)θ = δ[v(zN) − v(zP )].
Rewriting with zP = (vP , bP ) and zN = (vN , bN), and rearranging yields:

(1 − δ)θ = δ[vN − vP ]
(v, b) = h

[
(1 − δ)(θ̄ ,0) + δ(vP − vN, bP − bN)

]
+ δ(vN , bN)

= h
(
(1 − δ)(θ̄ − θ), δ[bP − bN ]

)
+ δ(vN , bN)

=
(
θE − θ + δvN, hδbP + (1 − h)δbN

)
.

Solving for the agent values yields

vN = v − (1 − δ)[θE − θ ]
δ

and vP = vN − δ−1(1 − δ)θ = v − (1 − δ)θE

δ
.

So given any v ∈R+:

T0B(v) = inf
b,bP ,bN

b

s.t. π(v, b) ≥ 0, b = δ [hbP + (1 − h)bN ] ,

and
(

v − (1 − δ)[θE − θ]
δ

, bN

)
,

(
v − (1 − δ)θE

δ
, bP

)
∈ Y

= inf
b,bP ,bN

b = δ [hbP + (1 − h)bN ]

s.t. π(v, b) ≥ 0 and
(

v − (1 − δ)[θE − θ ]
δ

, bN

)
,

(
v − (1 − δ)θE

δ
, bP

)
∈ Y

=
{

b = δ
[
hB

(
v−(1−δ)θE

δ

)
+ (1 − h)B

(
v−(1−δ)[θE−θ]

δ

)]
if π(v, b) ≥ 0,

∞ otherwise.
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• Consider any y ∈ W1(Y ):
Lemma 4 now delivers zN = (vN , bN) ∈ Y such that

y = (1 − δ)[h(θ̄ ,0) + (1 − h)(θ ,1)] + δzN ,

which can be rearranged to

(v, b) = ((1 − δ)θE + δvN, (1 − h)(1 − δ) + δbN) .

So given any v ∈R+:

T1B(v) = inf
b,bN

b

s.t. π(v, b) ≥ 0, b = (1 − h)(1 − δ) + δbN, and
(

v − (1 − δ)θE

δ
, bN

)
∈ Y

= inf
bP ,bN

b = (1 − h)(1 − δ) + δbN

s.t. π(v, b) ≥ 0 and
(

v − (1 − δ)θE

δ
, bN

)
∈ Y

=
{

b = (1 − h)(1 − δ)δB
(

v−(1−δ)θE
δ

)
if π(v, b) ≥ 0,

∞ otherwise.

• Lastly, given any v ∈R+:

Tf B(v) = inf
b,bN

b

s.t. π(v, b) ≥ 0, b = δbN, and
(v

δ
, bN

)
∈ Y

=
{

b = δB
(

v
δ

)
if π(v, b) ≥ 0,

∞ otherwise. !

8.4. The efficient frontier

In this subsection, we characterize the frontier BE∗ of the equilibrium value set. We first 
translate APS’s self-generation to the setting of frontiers. This, along with Lemma 7 delivers our 
Bellman equation, Corollary 5. Then, in Lemma 9, we characterize aligned optimal equilibrium. 
Finally, in Lemma 11, we fully characterize the frontier BE∗ .

Lemma 8. Suppose Y ∈Y with W(Y) = Y . Then T BY = BY .

Proof. First, because W is monotone, W(co[graph(BY )]) ⊆ W(Y) = Y . Thus the efficient fron-
tier of the former is higher than that of the latter. That is, T BY ≥ BY .

Now take any v ∈ dom(BY ) such that y := (v, BY (v)) is an extreme point of Y . We want to 
show that T BY (v) ≤ BY (v).

By Lemma 3, y ∈ Wf (Y ) ∪ ⋃
a∈[0,1] Wa(Y ).

• If y ∈ Wf (Y ), then yδ , 00 ∈ Y , so that the extreme point y must be equal to 00. But in this case, 
T BY (v) = T BY (0) = 0 = BY (0) = BY (v).
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• If y ∈ Wa(Y ) for some a ∈ [0, 1], say witnessed by yP , yN ∈ Y , then let

zP := (v(yP ),BY (v(yP )))

zN := (v(yN),BY (v(yN)))

z := h
[
(1 − δ)(θ̄ ,0) + δ(zP − zN)

]
+ (1 − h)a

[
(1 − δ)(θ ,1) + δ(zP − zN)

]
+ δzN .

Then

b(z) = (1 − h)(1 − δ)a + [h + (1 − h)a]δBY (v(yP )) + (1 − h)(1 − a)δBY (v(yN))

≤ (1 − h)(1 − δ)a + [h + (1 − h)a]δb(yP ) + (1 − h)(1 − a)δb(yN)

= b(y) = BY (v),

and zP , zN witness z ∈ Wa(co[graph(BY )]). In particular, T BY (v) = T BY (v(z)) ≤ b(z) ≤
BY (v).

Next, consider any v ∈ dom(BY ). There is some probability measure µ on the extreme 
points of Y such that (v, BY (v)) =

∫
Y y dµ(y). By minimality of BY (v), it must be that 

y ∈ graph(BY ) a.s.-µ(y). So letting µ1 be the marginal of µ on the first coordinate, (v, BY (v)) =∫
v(Y )(u, BY (u)) dµ1(u), so that

BY (v) =
∫

v(Y )

BY dµ1 ≥
∫

v(Y )

T BY dµ1 ≥ T BY (v),

where the last inequality follows from Jensen’s inequality.
This completes the proof. !

The Bellman equation follows immediately.

Corollary 5. B := BE∗ solves the Bellman equation B = cvx
[
min

{
Tf B, T0B, T1B

}]
.

Aligned optimal equilibrium In line with the main text, we now proceed to characterize the 
payoffs attainable in equilibria with no bad projects.

Lemma 9.

1. There exist productive aligned equilibria if and only if Assumption 1 holds.
2. Every aligned equilibrium generates revenue of at most ω.
3. If Assumption 1 holds, then (ω, 0) ∈ E∗.

Proof. We proceed in reverse, invoking Lemma 7 throughout.
For (3), define B ∈ B via B(v) = 0 for v ∈ [0, ω] and B(v) = ∞ otherwise. Notice that, 

T B(ω) ≤ T0B(ω) = δhB(ω−(1−δ)θE
δ ) + δ(1 − h)B(ω−(1−δ)ω

δ ) = 0, where the second equality 
holds by Assumption 1. Because T B is convex, B is self-generating, and thus B ≥ BE∗ . (3) 
follows.

We now proceed to verify (2), i.e. that v̂ > ω implies that (0, v̂) /∈ E∗.
Suppose v > ω has BE∗(v) = 0. Then BE∗ |[0,v] = 0, and

0 = BE∗(v) = T BE∗(v) = min{Tf BE∗(v), T0BE∗(v), T1BE∗(v)}.
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Notice that T BE∗(v) += T1BE∗(v) as the latter is strictly positive. If T BE∗(v) = Tf BE∗(v), then 
since BE∗ is increasing,

BE∗

(
v + 1 − δ

δ
(v − ω)

)
≤ BE∗

(
v + 1 − δ

δ
v

)
= δ−1Tf BE∗(v) = 0.

Finally, if T BE∗(v) = T0BE∗(v), then32

0 = BE∗

(
v − (1 − δ)ω

δ

)
= δBE∗

(
v + 1 − δ

δ
(v − ω)

)
.

So either way, BE∗
(
v + 1−δ

δ (v − ω)
)
= 0 too.

Now, if v̂ > ω with (0, v̂) ∈ E∗, then applying the above inductively yields a sequence vn →
∞ on which BE∗ takes value zero.33 This would contradict the compactness of BE∗ ’s proper 
domain.

By (3) we know that productive aligned equilibria exist if Assumption 1 holds. To see the 
necessity of the assumption, suppose for a contradiction that it fails and yet some productive 
aligned equilibrium exists. Let v be the agent’s continuation value at some on-path history at 
which the principal delegates. By (2), we know v ≤ ω. As Assumption 1 fails, we then know 
δv < (1 − δ)θ , contradicting agent IC. !

Proof of Proposition 1. Given Assumption 1, the proposition follows directly from Lemma 9
above. !

Optimal equilibrium We now focus on the frontier of the whole equilibrium set. Before pro-
ceeding to the full characterization, we establish a single crossing result: indiscriminate project 
adoption is initially used only for the highest agent values.

Lemma 10. Fix B ∈B, and suppose B−1(0) = [0, ω]:

1. If v > ω, then T0B(v) < Tf B(v) (unless both are ∞).
2. There is a cutoff v ≥ ω such that

{
T0B(v) ≤ T1B(v) if v ∈ [ω, v);
T0B(v) ≥ T1B(v) if v > v.

Proof. B(ω) = 0, and B is convex. Therefore, B is strictly increasing above ω on its domain, so 
that34 Ťf B(v) > Ť0B(v), confirming the first point.

Given v,

v − (1 − δ)[θE − θ ]
δ

− v − (1 − δ)θE

δ
= 1 − δ

δ
θ

is a nonnegative constant.

32 Since a weighted average of two nonnegative numbers can be zero only if both numbers are zero.
33 Let v0 = v̂ and vn+1 = vn + 1−δ

δ (vn − ω) ≥ v̂ + n(v̂ − ω).
34 The relationship is as shown if Ť0B(v) < ∞. Otherwise, Tf B(v) = T0B(v) = ∞.
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Since B is convex, it must be that the continuous function

v 4→ Ť0B(v) − Ť1B(v) = δ(1 − h)

[
B

(
v − (1 − δ)[θE − θ ]

δ

)
− B

(
v − (1 − δ)θE

δ

)]

− (1 − h)

is increasing on its proper domain. The second point follows.35 !

Our characterization of the equilibrium frontier B can now be stated.

Lemma 11 (Equilibrium Frontier). Suppose Assumption 1 holds, and let B := BE∗ and v̄ :=
max dom(B).

1. v̄ ≥ ω, and B(v) = 0 for v ∈ [0, ω].
2. If v̄ > ω, then

B(v) = T0B(v) for v ∈
[
ω, δv̄ + (1 − δ)(θE − θ)

]
;

B(v) is affine in v for v ∈
[
δv̄ + (1 − δ)(θE − θ), v̄

]
;

B(v̄) = T1B(v̄).

3. If v̄ > ω, then π(v̄, B(v̄)) = 0.

Proof. The first point follows directly from Lemma 9. Now suppose v̄ > ω.
Let v := δv̄ + (1 − δ)(θE − θ). Any v > v has v−(1−δ)[θE−θ]

δ >
v−(1−δ)[θE−θ ]

δ = v̄, so that 

B
(

v−(1−δ)[θE−θ ]
δ

)
= ∞, and therefore (appealing to Lemma 7) T0B(v) = ∞. Therefore, the 

cutoff defined in Lemma 10 is ≤ v.
Since T0B, T1B are both convex, there exist some v0, v1 ∈ [ω, v̄] such that v0 ≤ v1, v, and:

B(v) = 0 for v ∈ [0,ω];
B(v) = T0B(v) for v ∈ [ω, v0] ;
B(v) is affine in v for v ∈ [v0, v1] ;
B(v) = T1B(v) for v ∈ [v1, v̄] .

Let m > 0 denote the left-sided derivative of B at v1 (which is simply the slope of B on (v0, v1)

if v0 += v1).
Let [v0, v1] be maximal (w.r.t. set inclusion) such that the above decomposition is still correct.
Notice then that v1 = v̄. Indeed, for v ∈ [v1, v̄), the right-hand side derivative satisfies m ≤

(T B)′(v) = (T1B)′(v) = B
(

v−θE
δ

)
, by convexity of B and Lemma 7. Minimality of v0 then 

implies v−θE
δ ≥ v0, so that v−θE

δ ∈ [v0, v1). Then, for v in a neighborhood of v1 in [v1, v̄), we 
have B ′(v) = (T1B)′(v) = m. Maximality of v1 tells us that v1 = v̄.

Finally, we need to show that v0 = v. Now, by minimality of v0, it must be that for any 
v ∈ [0, v0), the right-side derivative B ′(v) < m. If v0 < v (so that v0−(1−δ)[θE−θ]

δ < v), then 
Lemma 7 gives us

35 Because wherever ŤiB(v) ≥ Ťj B(v), we have TiB(v) ≥ Tj B(v) as well.
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m = B ′(v0) ≤ T0B
′(v0)

= hB ′
(

v0 − (1 − δ)θE

δ

)
+ (1 − h)B ′

(
v0 − (1 − δ)[θE − θ ]

δ

)

= hB ′
(

v0 − (1 − δ)θE

δ

)
+ (1 − h)m < m,

a contradiction. Therefore v0 = v, and the second point of the theorem follows.
For the last point, assume v̄ > ω and yields strictly positive profits. This implies that 

π(v, T1B(v̄)) = π(v, B(v̄)) > 0. Then, for sufficiently small γ > 0, the function Bγ ∈ B given 

by Bγ (v) =
{

B(v) if v ∈ [0, v̄]
T1B(v) if v ∈ [v̄, v̄ + γ ] is self-generating, contradicting the fact that E∗ is the 

largest self-generating set. !

To better understand efficient equilibrium behavior, the following lemma is useful.

Lemma 12. Let v̄, B be as in Lemma 11. If v̄ > ω, then there are constants α, β > 0 such that 
B(ω + ε) = αε1+β for sufficiently small ε > 0.

Proof. For ε ∈ (0, v̄ − ω), define Q(ε) := B(ω+ε)−B(ω)
ε = 1

ε B(ω + ε). For small enough ε > 0,

Q(ε) = δ

ε

[
(1 − h)B

(
(ω + ε) − (1 − δ)ω

δ

)
+ h0

]
= (1 − h)Q

(ε

δ

)
.

For t ∈ (−∞, log(v̄ − ω)), let q(t) := logQ(et ). Then q is a continuous function, and q(t −
log δ) = q(t) − log(1 − h) for low enough t ∈ R. Therefore, far enough to the left of its domain, 
q is affine with slope β := log(1−h)

log δ > 0. That is, there is a constant α > 0 such that q(t) =
logα + βt for low enough t . Therefore, for small enough ε > 0,

Q(ε) = eq(log ε) = elogα+β log ε = αεβ =⇒ B(ω + ε) = αε1+β .

Lastly, nonnegativity of B and Proposition 1 tell us α > 0. !

Lastly, the next lemma records a sufficient condition for existence of some equilibrium with 
an initial bad project.

Lemma 13. Let v̄, B be as defined in Lemma 11. If Assumption 1 holds and δ ≥ δ̄, then v̄ > ω.

Proof. By Lemma 9, we know B(ω) = 0, implying (in the notation of Lemma 11)

Ť1B((1 − δ)θE + δω) = (1 − δ)(1 − h) + B(ω) = (1 − δ)(1 − h).

That δ ≥ δ̄ then tells us, by direct computation, that π ((1 − δ)θE + δω, (1 − δ)(1 − h))) ≥ 0. 
Therefore, T1B((1 − δ)θE + δω) = Ť1B((1 − δ)θE + δω) < ∞. It follows that v̄ ≥ (1 − δ)θE +
δω > ω. !

Proof of Theorem 2
We now complete the proof of Theorem 2.
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Proof. Let v̄, B be the highest agent value and the efficient frontier function, as in the statement 
of Lemma 11. In view of Lemmata 11 and 13, all that remains is to show that the function B is 
strictly convex on 

[
ω, δv̄ + (θE − θ)

]
, and that the equilibrium value set is in fact Ê := {(v, b) ∈

[0, v̄] ×R : B(v) ≤ b ≤ m0v} = {(v, b) ∈ [0, v̄] ×R : b ≥ B(v), π(v, b) ≥ 0}.
For strict convexity, it suffices to note the following:

• There is some v0 ∈ (ω, δv̄ + (1 − δ)ω) such that B is strictly convex on (ω, v0).
• For every v ∈ (ω, δv̄ + (1 − δ)ω), there is some vP (v) ∈ (ω, v) such that B is strictly convex 

on [ω, v] if it is strictly convex on [ω, vP (v)].

Indeed, these together imply that

max {v ∈ [ω, δv̄ + (1 − δ)ω] : B is strictly convex on [ω, v]} ,

which must exist, is equal to δv̄ + (1 − δ)ω. Lemma 12 guarantees the former condition, and 
the latter condition comes from the functional form of B , letting vP (v) := v−ω−(1−δ)θ

δ . Strict 
convexity obtains.

Now, we want to show that E∗ = Ê. To that end, let us show the following claim concerning 
B = BE∗ :

extÊ⊆ {(ω,m0ω)} ∪ graph(B).

Indeed, consider any (v, b) ∈ extÊ. As such a point lies in the convex hull of {(v, B(v), (v, m0v)}, 
extremeness implies that b ∈ {B(v), m0v}. There is nothing to show if b = B(v), so focus on the 
case of b = m0v. Next, extremeness implies that v ∈ {0, v̄}, as (v, m0v) is a convex combination 
of (v̄, m0v̄) and (0, 0). If either v = 0 or v̄ > ω, then (appealing to Lemma 13) (v, b) belongs to 
the graph of B . The only remaining possibility is that b = m0v and v = v̄ = ω. This confirms the 
claim.

As the graph of B is, by definition, contained in E∗, all that remains is to show that (ω, m0ω) ∈
E∗. Indeed, the claim would then tell us that

extÊ⊆ E∗ ⊆ Ê,
which would prove the result because E∗ and Ê are both compact and convex.

To see that (ω, m0ω) ∈ E∗, consider the following strategy profile:

• Whenever the principal delegates to the agent, the agent adopts the project if it is good, and 
adopts it with probability h(θ̄−c)

(1−h)(c−θ) if it is bad.
• The principal initially delegates. If the principal froze last period, she freezes. If the principal 

delegated last period, and the agent did not adopt that project, the principal delegates next 
period. If the principal has always delegated, and the agent adopts a project this period, 
then the principal freezes next period with probability (1−δ)θ

δω , and delegates next period with 
complementary probability.36

One can verify directly that the above is an equilibrium (with the principal always indifferent, 
and the agent indifferent whenever facing a bad project) which generates a payoff of exactly 
(ω, m0ω), as required. !

36 That (1−δ)θ
δω ∈ [0, 1] follows from Assumption 1.
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9. Appendix: delayed differential equation

Counting time in different units, we may normalize r = 1 (or, equivalently, interpret η as ηr in 
all that follows).

Taking a change of variables, from agent value v to account balance x = v−ω
θ , the following 

system of equations describes the frontier of the equilibrium value set:

(1 + η)b(x) = ηb(x − 1) + xb′(x) for x > 0,

b(x) = 0 for x ≤ 0.

Proposition 4. Consider the above system of equations. For any α ∈R, there is a unique solution 
b(α) to the above system with b(α)(1) = α. Moreover b(α) = αb(1).
Letting b = b(1):

1. b(x) = x1+η for x ∈ [0, 1].
2. b is twice-differentiable on (0, ∞) and globally C1 on R.
3. b is strictly convex on (0, ∞) and globally convex on R. In particular, b is unbounded.
4. b is strictly increasing and strictly log-concave on (0, ∞).

Proof. First consider the same equation on a smaller domain,

(1 + η)b(x) = xb′(x) for x ∈ (0,1].
Taking the standard solution of a first-order linear ODE, the full family of solutions is 
{b(α,1)}α∈R, where b(α,1)(x) = αx1+η for x ∈ (0, 1].

Now, given a particular partial solution b : (−∞, z] → R up to z > 0, there is a unique solution 
to the first-order linear differential equation b̂ : [z, z + 1] → R given by

b̂′(x) = 1 + η

x
b̂(x) − η

x
b(x − 1).

Proceeding recursively, there is a unique solution to the given system of equations for each α. 
Moreover, since multiplying any solution by a constant yields another solution, uniqueness im-
plies b(α) = αb(1). Now let b := b(1).

We have shown that b(x) = x1+η for x ∈ [0, 1], from which it follows readily that b is C1+5η6

on (−∞, 1).
Given x > 0, for small ε,

(x + ε)
b′(x + ε) − b′(x)

ε

= 1
ε
(x + ε)b′(x + ε) − 1

ε
xb′(x) − b′(x)

= 1
ε

[
(1 + η)b(x + ε) − ηb(x + ε − 1)

]
− 1

ε

[
(1 + η)b(x) − ηb(x − 1)

]
− b′(x)

= η

[
b(x + ε) − b(x)

ε
− b(x − 1 + ε) − b(x − 1)

ε

]
+

[
b(x + ε) − b(x)

ε
− b′(x)

]

ε→0−−→ η[b′(x) − b′(x − 1)] + 0.

So b is twice differentiable at x > 0 with b′′(x) = η

x
[b′(x) − b′(x − 1)].
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Let x̄ := sup{x > 0 : b′|(0,x] is strictly increasing}. We know x̄ ≥ 1, from our explicit solu-
tion of b up to 1. If x̄ is finite, then b′(x̄) > b′(x̄ −1). But then b′′(x̄) = η

x [b′(x) −b′(x −1)] > 0, 
so that b′ is strictly increasing in some neighborhood of x̄, contradicting the maximality of x̄. 
So x̄ = ∞, and our convexity result obtains. From that and b′(0) = 0, it is immediate that b is 
strictly increasing on (0, ∞).

Lastly, let f := logb|(0,∞). Then f (x) = (1 + η) logx for x ∈ (0, 1], and for x ∈ (1, ∞),

(1 + η)ef (x) = ηef (x−1) + xef (x)f ′(x)

=⇒ (1 + η) = ηef (x−1)−f (x) + xf ′(x)

=⇒ 0 = ηef (x−1)−f (x)[f ′(x − 1) − f ′(x)] + f ′(x) + xf ′′(x)

=⇒ −xf ′′(x) = ηef (x−1)−f (x)[f ′(x − 1) − f ′(x)] + f ′(x)

≥ ηef (x−1)−f (x)[f ′(x − 1) − f ′(x)], since f = logb is increasing.

The same contagion argument will work again. If f has been strictly concave so far, then f ′(x) <
f ′(x − 1), in which case −xf ′′(x) > 0 and f will continue to be concave. Since we know f |(0,1]
is strictly concave, it follows that f is globally such. !

The first point of the following proposition shows that the economically relevant boundary 
condition of our DDE uniquely pins down the solution b for any given account cap. The second 
point shows that as the account cap increases, so does the number of bad projects (in expected 
discounted terms) anticipated at the cap.

Proposition 5. For any x̄ > 0

1. There is a unique α = α(x̄) > 0 such that b(α)(x̄) = 1 + b(α)(x̄ − 1).
2. bα(x̄)(x̄) is increasing in x̄.

Proof. The first part is immediate, with α = 1
b(1)(x̄)−b(1)(x̄−1)

.

For the second part, notice that b(x̄)
b(x̄−1) is decreasing in x̄ because b is log-concave. Then,

bα(x̄)(x̄) = α(x̄)b(x̄) = b(x̄)
b(x̄)−b(x̄−1) = 1

1− b(x̄−1)
b(x̄)

is increasing in x̄. !

10. Appendix: comparative statics

In this section, we prove Proposition 3.
For any parameters η, θ̄, θ , c satisfying Assumption 1, and for any balance and bad projects 

x, b satisfying x ≥ b > 0, define the associated profit

π̂(x, b|η, θ̄ , θ , c) := η(θ̄ − θ) + θx − c

[
η(θ̄ − θ) + θx − θb

θ̄
+ b

]

=
(

1 − c

θ̄

)
[η(θ̄ − θ) + θx] − c

(
1 − θ

θ̄

)
b

= (θ̄ − c)η +
(

1 − c

θ̄

)
θ(x − η) − c

(
1 − θ

θ̄

)
b.
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For reference, we compute the following derivatives of profit:

∂π̂

∂θ̄
= η − cθ

−1

θ̄2
[x − b − η] =

(
1 − cθ

θ̄2

)
η + cθ

θ̄2
(x − b) > 0.

∂π̂

∂θ
=

(
1 − c

θ̄

)
(x − η) + c

1

θ̄
b, which implies

(θ̄ − θ)
∂π̂

∂θ
+ π̂ = (θ̄ − c)η +

(
1 − c

θ̄

)
θ̄(x − η) − 0b = (θ̄ − c)x > 0.

∂π̂

∂c
= −1

θ̄

[
η(θ̄ − θ) + θx + (θ̄ − θ)b

]
< 0.

Fix parameters (θ̄, θ , c), and let x̄∗ be as delivered in Theorem 3. We first show that slightly 
raising either of θ̄, θ or slightly lowering c weakly raises the cap, strictly if x̄∗ > 0.

• If x̄∗ = 0, there is nothing to show, so assume x̄∗ > 0 henceforth. Notice that the expected 
discounted number of bad projects when at the cap depends only on η and the size of the 
cap. By Theorem 3, π̂(x̄∗, b|η, θ̄ , θ , c) = 0.

• Consider slightly raising θ̄ or θ , or slightly lowering c. By the above derivative computations, 
the profit of the DCB contract with cap x̄∗ is strictly positive.

• For any of the above considered changes, the DCB contract with cap x̄∗ has strictly positive 
profits. Appealing to continuity, a slightly higher cap still yields positive profits under the 
new parameters, and is therefore consistent with equilibrium by Proposition 2. Then, appeal-
ing to Theorem 3 again, the cap associated with the new parameters is strictly higher than 
x̄∗.

Now we consider comparative statics in the profit-maximizing initial account balance. We 
will fix parameters (θ̄, θ , c), and consider raising either of θ̄, θ or lowering c.

• Again, if x̄∗ = 0 at the original parameters, there’s nothing to check, so assume x̄∗ > 0.
• Let b̌ be some solution to the DDE in Section 9, so that the expected discounted number 

of bad projects at a given cap x̄ and balance x is b(x|x̄) = b̌(x)

b̌(x̄) − b̌(x̄ − 1)
. Because b̌ is 

strictly increasing and strictly convex (by work in Section 9), we know that ∂
∂x b(x|x̄) is 

strictly decreasing in x̄. Therefore, by our comparative statics result for the cap, the parame-
ter change results in a global strict decrease of ∂

∂x b(x|x̄∗).
• By the form of π̂ and by convexity of b(·|x̄), the unique optimal initial balance is the balance 

at which ∂
∂x b(x|x̄) is equal to

m0 =
θ

(
1 − c

θ̄

)

c
(

1 − θ

θ̄

) = θ(θ̄ − c)

c(θ̄ − θ)
,

which increases with the parameter change.
• As m0 increases and ∂

∂x b(x|x̄∗) decreases (at each x) with the parameter change, the 
optimal balance x∗ must increase (given convexity) to satisfy the first-order condition 
∂
∂x

∣∣∣∣
x=x∗

b(x|x̄) = m0.
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