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Disclosure to a Psychological Audience†

By Elliot Lipnowski and Laurent Mathevet*

We study how a benevolent expert should disclose information to 
an agent with psychological concerns. We !rst provide a method 
to compute an optimal information policy for many psychological 
traits. The method suggests, for instance, that an agent suffering 
from temptation à la Gul and Pesendorfer (2001) should not know 
what he is missing, thereby explaining observed biases as an opti-
mal reaction to costly self-control. We also show that simply recom-
mending actions is optimal when the agent is intrinsically averse 
to information but has instrumental uses for it. This result, which 
circumvents the failure of the Revelation Principle in psychological 
environments, simpli!es disclosure and informs the debate regarding 
mandated disclosure. (JEL D11, D82, D83, D91)

Disclosing or concealing information can in1uence a person’s choices by 
affecting what he knows. In many contexts, information disclosure deci-

sions aim to improve the welfare of the otherwise uninformed party: in public 
policy, for instance, regulators impose disclosure laws, such as required trans-
parency by a seller of a good to a buyer, so that the buyer can make a better 
decision. But should a well-intentioned advisor always reveal everything? 
In standard economics, the answer is yes because a better-informed person 
makes better decisions (Blackwell 1953). However, parents do not always tell 
the whole truth to their children, people conceal details about their personal 
lives from family elders, doctors do not reveal every minute detail of their 
patients’ health, future parents do not always want to know the sex of their 
unborn children, and many do not want to know the caloric content of the food  
they eat.

We study how an informed expert should disclose information to an agent with 
psychological characteristics, i.e., someone whose state of mind has a direct impact 
on his well-being. This question is faced by many trusted advisors, from family and 
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friends to teachers and doctors. In medical science, the direct relevance of patients’ 
beliefs is well-known, as Ubel (2001) reports:

Mildly but unrealistically positive beliefs can improve outcomes in patients 
with chronic or terminal diseases … Moreover, unrealistically optimistic 
views have been shown to improve quality of life.

In choosing which medical tests to take, for example, many patients desire to be 
informed about their health only when the news is good, but prefer to know less 
if the news is bad. Even in this simple case, it is not obvious how best to disclose 
information. The 2rst scheme that comes to mind—reveal the news when it is good 
and say nothing otherwise—accomplishes little here, since no news then reveals bad 
news. However, in line with Benoît and Dubra (2011), it is possible to leave many 
(but not all) patients with unrealistically positive beliefs, even if they process infor-
mation in a Bayesian way.

In a regulatory context, where lawmakers often mandate disclosure with the unin-
formed party’s welfare in mind, Loewenstein, Sunstein, and Golman (2014) argue 
that psychology may lead one to rethink public disclosure policies. For example, a 
comprehensive accounting of costs should include the psychological costs of deal-
ing with the information. Think, for example, of giving information about foregone 
food to someone who is fasting or dieting. This might create temptation if he resists, 
and disappointment if he succumbs. These considerations are relevant to all indus-
tries with regulated disclosure, ranging from 2nancial services and food services to 
medical services and more (see Ben-Shahar and Schneider 2011).

The Model in Brief.—In our model, an expert decides which information an 
agent will obtain about the state of nature. After receiving his information from 
the expert, the agent updates his beliefs and then acts. The expert chooses a dis-
closure policy to maximize the agent’s ex ante expected utility. Depending on the 
application, the expert can be any of a well-intentioned advisor (e.g., a doctor) 
who decides which information to seek on behalf of the agent (e.g., which medical 
tests to perform); the agent himself, deciding which information to obtain (e.g., 
whether to read nutritional information for a planned meal); or a third party who 
regulates information disclosure between a sender (e.g., a seller) and the agent. In 
each of these cases, the expert sets the disclosure policy ex ante, in ignorance of 
the realized state, and thus faces no interim opportunity to lie. Accordingly, our 
principal enjoys the same commitment power as that of Kamenica and Gentzkow 
(2011).

We model psychology by assuming that the agent’s welfare depends not only on 
the physical outcome of the situation, but also directly on his updated beliefs. In 
doing so, we employ the framework of psychological preferences (Geanakoplos, 
Pearce, and Stacchetti 1989), which captures varied behavioral and psychological 
phenomena including those listed below.

The Theory.—This paper proposes a method that simpli2es the search for opti-
mal information policies. The well-known concave envelope result in Kamenica 
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and Gentzkow (2011) extends readily to our environment,1 but in some  applications 
it may not be enough—as deriving the concave envelope of a function can be 
 demanding. In response, we develop a hands-on method for concavi2cation and 
bring with it the natural economic structure amenable to this method.

Our key observation is that local information preferences can be used to simplify 
the search for a globally optimal disclosure policy. Though straightforward once 
formally expressed, our approach is surprisingly powerful when it can be applied 
without solving the agent’s problem (i.e., without needing to derive the function 
that will be concavi2ed). This is the case for many popular behavioral models, such 
as temptation and self-control problems (Gul and Pesendorfer 2001), belief dis-
tortion (Brunnermeier, Papakonstantinou, and Parker 2016), ego utility (Kőszegi 
2006), shame (Dillenberger and Sadowski 2012), and reference-dependent choice 
(Kahneman and Tversky 1979, Kőszegi and Rabin 2009). In those models, the qual-
itative form of the psychological effect suggests many beliefs at which the agent will 
prefer more information, leading the expert to the heart of the underlying tradeoff.

The rest of the paper takes a more applied perspective. First, we illustrate our 
method in the above models, with a particular focus on temptation and self-control, 
and then we move on to issues of implementation.

Applications: Reference Dependence and Temptation.—How should we talk to 
someone who is loss-averse or suffers from temptation? When losses weigh on the 
agent at constant sensitivity, as studied in Kőszegi and Rabin (2009), there is no 
disappointment worth averaging. The agent is psychologically willing to incur max-
imal disappointment or none at all. When the same is true for gains, these maximal 
or null surprises correspond to an all-or-nothing policy. Either the person can bear 
information, in which case we should tell him the whole truth to enable good deci-
sion-making, or he cannot, in which case we should say nothing.

In the case of temptation à la Gul and Pesendorfer (2001), the optimal policy 
depends on the nature of information. Focusing on a discrete consumption-saving 
problem, in which an individual has impulsive desires to consume rather than save, 
we demonstrate how the method of posterior covers can be brought to bear quite 
generally. The simple yet resonant lesson is that, as studied in psychology, a tempted 
agent does not want to know what he is missing. This desire to limit information 
is something one observes in real life. For example, someone who has decided to 
save this month might not sign up for a news feed about restaurant openings he will 
not be enjoying. By formalizing exactly in which way the agent does not want to 
know what he is missing, our analysis explains this desire as an optimal reaction to 
costly self-control. This phenomenon is an instance of strategic ignorance, related to 
Carrillo and Mariotti (2000) and Bénabou and Tirole (2002).2

1 Concavi2cation has a history in repeated games with incomplete information (Aumann and Maschler 1995), 
geometric moment theory (Kemperman 1968), optimal portfolio management (Anastassiou 2006), and more.

2 In the Strotzian world studied by those papers, the consumer limits his own information today to alter his cho-
sen action tomorrow; in the model of Gul and Pesendorfer (2001), even if information does not affect the agent’s 
choice—which it might—it is still valuable to keep him ignorant about the value of more tempting choices that he 
resists. This way, the agent does not suffer as much from foregone opportunity.
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Application: Giving Advice.—The existence of an optimal policy in theory does 
not tell one how to implement it in practice. In the two contexts of healthcare and 
campus safety, for instance, mandated disclosure requires an avalanche of information 
concerning all possible side effects of a medication and all recent on-campus crimes, 
respectively. Although there are reasons for wanting such transparency, professionals 
are questioning the bene2ts. As Ben-Shahar and Schneider (2011, 746) argue:

When we abandon the unreal world of mandated disclosure and ask how 
people really make decisions, we see that they generally seek—and that 
the market often supplies—not data, but advice.

We demonstrate that a simple class of policies, advanced in the public debate, is in 
fact optimal for a broad class of agents: an expert can simply advise an agent by 
recommending an action. If an agent innately likes information, this minimalist class 
leaves something to be desired, but what if, to agents who like information only for 
its instrumental value (i.e., psychologically information-averse agents), we only rec-
ommend a behavior? A standard approach would use the Revelation Principle—that 
replacing every message with a recommendation preserves incentives. Unfortunately, 
the Revelation Principle fails in psychological settings. Despite this negative obser-
vation, Theorem 2 says that some incentive-compatible recommendation policy is 
optimal when preferences display psychological information aversion.

Related Literature.—This paper is part of a recently active literature on informa-
tion design, as in Brocas and Carrillo (2007), Gentzkow and Kamenica (2014), Rayo 
and Segal (2010), and Gentzkow and Kamenica (2016).3 The most related works, 
methodologically speaking, are Kamenica and Gentzkow (2011) and Gentzkow and 
Kamenica (2014), who also study information transmission by a sender with full 
commitment power. We adopt the same overall method (albeit in a different envi-
ronment) with a practical mindset, which leads us to provide applied tools beyond 
concavi2cation and to explore the subtleties of disclosure under various psycholog-
ical attitudes.

The relevance of psychological preferences in information contexts is exempli-
2ed by Schweizer and Szech (2012),4 who study optimal revelation of life-changing 
information between a sender and a receiver with anticipatory utility, and also by 
Ely, Frankel, and Kamenica (2015), who study dynamic information disclosure to 
an agent who gets satisfaction from being surprised or feeling suspense. The latter 
describe how a 2xed amount of information should be parceled out over time to 
maximize surprise or suspense.

There is a conceptual connection between our classi2cation of information prefer-
ences (Section III) and that of Grant, Kajii, and Polak (1998) in their study of  intrinsic 
informational preferences (over lotteries of lotteries) absent the  reduction axiom (à 

3 See also the broader literature on optimal information structures such as Ostrovsky and Schwarz (2010), 
Caplin and Eliaz (2003), and Hörner and Skrzypacz (2016).

4 See also Caplin and Leahy (2004), who study a detailed interaction between a doctor and a patient with qua-
dratic psychological preferences, with two-sided private information.
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la Kreps and Porteus 1978). Our conceptual distinction between  psychological and 
behavioral information preferences, absent in their world, is critical for information 
disclosure.

The paper is organized as follows. Section I introduces psychological preferences 
and the language of random posteriors. Section II presents the psychological agent 
and characterizes his possible attitudes toward information. Section III develops the 
method of posterior covers. Section IV applies the method to analyze disclosure to 
a tempted agent. Section V delineates when good advice suf2ces for optimal infor-
mation. Section VI concludes.

I. The Environment

An agent must make a decision when the state of nature  θ ∈ Θ  is uncertain.5 
The agent has (full support) prior  $ ∈ ∆Θ , and receives additional information 
about the state from the principal. After receiving said information, the agent forms 
a posterior belief by updating his prior, and then he makes a decision.

A. Psychological Preferences

An outcome is an element   (a, θ, ν)  ∈ A × Θ × ∆Θ , where  a  is the action taken 
by the agent,  θ ∈ Θ  is the true state of the world, and  ν ∈ ∆Θ  denotes the agent’s 
posterior belief at the moment when he makes his decision. We assume that the 
agent has a utility function  u  :  A × Θ × ∆Θ → ℝ  over outcomes. In a slight abuse 
of notation, we can de2ne  u (a, ν)  ≔  ∫ Θ       u (a, θ, ν)  dν (θ)  . For a benevolent sender 
with commitment (as studied here), these “reduced preferences”  u  :  A × ∆Θ → ℝ  
are the only relevant feature of the agent’s preferences.6 Given posterior beliefs  ν ,  
the agent chooses an action  a ∈ A  to maximize  u (a, ν) .  We assume either that  
u  is continuous, or that  u  is upper-semicontinuous and the state space  Θ  is 2nite. 
For every posterior belief  ν ∈ ∆Θ , de2ne the indirect utility associated with  ν  as  
 U (ν)  =  max a∈A   u (a, ν)  .

In the classical case, the agent’s belief does not enter his welfare, that is,  
 u ≡ u (a, θ)  , so that   피 θ∼ν   u (a, θ)   is af2ne in beliefs  ν  for every  a . In our environ-
ment, the agent’s satisfaction depends not only on the physical outcome, but also 
on his posterior beliefs. In the literature, such an agent is said to have psychological 
preferences (Geanakoplos, Pearce, and Stacchetti 1989).

This formulation covers a wide range of phenomena. Below is a list of psycho-
logical models, familiar from behavioral economics and behavioral 2nance, which 
can be readily accommodated by our forthcoming method (see Section A in the 
Appendix for a more extensive list, along with optimal disclosure  prescriptions 

5 In this paper, all spaces are assumed nonempty, compact, metrizable spaces, while all maps are assumed Borel-
measurable. For any space  Y,  we let  ∆Y = ∆ (Y )   denote the space of Borel probability measures on  Y , endowed 
with the weak*-topology, and so itself compact and metrizable. Given  π ∈ ∆Y,  let  supp (π)   denote the support of  π  (i.e., the smallest closed subset of  Y  of full  π -measure).

6 This contrasts with the cheap talk setting of Caplin and Leahy (2004), wherein the realized state affects the 
hypothetical gains of a deviating sender.
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for each). For simplicity, let  Θ =  {0, 1}  , and write any posterior belief as  
 ν = Pr ( {θ = 1} )  :

(a) (Purely psychological agent): Let

  u (a, θ, ν)  = −  var θ∼ν   (θ)  = − ν (1 − ν)  

represent an agent whose only satisfaction comes from his degree of certainty, as 
quanti2ed by the variance   var θ∼ν   (θ)  =  피 θ∼ν   ( θ   2 )  −   ( 피 θ∼ν   θ)    2  .

(b) (Stubbornness/prior-bias): For  ρ > 0  and classical motive   u C   , let

  u (a, θ, ν)  =  u C   (a, θ)  − ρ | ν − $ | 
represent an agent who wants to make good choices but experiences discomfort 
when information con1icts in any way with his prior beliefs.

(c) (Temptation and self-control): Given two classical utility functions   u R    
(rational) and   u T    (tempted), let

  u (a, θ, ν)  =  u R   (a, θ)  −  max  
b∈A

     피  θ ˆ  ∼ν   [ u T   (b,  θ ˆ  )  −  u T   (a,  θ ˆ  ) ] , 

in the spirit of Gul and Pesendorfer (2001). The agent receives his information and 
then chooses an action in a 2nite menu  A .7 His non-tempted self experiences utility   
u R   (a, θ)   from action  a , while the forgone value   max b∈A    피  θ ˆ  ∼ν   [ u T   (b,  θ ˆ  )  −  u T   (a,  θ ˆ  ) ]   is 
a cost of self-control faced by the tempted side.

B. Signals and Random Posteriors

The principal discloses information about the state to the agent by choosing a 
signal   (S, σ)  , which consists of a space  S  of messages and a map  σ   : Θ → ∆S . 
In any state  θ , the agent sees a message  s ∈ S  drawn according to  σ ( · | θ)  ∈ ∆S , 
and then forms a posterior belief via Bayesian updating. Since the state is ex ante 
uncertain, a signal induces a distribution over the agent’s posterior beliefs. From a 
welfare perspective, only this distribution over posterior beliefs matters. Choosing a 
signal is then equivalent to choosing an information policy, de2ned below.

7 In that model, preferences over menus are used to identify the impact of unchosen alternatives on the decision 
maker. Our interest is not in identifying temptation, but rather in studying its implications for optimal disclosure. 
Accordingly, we consider an agent facing a 2xed menu of alternatives, and we adapt the functional form of Gul 
and Pesendorfer (2001) to accommodate lotteries over lotteries (by assuming independence of “early resolution” 
lotteries, as well as recursivity, as de2ned in Grant, Kajii, and Polak 1998). Even with a 2xed action set, the func-
tional form is suitable to study the effect of information under temptation. As we will see, providing information to 
a tempted agent can exacerbate his (expected) self-control costs.
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DEFINITION 1: An information policy (given prior  $ ) is an element of

    ($)  ≔ { p ∈ ∆∆Θ  :   피 ν∼p   [ν]  = $}
 =  {  p ∈ ∆∆Θ  :  ∫ ∆Θ  

 
   ν ( Θ ˆ  )  dp (ν)  = $ ( Θ ˆ  )  for every Borel  Θ ˆ   ⊆ Θ }  .  

Although there is room for manipulation, the posterior beliefs of a Bayesian 
agent must, on average, equal his prior. All signals generate an information policy, 
and, as described in Benoît and Dubra (2011) and Kamenica and Gentzkow (2011), 
all information policies can be generated by some signal. In particular, one could 
employ a direct signal (also known as a posterior policy)   ( S p  ,  σ p  )   to produce  p ,  
i.e., a signal for which every message is a posterior,   S p   ≔ supp (p)  ⊆ ∆Θ , and 
when the agent hears message “ s ,” his update yields a posterior belief equal to  s.  This 
signal tells the agent what his posterior belief should be, and his beliefs conform.8

II. The Psychological Agent

Some agents prefer to be informed, and others do not (see Frankl, Oye, and 
Bellamy 1989 and Oster, Shoulson, and Dorsey 2013 on patients’ attitudes toward 
information concerning life support and Huntington’s disease, respectively). 
Attitudes toward information, by driving the agent’s welfare, are a critical aspect of 
optimal information disclosure.

We begin by distinguishing psychological and behavioral attitudes toward infor-
mation. Given two information policies,  p, q ∈  ($) ,   p  is more informative than  q ,  
denoted  p  ⪰  B  $   q , if  p  is a mean-preserving spread of  q .9 So a more informative 
signal induces a lottery over agent beliefs that is more correlated with the uncer-
tain state, and, hence, riskier. This de2nition is known to be equivalent to the usual 
Blackwell (1953) garbling de2nition (Lemma 1, in the Appendix).
DEFINITION 2: The agent is psychologically information-loving [resp. -averse, 
-neutral] if, given any action  a ∈ A  and any information policies  p, q ∈  ($)   
with  p  ⪰  B  $   q ,

   ∫ ∆Θ  
 
    u (a, · )  dp ≥  [resp. ≤, =]   ∫ ∆Θ  

 
    u (a, · )  dq. 

The agent is behaviorally information-loving [resp. -averse, -neutral] if, given any 
information policies  p, q ∈  ($)   with  p  ⪰  B  $   q ,

   ∫ ∆Θ  
 
    U dp ≥  [resp. ≤, =]   ∫ ∆Θ  

 
    U dq. 

8 When  s ≪ $  a.s.- p (s)  , the signal with this law works:   σ p   ( S ˆ    | θ)  =  ∫ 
 S ˆ  
  
 

      ds _ d$   (θ)  dp (s)   for every  θ ∈ Θ  and 
Borel   S ˆ   ⊆  S p  . 

9 That is, if there is a map  r :   S q   → ∆ ( S p  )  ⊆ ∆∆Θ  such that (i) for every Borel  S ⊆ ∆Θ,   
 p (S)  =  ∫  S q    

 
    r (S | · )  dq  and (ii) for every  t ∈  S q  ,   r ( · | t)  ∈  (t) . 
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When an agent likes [dislikes] more information for its own sake, in the hypo-
thetical event that he cannot adapt his decisions to it, he is psychologically infor-
mation-loving [-averse]. For such an agent, information is intrinsically valuable 
[damaging], abstracting from its instrumental value.10 In contrast, behavioral atti-
tudes toward information assume that the agent can respond optimally to informa-
tion. Imagine a person whose imminent seminar presentation may have some errors. 
If his laptop is elsewhere, he may prefer not to know about any typos, since knowing 
will distract him. He is psychologically information-averse. But if he has a computer 
available to change the slides, he may want to know, as such information is instru-
mentally helpful. He is behaviorally information-loving.

Put differently, there are two effects of information: psychological and instru-
mental. These two forces act in the same direction when the agent is psycholog-
ically information-loving, and in opposite directions when he is psychologically 
information-averse.

PROPOSITION 1:

 (i) The agent is psychologically information-loving [-averse, -neutral] if and 
only if  u (a, · )   is convex [concave, af!ne] for every  a ∈ A.  He is behaviorally 
information-loving [-averse, -neutral] if and only if  U  is convex [concave, 
af!ne].

 (ii) If the agent is psychologically information-loving, then he is behaviorally 
information-loving. If ( A ⊆  핉   k   is convex and)  u  is jointly concave, then the 
agent is behaviorally information-averse.

The 2rst part of the proposition, which is not new,11 shows that psychological 
and behavioral information preferences are closely linked, while the second part 
tells us exactly how. Consider a binary-state world with  A =  [0, 1]   and   u k   (a, θ, ν)   
= kvar (ν)  −   (θ − a)    2  . Psychological information preferences depend on whether  
k > 0 , while behavioral preferences depend on whether  k > 1 . In particular, if the 
agent likes information per se ( k < 0 ), he also likes it when he can use it ( k < 1 ).  
However, he might dislike information from a psychological perspective ( k > 0 )  
but have this effect overwhelmed by the value of making good decisions ( k < 1 ).  
This con1ict disappears when the agent’s utility is jointly concave in   (a, ν)  , a con-
dition that both imposes psychological aversion to information and limits its instru-
mental use.12

10 Grant, Kajii, and Polak (1998) de2ne what it means to be single-action information-loving for an agent 
who makes no decision. In their model, there is no distinction between psychological and behavioral information 
preferences.

11 This result is familiar to readers of the literature on temporal resolution of uncertainty, as in Kreps and Porteus (1978), and has been substantially generalized by Grant, Kajii, and Polak (1998, Proposition 1) in the case in which 
no action is taken, ( A =  {a} ,  so that  u = U ).

12 This concavity condition is essentially never satis2ed for classical preferences, as bilinear functions have 
saddle points.



VOL. 10 NO. 4 75LIPNOWSKI AND MATHEVET: DISCLOSURE TO A PSYCHOLOGICAL AUDIENCE

Perhaps the most economically interesting case is psychological informa-
tion-aversion. For such agents, the primary question is whether the instrumental 
effect dominates the psychological effect. When the 2rst-order approach is valid and 
the environment smooth, the answer can be computed and the tradeoff formalized. 
At any belief  ν , the local value of information can be expressed as

  U″ (ν)  =  u νν   (a, ν)  +   
 u aν     (a, ν)    2 

 _ −  u aa   (a, ν) 
  , 

where the right-hand side is evaluated at the optimal action. When information 
is instrumentally useful (  u aν   ≠ 0, −  u aa   > 0 ) but psychologically damaging  
(  u νν   < 0 ), the agent faces a genuine tradeoff.

III. Information Disclosure: Theory

Consider information disclosure by a benevolent expert who is a trusted advisor, 
the agent himself, or a public entity that serves the agent’s interests. The expert’s 
goal is to maximize the agent’s ex ante expected welfare. An information policy  p  
is optimal if

   ∫ ∆Θ  
 
    U dp ≥  ∫ ∆Θ  

 
    U dq ,

for all  q ∈  ($)  . A signal   (S, σ)   is optimal if it generates an optimal informa-
tion policy. An optimal policy is already transparent for some classes of agents. If 
the agent is information-loving, tell him everything; if he is behaviorally informa-
tion-averse, tell him nothing. For agents with some aversion to information, but who 
are not behaviorally information-averse, things are subtler.

The concavi2cation result of Kamenica and Gentzkow (2011) extends readily to 
all psychological agents, providing an abstract characterization of the optimal value. 
For any prior $, an optimal information policy exists and induces expected indirect 
utility

   U 
–
   ($)  = inf  {ϕ ($)  | ϕ  :  ∆Θ → ℝ af2ne continuous, ϕ ≥ U} , 

i.e., the concave envelope of  U  evaluated at the prior. In applications, however, con-
cavi2cation is not a trivial affair. Unless the designer can compute the envelope or 
somehow derive qualitative properties of it, which is known to be dif2cult beyond 
speci2c examples (see Tardella 2003), the applied lessons from concavi2cation are 
elusive. In response, we develop a method to simplify the computation of an optimal 
policy in models of interest and deliver prescriptions.

 Method of Posterior Covers.—We approach the expert’s problem by reducing 
the support of the optimal policy based on local arguments.

In some situations, the designer can deduce from the primitives  ⟨A, u⟩  that the 
indirect utility  U  must be locally convex on various regions of  ∆Θ . In every such 
region, the agent likes (mean-preserving) spreads in beliefs, which correspond to 
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more informative policies. Consequently, an optimal policy need not employ beliefs 
inside of those regions, regardless of its other features. The central concept of our 
approach is the posterior cover, a collection of such regions.

DEFINITION 3: Given  f  : ∆Θ → 핉 , an  f -( posterior) cover is a !nite family    of 
closed convex subsets of  ∆Θ  such that   f  |  C    is convex for every  C ∈ . 

A posterior cover is a collection of sets of posterior beliefs, over each of which a 
given function is convex. Given a posterior cover , let

  out ()  =  {ν ∈ ∆Θ  :  ν ∈ ext (C)  whenever ν ∈ C ∈ }  

be its set of outer points. That is, outer points are those posterior beliefs that are 
extreme in any member of    to which they belong. In particular, any point outside  
⋃   is an outer point, as is any deterministic belief.

The next theorem develops the method of posterior covers in three parts.

THEOREM 1 (Method of Posterior Covers):
(Optimal Support).—If    is a  U -cover, then  p (out () )  = 1  for some optimal 

policy  p .

(Reduction to Primitives).—If    is a  u (a, · )  -cover  ∀ a ∈ A , then  is a  
 U -cover. In particular, if  u  takes the form  u (a, θ, ν)  =  u C   (a, θ)  +  u P   (ν)  , then any   
u P   -cover is a  U -cover.

(Concrete Derivation).—If  f  is the pointwise minimum of !nitely many af!ne 
functions   { f i    :  i ∈ I}  , and  ϕ  is convex, then   ≔  { {ν  :  f (ν)  =  f i   (ν) }   :  i ∈ I}   is 
a   (ϕ ◦ f )  -cover.

The 2rst part restricts the search for an optimal policy to the outer points of a  
 U -cover. Since the agent is locally information-loving within each member of a  
 U -cover, an optimal policy need never leave him with non-extremal beliefs in such 
a set. Having an appropriate  U -cover in hand thus simpli2es optimal disclosure, but 
how does one 2nd such a cover? One potential obstacle is that the indirect utility is 
a derived object. To make the 2rst part useful, then, it is important to tie posterior 
covers of  U  to primitive features of the model. This is the next step.

The second part simpli2es the search for a  U -cover by analyzing the form of  
u , a step made simpler by the assumption of aligned interests. Any    that is a  
 u (a, ⋅ )  -cover for all  a ∈ A  is guaranteed to be a  U -cover, making the 2rst part 
applicable. This observation comes from applying the logic of Proposition 1 sepa-
rately for each element of the cover. Note that, starting from posterior covers, one 
for each action, one can construct such a simultaneous posterior cover if  A  is 2nite.13 

13 If    a    is a  u (a, · )  -cover for every  a ∈ A , then   ≔  { ⋂ a∈A      C a    :   C a   ∈   a   ∀ a ∈ A}   is a  U -cover.
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Moreover, for agents who can separate their psychological effects from their classi-
cal motive, the determination of a  U -cover reduces to 2nding a posterior cover of the 
psychological component alone. This includes all preferences (a)-(f) in Appendix 
Section A.

Having connected the problem to primitives, it remains to compute a useful cover 
of those primitive functions. Generally, this task depends on the nature of the func-
tion, and can be dif2cult. The third part points to a 1exible, economically relevant 
class of preferences—the minimum of af2ne functions (or a convex transformation 
thereof)—for which such a computation is possible. For this class, a useful  U -cover 
and its (2nite) set of outer points can be computed explicitly. This class includes 
economic situations of interest.

A remarkable, though easy to overlook, aspect of the theorem is that the expert 
need not solve the agent’s optimization problem at every posterior belief in order 
to derive an optimal policy. Said technically, our method enables the concavi2-
cation of  U  without needing to derive  U,  if the primitives  ⟨A, u⟩  meet some con-
ditions. In this case, an optimal policy can be characterized while computing  U  
only on the outer points of the posterior cover. Without our method, one would 
have to 2rst solve the agent’s problem for every possible posterior belief, and then 
concavify the induced indirect utility over its whole domain. Instead, after deduc-
ing a small set of outer points, one can characterize an optimal policy by solving 
the agent’s problem at each of these posterior beliefs and solving the restricted 
disclosure problem. In various behavioral models, this is feasible because of the 
speci2c structure of the psychological effect: it is piecewise (weakly) convex. 
This structure is simple but rich, and very common in applied behavioral work 
(again, see Section A in the Appendix). The resulting simpli2cation, also enabled 
by our restriction to aligned interests, considerably reduces the task of 2nding an 
optimal policy.

IV. Application: Temptation and Information

Economists and psychologists have presented evidence that temptation can 
be especially strong in consumption decisions (Gruber and Kőszegi 2001 and 
Baumeister 2002). Motivated by this evidence, a recent literature asks how tax 
policies can be designed to alleviate the effects of temptation (O’Donoghue and 
Rabin 2003; Gruber and Kőszegi 2004; Krusell, Kuruşçu, and Smith 2010). In this 
section, we examine a discrete choice model with tempting options, and instead 
ask how information disclosure policies can alleviate the effects of temptation. 
As we will see, a tempted agent does not want to know what he is missing. This 
maxim has been studied in psychology, for example, by Otto and Love (2010). 
The analysis below formalizes it and explains it as an optimal reaction to costly 
self-control.

Consider a consumer who decides how to spend a sum of money. The consumer 
has various options  A =  { a 1  ,  … ,  a n  }   that may include different types of invest-
ments and even immediate consumption. The unknown state of the world,  θ ∈ Θ , is 
distributed according to prior  $ . The agent has preferences à la Gul and Pesendorfer 
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(2001): given  A  and two classical utility functions   u R    and   u T   , the agent faces a wel-
fare of

  u (a, θ, ν)  =  u R   (a, θ)  −  max  
b∈A

     피  θ ˆ  ∼ν   [ u T   (b,  θ ˆ  )  −  u T   (a,  θ ˆ  ) ] , 

when he chooses action  a  at posterior belief  ν . With this functional form, it is as if 
the agent has a “rational side”   u R    and “tempted side”   u T   . The rational side has an 
expected value of   피 θ∼ν   { u R   (a, θ) }  , but exerting self-control entails a personal cost 

of   max b    피  θ ˆ  ∼ν   { u T   (b,  θ ˆ  )  −  u T   (a,  θ ˆ  ) }  . This psychological penalty is the value forgone 
by the tempted side when consuming  a .

Letting   u P   (ν)  ≔  min b∈A   {−  피 θ∼ν   [ u T   (b, θ) ] } ,  the agent’s reduced preferences 
can be written as

(1)  u (a, ν)  =  피 θ∼ν   { u R   (a, θ)  −  max  
b∈A

     피  θ ˆ  ∼ν   [ u T   (b,  θ ˆ  )  −  u T   (a,  θ ˆ  ) ] }  

 =  피 θ∼ν   {−  max  
b∈A

     피  θ ˆ  ∼ν    u T   (b,  θ ˆ  ) }  +  피 θ∼ν    u R   (a, θ)  +  피  θ ˆ  ∼ν    u T   (a,  θ ˆ  )  

 =  u P   (ν)  +  피 θ∼ν   [ u R   (a, θ)  +  u T   (a, θ) ] . 

By linearity of expectation,   u P    is a minimum of af2ne functions, so the full strength 
of Theorem 1 applies. It is now straightforward to 2nd a   u P   -cover with a small set of 
outer points, and then to name an optimal policy.

Section VA offers prescriptions of the optimal information policy.

 Not Knowing What One Is Missing.—In the model of Gul and Pesendorfer 
(2001), information is critical for rational decision-making,   max a   피 [ u R   +  u T  ]  , but it 
also induces more temptation since information increases the value to the impulsive 
side,   max b   피 [ u T  ]  . Optimal disclosure balances these two forces.

The general advice from the method of posterior covers is that an optimal infor-
mation policy is supported on beliefs at which the tempted self has, in some sense, 
as little instrumental information as possible. Knowing more exacerbates the appeal 
of forgone choices, for no instrumental bene2t. Mathematically, say that the agent 
does not know what he is missing at belief  ν  if, for all  ν′ ≠ ν  supported by some  
q ∈  (ν)  ,

(2)   arg max  
b∈A

     피 θ∼ν′   [ u T   (b, θ) ]  ⊉  arg max  
b∈A

     피 θ∼ν   [ u T   (b, θ) ] . 

When an agent does not know what he is missing, more information   (q ∈  (ν) )   
would only serve to eliminate some temptations from the agent’s mind, and give him 
a better idea of precisely what choices he is missing.

PROPOSITION 2: There is an optimal policy  p  for the tempted agent whereby  
a.s.- p (ν)   he does not know what he is missing at  ν .
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To illustrate the proposition’s maxim, suppose a consumer has two options,  
A =  {save, consume}  (=  {0, 1}  ); that the state is binary,  θ ∈  {0, 1}  , and  
 $ ≡ $ {θ = 1}  = 1/2 ; and that information affects only one side. If   u T    is 
 state-independent, the agent is psychologically, and hence behaviorally, informa-
tion-loving by Proposition 1.

More interesting is the case of state-independent   u R   , say if  θ  is the unknown 
release date of a music album or a new technology. The consumer then exhibits 
 psychological information aversion because   u P    is concave (see equation (1)). For 
example, let   u T   (a, θ)  = 2θa +  (1 − a)  (1 − θ)   and   u R   (a)  = − a/3 . The consumer 
is tempted to consume only when  θ = 1 , while his rational side prefers not to con-
sume. Despite information aversion, information can make the consumer better off. 
Indeed, if he receives no information, he always succumbs to temptation and never 
saves. But the following policy is an improvement: if the state is tempting—say if 
the new iPhone has just come out—then with probability  1/2 , tell the consumer to 
buy it, and with complementary probability or when the state is not tempting, tell 
him to save. This policy, whose advice the agent optimally follows, ensures that the 
agent splurges only 25 percent of the time, while investing and mitigating tempta-
tion the remaining 75 percent of the time. When the agent is told to consume, he 
suffers no cost of self-control, and when told to save, faces a reduced cost, believing 
the state likely to be bad. At this belief, the tempted side is indifferent between sav-
ing and consuming, so the consumer does not know what he is missing.

V. Application: Giving Advice

Even knowing that a policy is optimal in theory need not make it easy to imple-
ment it in practice. In reality, many professionals are concerned about standards of 
disclosure required by law. Ben-Shahar and Schneider (2011, 665) write:

The great paradox of the Disclosure Empire is that even as it grows, so 
also grows the evidence that mandated disclosure repeatedly fails to 
accomplish its ends.

Among mandated disclosure laws 2gure both Informed Consent and the Clery Act. 
The former demands that a doctor provide a detailed statistical description of all 
possible side effects of a treatment or drug, and the latter requires institutions of 
higher education to publish an annual campus security report about all crimes from 
the past three years. In both cases, the requirements are akin to a posterior policy 
(also called direct signals in Section IIB), demanding that the principal send entire 
probability distributions to the agent. In a binary-state context, this can be plausible. 
For example, a doctor who uses a blood test to check for a disease might report the 
updated probability that the patient has the illness rather than not. When the state 
space is more complicated, however, posterior policies are costly to implement, and 
the listener might not know how best to interpret what he learns.

As Ben-Shahar and Schneider (2011, 746) argue,

When we … ask how people really make decisions, we see that they gener-
ally seek … not data, but advice.
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Consequently, we study whether this simple form of communication—giving 
advice—delivers the same bene2t as other policies do. In psychological contexts, an 
agent might want information for its own sake, and so be well served by extraneous 
information. Information-averse agents, however, have no such desire. For them, we 
might want to employ a recommendation policy, i.e., a signal of the form   (A, σ)  . 
For example, a doctor could simply recommend special dietary choices if her anal-
ysis reveals a pathology, or police could recommend avoiding walking in certain 
areas if they notice potential dangers during their patrols. While a posterior policy 
gives the agent all the information he might want, a recommendation policy gives 
him only the information that he needs.

As with any recommendation, the problem is that the person might not follow the 
advice. This is captured here by the failure of the Revelation Principle. Every infor-
mation policy admits a corresponding recommendation policy whereby the agent 
is simply told how he would have optimally responded to his posterior. What are 
the incentive and welfare consequences of this new policy? In the classical world, 
the Revelation Principle (as in Myerson 1979, Aumann 1987, and Kamenica and 
Gentzkow 2011) says that, for any signal, the corresponding recommendation pol-
icy is incentive-compatible and welfare-equivalent.14

Under psychological information aversion, and a fortiori in general psychological 
environments, this is no longer true. For example, take  Θ = A =  {0, 1}   and

  u (a, ν)  = a [ var θ∼ν   (θ)  −   1 _ 9  ]  = a [ν (1 − ν)  −   1 _ 9  ] , 

so that the agent is psychologically information-averse. Let  $ = 0.6  and consider 
a signal that generates information policy  p = (3/8) δ 0.1   + (5/8) δ 0.9   . As shown in 
Figure 1, whether the realized posterior belief is 0.1 or 0.9, the agent plays action 0. 
If the designer were to replace each message with a recommendation of the action 
the agent would have played, then she would be recommending action  a = 0  with 
probability  1 , independent of the state. This would convey no information whatso-
ever to the agent, and so his posterior belief would equal his prior belief ( 0.6 ). He 
would then optimally play action 1: the recommended action,  a = 0 , would not be 
incentive-compatible. At a technical level, the Revelation Principle fails under psy-
chological preferences because the set of posterior beliefs for which a given action 
is optimal might not be convex, and so “pooling” messages from such a region may 
render the action no longer optimal.

Recommendation policies are practical, but they cannot generate all joint distri-
butions over actions and beliefs that posterior policies can attain, given the failure 
of the Revelation Principle. Even so, our next theorem says that this class is always 
optimal for psychologically information-averse agents.

14 In its standard form, the Revelation Principle (Myerson 1991, 260) says that (given principal commitment 
power) all attainable outcomes can be attained by having players report all private information to the principal, 
while the principal simply makes incentive-compatible action recommendations to players. In the present context, 
with the agent having no private information, we focus on failure of the latter.
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THEOREM 2 (Optimality of Advice): If the agent is psychologically informa-
tion-averse, then there exists an incentive-compatible recommendation policy which 
is optimal.

A recommendation is the coarsest information policy that leads to a given  
state-action mapping. If an information-averse agent complies with the 
 recommendation, then giving him only instrumental information is, of course, bene-
2cial. The nontrivial content of the theorem, then, is that such a coarse policy can be 
used without disrupting the agent’s incentives (i.e., retaining incentive-compatibility).

Although Theorem 2 tells us that giving advice is best in a broad set of circum-
stances, this reasoning has limits. The result no longer holds if the agent likes infor-
mation for its own sake, or if the expert and agent have con1icting interests. To see 
the former, consider  A =  { a – }  ,  Θ =  {0, 1}  , and  u ( a – , ν)  = − var (ν)  . The sole rec-
ommendation policy reveals nothing, and so is suboptimal for this information-lov-
ing agent. To see the latter, consider the above agent of Figure 1 (at prior  $ = 0.6 )  
paired with a principal who only wants the agent to choose action  0 . Any incen-
tive-compatible recommendation policy must sometimes recommend action  1 , but 
full information would persuade the agent to always choose  0 .

VI. Conclusion

This paper proposes a method for computing concave envelopes (hence, optimal 
policies) and gives a natural domain of application for these methods in the world 
of psychological preferences. This domain includes a broad range of behavioral 
models for which concrete prescriptions become possible. Information disclosure to 
a tempted agent is of particular interest.

In a recent note, Lipnowski and Mathevet (2017), we have adapted and special-
ized our method of posterior covers to standard Bayesian persuasion, where the 
principal and the agent are expected utility maximizers but have con1icting pref-
erences.15 In contrast to the classical world, psychological phenomena make dis-
closure a subtle issue, even without con1icting interests. Although the assumption 
of aligned preferences is well-suited to many situations, con1icting preferences are 

15 We thank an anonymous referee for encouraging us to pursue this direction.

Figure 1. The Set   {ν  :  a = 0 is optimal at ν}   Is Not Convex
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also reasonable in a psychological world. The 2rst and third parts of the method 
of posterior covers still apply to con1icting preferences, but the second part is (in 
its current form) special to benevolence. In the expected utility world, the princi-
pal is information-neutral over beliefs at which the agent’s optimal action does not 
change, making the second part again applicable. Extending the tools herein, to 
study misaligned preferences with psychological concerns, is an exciting avenue for 
future work.

Appendix A. A List of Models and Their Optimal Policies

Below is a list of models, accommodated by our methods, followed by descrip-
tions of their respective optimal policies:

 (a) (Purely psychological agent): De2ned in the main text.

 (b) (Stubbornness/prior-bias): De2ned in the main text.

 (c) (Temptation and self-control): De2ned in the main text.

 (d) (Ego utility): Given a classical utility   u ̃    and a psychological utility  
  u E    (ego utility), let

  u (a, θ, ν)  =  u C   (a, θ)  +  u E   (ν) . 

This is a version of Kőszegi (2006).16 The agent has poor or great ability,  θ ∈  {0, 1}  .  
He does not know  θ , but has a prior notion  $  of how good he is. He must choose 
a task  σ  that will reveal any desired amount of information about his ability and 
then choose  a ∈ A . From these choices, he gets the expected value of   u C   , but also 
derives “ego utility”   u E    from his belief  ν  about his ability. Following Kőszegi (2006, 
679), “a step-function ego utility captures the qualitative features of such prefer-
ences,” so, for example, assume   u E   (ν)   is proportional to   1 ν≥ e –    , where   e –  ∈  (0, 1)   is 
the minimum belief that satis2es the agent’s ego:

 (e) (Shame): Given a 2nite set  A , two classical utility functions   u S    (sel2sh) and   
u N    (normative), and a function  g  increasing in its second argument,17 let

  u (a, θ, ν)  =  u S   (a, θ)  − g (a,  max  
b∈A

     피  θ ˆ  ∼ν   [ u N   (b,  θ ˆ  ) ] ) , 

following Dillenberger and Sadowski (2012). The agent chooses an action  a  that 
affects both himself and some other recipient. Think of deciding how much to tip at 
a restaurant. The utility   u S    captures the agent’s sel2sh enjoyment of  a , while   u N    is 

16 Also see Dal Bó and Terviö (2013) for an application of the same to an agent’s accrued “moral capital.”
17 For brevity, we have omitted restrictions on  A,  u S  ,  u N  , g  implied by Dillenberger and Sadowski’s (2012) 

 representation theorem.
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his normative utility. The function  g  represents the shame from choosing  a  instead 
of the normatively right action. Of particular interest to us is the case of diminishing 
marginal shame, with  g  concave in its second argument.

 (f) (Reference-dependent choice/Loss aversion): Given a classical utility   u C   , 
let

  u (a, θ, ν)  =  u C   (a, θ)  + g ( 피  θ ˆ  ∼ν   [ u C   (a,  θ ˆ  ) ]  −  피  θ ˆ  ∼$   [ u C   (a,  θ ˆ  ) ] ) , 

where  g  :  ℝ → ℝ . The agent evaluates an action  a  not only based on its expected 
utility, but also based on its “gain-loss” utility, the second component of  u . This 
model is a two-period version of that of Kőszegi and Rabin (2009),18 also related to 
Kahneman and Tversky (1979), according to which people evaluate alternatives from 
a reference point. The reference point is what the chosen action would yield absent 
any information,   피  θ ˆ  ∼$   [ u C   (a,  θ ˆ  ) ]  . Then, if   피  θ ˆ  ∼ν   [ u C   (a,  θ ˆ  ) ]  >  피  θ ˆ  ∼$   [ u C   (a,  θ ˆ  ) ]  ,  
the agent is positively surprised by the information. Kőszegi and Rabin (2009) focus 
especially on the case where  g (x)   is proportional to   (1 + ϵ 1 x<0  ) x  for  ϵ > 0 , so that 
relative losses loom larger than gains:19

 (g) (Belief distortion): For one-period utility   u ̃   ( a t  )  = −   1 _ 2    a  t  
2   and discount fac-

tor  δ ∈  [0, 1]  , let

  u (a, θ, ν)  =  피  θ ˆ  ∼ ν   ∗  (ν)    [ u ̃   (a)  + δ u ̃   (1 +  θ ˆ   − a) ] , 

where   ν   ∗  :  [0, 1]  →  [0, 1]   is weakly increasing and piecewise linear, with

   ν   ∗  (ν)  =   {   
0
  

if ν ≤  ν _ 
   α (ν −  ν _ )   if  ν _  ≤ ν ≤  ν –     α ( ν –   −  ν _ )   if  ν –   ≤ ν    .

This model is the planning model of Brunnermeier, Papakonstantinou, and Parker 
(2016) in which an agent has two periods to complete a task whose dif2culty (i.e., 
required total effort)  1 + θ  is unknown until the second period. The agent chooses 
his effort   a t    in period  t  such that  a ≔  a 1   ≤ 1  and   a 1   +  a 2   = 1 + θ . If all “objec-
tive” information would leave our agent with beliefs  ν , our agent optimally distorts 
his beliefs (à la Brunnermeier and Parker 2005), which yields the functional form  
  ν   ∗  (ν)  .20 When   ν   ∗   is also optimistic, i.e.,   ν   ∗  (ν)  ≤ ν , the agent is prone to the 
so-called planning fallacy, hence he procrastinates.

18 Information can exacerbate loss aversion because we take  ν -expectations inside the argument of  g  (if  
  ν  -expectation were taken outside,  u (a, ν)   would be linear in  ν  and full information immediately optimal). This 
functional form is different from the baseline model of Kőszegi and Rabin (2007) and Kőszegi and Rabin (2009), 
but these authors allude to the “alternative [model in which] the decision maker compares the means of her new and 
old beliefs” and mention that most of their 2ndings apply to it.

19 See Assumption A3′, section 2, and footnote 10 in Kőszegi and Rabin (2009).
20 Brunnermeier, Papakonstantinou, and Parker (2016) provide explicit formulas for  α,  ν ¯   , and   ν –   . Crucially, the 

optimal belief distortion does not depend on the entire distribution of posterior expectations, but only on the realized 
posterior expectation itself.
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Below are the corresponding prescriptions from the method of posterior covers:

 (a) Full information is trivially optimal.

 (b) Either full or no information is optimal. Indeed, since   u P   (ν)  = − ρ  | ν − $ |   
is af2ne in  ν  on each member of   ≔  { [0, $] ,  [$, 1] }  ,  is a   u P   -cover (see 
Figure 2). By Theorem 1, it is also a  U -cover, and, thus, some optimal policy   
p   ∗   is supported on  out ()  =  {0, $, 1}  . Bayes-consistency then requires that   
p   ∗  =  (1 − λ)   δ μ   + λ [ (1 − $)   δ 0   + $ δ 1  ]   for some  λ ∈  [0, 1]  . That is, we 
should give the agent no information or full information.

 (c) See Proposition 2.

 (d) It is optimal to either give the agent full information or keep his posterior belief 
at   e –   with the largest feasible probability. To see why, let   u E   (ν)  =  1 ν≥ e –    , as sug-
gested above, and focus on the case of  $ ≥  e –  , so that an ignorant agent is con2-
dent. There,   u E   (ν)   is weakly convex in  ν  on each member of   ≔  { [0,  e – ] ,  [ e – , 1] }  ,  
so that  is a   u E   -cover and also a  U -cover by the theorem. Thus, some optimal 
policy is supported on  out ()  =  {0,  e – , 1}  . The agent then faces the follow-
ing trade-off: either making a good decision matters most, in which case he 
should seek full information, or he should limit his research to protect his ego 
(so that his posterior belief is either   e –   or  1 ).

Figure 2. Function   u P   (ν)  = − | ν − $ |  (prior-bias) Is Affine on   [0, $]   and   [$, 1]  

0

!ν
1
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 (e) Under diminishing marginal shame, it is optimal to keep the agent in moral 
ambiguity. Given the functional form, the result is formally related to 
Proposition 2. The agent may like information to inform his  decision-making, 
but in a way that will always leave him morally indifferent to the course of 
action.21

 (f) Either full or no information is optimal. Since   u P   (a, ν)   is af2ne in  ν  on each 
member of   ≔  { [0, $] ,  [$, 1] }   for all  a , Theorem 1 says  is a   u P   -cover for 
all  a  and, hence, a  U -cover. The argument follows as in (b).

 (g) By de2nition of   ν   ∗  ,  u (a, θ, ν)   is convex (at least, weakly) in  ν  on each mem-
ber of   ≔  { [0,  ν _ ] ,  [ ν _ ,  ν –  ] ,  [ ν –  , 1] }   for all  a , hence,  is a  U -cover. Thus,  out ()  
=  {0,  ν _ ,  ν –  , 1}  . Since   ν   ∗   is weakly increasing and bounded above by  
 α ( ν –   −  ν _ )  , an optimal  p  is supported on   {0,  ν _ ,  ν –  }  .

Appendix B. Proofs

Throughout the rest of the Appendix, we let  u  :  A × ∆Θ → ℝ  refer only to the 
reduced preferences of the agent.

We begin by stating a well-known connection between our “mean-preserving 
spread” de2nition of informativeness and the usual garbling de2nition.

LEMMA 1: Given two information policies  p, q ∈  ($) ,  the ranking  p  ⪰  B  μ   q  
holds if and only if   ( S q  ,  σ q  )   is a garbling of   ( S p  ,  σ p  )  , i.e., if there is a map  
 g  :   S p   → ∆ ( S q  )   such that

(3)   σ q   ( S ˆ   | θ)  =  ∫  S p    
 
    g ( S ˆ   | ⋅ )  d σ p   ( ⋅  |   θ)  

for every  θ ∈ Θ  and Borel   S ˆ   ⊆  S q    .

A. Proof of Proposition 1

LEMMA 2: The set  M ≔  {γ ∈ ∆Θ  :  ∃ ϵ > 0 such that ϵγ ≤ $}   is   w   ∗  -dense in  ∆Θ .
PROOF: 

First, notice that  M =  {γ ∈ ∆Θ  :  γ ≪ $ and  dγ/d$  is (essentially) bounded}    
is convex and extreme (i.e., a face of  ∆Θ ). Thus, its   w   ∗  -closure   M 

–
    is closed (and so 

compact, by the Banach-Alaoglu theorem (Aliprantis and Border 1999, Theorem 
6.21)), convex, and extreme. Now, let  E  be the set of extreme points of   M 

–
   . Because   

M 
–
    is extreme,  E  is a subset of  ext (∆Θ)  =   { δ θ  }  θ∈Θ  .  So  E =   { δ θ  }  θ∈ Θ ˆ      for some   

Θ ˆ   ⊆ Θ.  By the Krein-Milman theorem (Aliprantis and Border 1999, Theorem 
7.68),   M 

–
   =  co –  E = ∆ (Θ′) ,  where  Θ ′ is the closure of   Θ ˆ  .  Finally, notice that  

$ ∈ M  implies  Θ′ ⊇ supp ($)  = Θ.  Thus,   M 
–
   = ∆Θ  as desired. ∎

21 That is, he should be left at posterior beliefs  ν ∈ ∆Θ  such that, for all  ν′ ≠ ν  supported by some  
 q ∈  (ν)  ,   arg max b    피 θ∼ν′   [ u N   (b, θ) ]  ⊉  arg max b    피 θ∼ν   [ u N   (b, θ) ] . 
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LEMMA 3: Fix a bounded measurable function  f  :  ∆Θ → 핉,  and suppose either 
that  Θ  is !nite or that  f  is continuous. Then, the following are equivalent (given  $  
is of full support):
 (i) For all  ν ∈ ∆Θ  and  p ∈  (ν) ,  we have   ∫ ∆Θ        f dp ≥ f (ν)  

 (ii) For all  $′ ∈ ∆Θ  and  p, q ∈  ($′)   with  p  ⪰  B  $′  q,  we have   ∫ ∆Θ        f dp ≥  
∫ ∆Θ        f dq. 

 (iii) For all  p, q ∈  ($)   with  p  ⪰  B  $   q,  we have   ∫ ∆Θ        f dp ≥  ∫ ∆Θ        f dq. 

 (iv)  f  is convex.

PROOF: 
Suppose (i) holds, and consider any  $′ ∈ ∆Θ  and  q ∈  ($′) .  If  r  :   S q   → ∆∆Θ  

satis2es  r ( ⋅ | ν)  ∈  (ν)   for every  ν ∈  S q  ,  (i) implies   ∫  S q    
 
     ∫ ∆Θ        f dr ( ⋅ | ν)  dq (ν)   

≥  ∫  S q    
 
     f dq.  Equivalently (by de2nition of the Blackwell order), any  p  more informa-

tive than  q  has  ∫ f dp ≥ ∫ f dq,  which yields (ii).
That (ii) implies (iii) is immediate.
Now, suppose (iv) fails. That is, there exist  γ, ζ, η ∈ ∆Θ , and  λ ∈  (0, 1)   such 

that

  γ =  (1 − λ) ζ + λη  ;

  f (γ)  <  (1 − λ)  f (ζ)  + λf (η) . 

Moreover, we can always pick  γ, ζ, η ∈ ∆Θ , and  λ ∈  (0, 1)   to ensure that  
ϵγ ≤ $  for some  ϵ ∈  (0, 1) .  Indeed, Lemma 2 guarantees this if  f  is continuous, 
and it comes for free—we can simply let  ϵ ≔  min θ∈Θ   $ (θ)  —if  Θ  is 2nite.

Now, we can exploit the above to construct two information-ranked information 
policies such that  f  has higher expectation on the less informative of the two. Let

  ν ≔   1 _ 1 − ϵ   ($ − ϵγ)  ∈ ∆Θ,

 p ≔  (1 − ϵ)   δ ν   + ϵ (1 − λ)   δ ζ   + ϵλ  δ η   ∈  ($)  , and

  q ≔  (1 − ϵ)   δ ν   + ϵ  δ γ   ∈  ($)  .

Then,  p  ⪰  B  $   q , but

   ∫ ∆Θ  
 
     f dp −  ∫ ∆Θ  

 
     f dq = ϵ [ (1 − λ)  f (ζ)  + λf (η)  − f (γ) ]  < 0, 

as desired.
Finally, notice that (iv) implies (i) by Jensen’s inequality. ∎
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PROOF OF PROPOSITION 1:
The 2rst part follows immediately from applying Lemma 3 to  u (a, · )   and  

 − u (a, ⋅ )   for each  a ∈ A , and to  U  and  −U . That a psychologically information-lov-
ing agent is behaviorally information-loving follows from the 2rst part, and from the 
easy fact that a pointwise maximum of convex functions is convex.

Lastly, suppose  u  is concave. It is upper-semicontinuous by hypothesis and  lower 
semicontinuous by Rockafellar (1970, Theorem 10.2), thus continuous. The convex 
maximum theorem then applies, so that  U  is concave too. Then, the 2rst part yields 
behavioral information aversion. ∎

B. Proof of Theorem 1

Proof of the First Part.—First, notice that, for any  C ∈ ,  the extreme points of  C  
are a Borel set. Therefore,  out ()  = ∆Θ\ ⋃ C∈     [C\ext (C) ]   is Borel, and  p (out () )    
is in fact well-de2ned for  p ∈  ($) . 

Now, by continuity of Blackwell’s order, there is a   ⪰  B  $   -maximal optimal policy  
p ∈  ($) . 

For any  C ∈  , it must be that  p (C\ext(C))  = 0.  Indeed, Phelps (2001, Theorem 
11.4) provides a measurable map  r  :  C → ∆ (ext(C))   with  r ( · | ν)  ∈  (ν)    
for every  ν ∈ C.  Then, we can de2ne  p′ ∈  ($)   via  p′ (S)  = p (S\C)  +  
 ∫ C  

 
    r (S | · )  dp  for each Borel  S ⊆ ∆Θ.  Then  U -covering and Jensen’s inequal-

ity imply  ∫U dp′ ≥ ∫U dp , so that  p′  is optimal too. By construction,  p′  ⪰  B  $   p ,  
so that (given maximality of  p ) the two are equal. Therefore,  p (C\ext(C))   
= p′ (C\ext(C))  = 0 . Then, since    is countable,

  p (out () )  = 1 − p (  ⋃ 
C∈

    [C\ext(C)] )  = 1.  ∎

Proof of the Second Part.—As a sum or supremum of convex functions is convex, 
the following are immediate:

 (i) Suppose  f  is the pointwise supremum of a 2nite family of functions,  
 f =  sup i∈I    f i   . If  is an   f i   -cover for every  i ∈ I , then    is an  f -cover.

 (ii) If  is a  g -cover and  h  is convex, then  is a   (g + h)  -cover.

From there, we need only notice that  U =  sup a∈A   u (a, · )  , and that in the separa-
ble case  U =  u P   +  U C    for convex   U C  .  ∎

Proof of the Third Part.—By 2niteness of  I , the collection    covers  ∆Θ . For 
each  i ∈ I , note that   C i   =  ⋂ j∈I     {ν ∈ ∆Θ  :   f i   (ν)  ≥  f j   (ν) } ,  an intersection 
of closed, convex sets (since    { f j  }  

j∈I
    are af2ne continuous), and so is itself closed 

and convex. Restricted to   C i   ,  f  agrees with   f i    and so is af2ne, and therefore  ϕ ◦ f  is 
convex. ∎
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C. Proof of Proposition 2

First, under the hypotheses of the third part of Theorem 1, we prove a claim that 
fully characterizes the set of outer points of the  f -cover, reducing their computation 
to linear algebra.

LEMMA 4: Let  Θ  be !nite and let  f,  =   { C i  }  i∈I    be as given in the third part of 
Theorem 1. Then, the  f -cover    satis!es  out ()  =  { ν   ∗  ∈ ∆Θ :  { ν   ∗ }  = S ( ν   ∗ ) } ,   
where

 S ( ν   ∗ )  ≔  {ν ∈ ∆Θ : supp (ν)  ⊆ supp ( ν   ∗ )  and  f j   (ν)  = f (ν)  ∀ j ∈  arg min  
i∈I

     f i   ( ν   ∗ ) }  

 ⊆  {ν ∈ ∆Θ : supp (ν)  ⊆ supp ( ν   ∗ )  and  f j   (ν)  =  f k   (ν)  ∀ j, k ∈  arg min  
i∈I

     f i   ( ν   ∗ ) }  .

PROOF: 
Fix some   ν   ∗  ∈ ∆Θ , for which we will show   { ν   ∗ }  ≠ S ( ν   ∗ )   if and only if   

ν   ∗  ∉ out ()  .
Let us begin by supposing   { ν   ∗ }  ≠ S ( ν   ∗ )  ; we have to show   ν   ∗  ∉ out ()  . Since   

ν   ∗  ∈ S ( ν   ∗ )   no matter what, there must then be some  ν ∈ S ( ν   ∗ )   with  ν ≠  ν   ∗  . 
We will show that  S ( ν   ∗ )   must then contain some line segment  co {ν, ν′}   belong-
ing to some   C i   , in the interior of which lies   ν   ∗  ; this will then imply   ν   ∗  ∉ out() .  
Let   Θ ˆ    be the support of   ν   ∗  , and let  J ≔ arg  min i∈I    f i   ( ν   ∗ ) .  Given that  ν ∈ S ( ν   ∗ )  , we 
have  ν ∈ ∆ Θ ˆ    with   f i   (ν)  =  f j   (ν)  = f (ν)  ∀ i, j ∈ J . Now, for suf2ciently small  
ϵ > 0,  we have  ϵ (ν −  ν   ∗ )  ≤  ν   ∗  .22 De2ne  ν′ ≔  ν   ∗  − ϵ (ν −  ν   ∗ )  ∈ ∆ Θ ˆ  .  Then,  
  f i   (ν′)  =  f j   (ν′)  ∀ i, j ∈ J  too (by af2nity) and, by de2nition of  ν′ , we have  
  ν   ∗  ∈ co {ν, ν′}  . If  i ∉ J , then   f i   ( ν   ∗ )  > f (ν)   by de2nition. Therefore, by mov-
ing  ν, ν′  closer to   ν   ∗   if necessary, we can assume  f (ν)  =  f j   (ν)  <  f i   (ν)   and  
 f (ν′)  =  f j   (ν′)  <  f i   (ν′)   for any  j ∈ J  and  i ∉ J . In particular, 2xing some  j ∈ J  
yields  ν, ν′ ∈  C j  ,  so that   ν   ∗   is not in  out () . 

To complete the proof, let us suppose that   ν   ∗  ∉ out ()  , or equivalently,    
ν   ∗  ∈  C i    but   ν   ∗  ∉ ext ( C i  )   for some  i ∈ I . By de2nition of   C i   , we have that   f i   ( ν   ∗ )   
= f ( ν   ∗ )  . The fact that   ν   ∗  ∉ ext ( C i  )   implies that there is a non-trivial segment  
 L ⊆  C i    for which   ν   ∗   is an interior point. It must then be that  supp (ν)  ⊆ supp ( ν   ∗ )    
and   f i   (ν)  = f (ν)   for all  ν ∈ L . As a result,  L ⊆ S ( ν   ∗ )   so that   { ν   ∗ }  ≠ S ( ν   ∗ )  , 
completing the proof. ∎

In passing, an immediate consequence of the above Lemma is the following sim-
ple reduction in the two-state world.

COROLLARY 1: Suppose  Θ =  {0, 1}  ;  A  is !nite; and for each  a ∈ A ,  
 u (a, · )  =  min i∈ I a       f a,i  ,  where    { f a,i  }  i∈ I a      is a !nite family of distinct af!ne functions for 
each  a . Then, there exists an optimal policy that puts full probability on

  S ≔  {0, 1}  ∪   ⋃ 
a∈A

    {ν ∈  [0, 1]  :   f a,i   (ν)  =  f a, j   (ν)  for some distinct i, j ∈  I a  } . 

22 Here,  ≤  is the usual component-wise order on   ℝ    Θ ˆ    .
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PROOF OF PROPOSITION 2:
For each  a ∈ A,  let   C a   ≔  {ν ∈ ∆Θ : a ∈  arg max b    피 θ∼ν   [ u T   (b, θ) ] } .  By 

Theorem 1,   ≔   { C a  }  a∈A    is a  U -cover, and so some optimal policy  p  is supported 
on  out () .  By Lemma 4, we then know  S ( ν   ∗ )  =  { ν   ∗ }  —where  S ( ν   ∗ )   is as in the 
statement of Lemma 4 (with  I ≔ A  and   f a   (ν)  ≔ −  피 θ∼ν    u T   (a, θ)  )—for every  
  ν   ∗  ∈  S p  .  It remains to show that, at each   ν   ∗  ∈  S p  ,  the agent does not know what 
he is missing. To that end, consider any  q ∈  ( ν   ∗ ) , ν ∈  S q  \ { ν   ∗ } .  Because  
 q ∈  ( ν   ∗ ) ,  it must be that  supp (ν)  ⊆ supp ( ν   ∗ )  . Therefore,  ν ∉ S ( ν   ∗ )   means 
it cannot be that   f a   (ν)  =  arg max b∈A    f b   (ν)  ∀ a ∈  arg max b∈A    f b   ( ν   ∗ )  . That is,  
  arg max b    피 θ∼ ν   ∗    [ u T   (b, θ) ]  ⊈  arg max b    피 θ∼ν   [ u T   (b, θ) ] .  So the agent does not know 
what he is missing at   ν   ∗  .

D. Proof of Theorem 2

PROOF: 
Suppose the agent is psychologically information-averse.

Fix some measurable selection23   a   ∗  : ∆Θ → A  of the best-response correspon-
dence  ν ↦ arg  max a∈A   u (a, ν)  . In particular, given any  q ∈  ($)  ,    a   ∗   |     S q      is an opti-
mal strategy for an agent with direct signal   ( S q  ,  σ q  ) . 

Toward a proof of the theorem, we 2rst verify the following claim.

CLAIM 1: Given any information policy  p ∈  ($)  , we can construct a signal  
  (A,  α p  )   such that:

 (i) The information policy   q p    induced by   (A,  α p  )   is less informative than  p .

 (ii) An agent who follows the recommendations of   α p    performs at least as well as 
an agent who receives signal   ( S p  ,  σ p  )   and responds optimally, i.e.,

   ∫ Θ  
 
     ∫ 

A
  
 

    u (a,  β   A, α p    ( ⋅ | a) )  d α p   (a  |   θ)  d$ (θ)  ≥  ∫ ∆Θ  
 
    U dp. 

To verify the claim, 2x any  p ∈  ($)  , and de2ne the map

   α p    :  Θ → ∆ (A)  

  θ ↦  α p   ( ·  |   θ)  =  σ p   ( ·  |   θ)  ◦    a     
∗−1 . 

Then,   (A,  α p  )   is a signal with

   α p   ( A ˆ    |   θ)  =  σ p   ( {s ∈  S p    :   a   ∗  (s)  ∈  A ˆ  }   |   θ)  ,

23 One exists, by Aliprantis and Border (1999, Theorem 8.13).
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for every  θ ∈ Θ  and Borel   A ˆ   ⊆ A . The signal   (A,  α p  )   is familiar: replace each mes-
sage in   ( S p  ,  σ p  )   with a recommendation of the action that would have been taken.

Let   q p   ∈  ($)   denote the information policy induced by signal   (A,  α p  ) .  Now, 
let us show that   q p    delivers at least as high an expected value as  p .

By construction,24  q  is a garbling of  p . Therefore, by Lemma 1,  p  ⪰  B  $   q ,  
so that there is a map  r :   S q   → ∆ ( S p  )   such that for every Borel  S ⊆ ∆Θ,  
 p (S)  =  ∫  S q       r (S  |   · )  dq,  and for every  t ∈  S q  ,   r ( · | t)  ∈  (t) .  Then, appealing to 
the de2nition of psychological information aversion,

  ∫ 
A
  
 

   u (a,  β   A, α p    ( · | a) )  d α p   (a  |   θ)   =   ∫  S p    
 

   u ( a   ∗  (s) ,  β   A, α p    ( · |  a   ∗  (s) ) )  d σ p   (s | θ)  

 ≥  ∫  S p    
 

    ∫  S p    
 

   u ( a   ∗  (s) , ν)  dr (  ν |  β   A, α p    ( · |  a   ∗  (s) )  )   dσ   p   (s | θ)  
 =  ∫   S p    

 

     ∫  S p    
 

    U (ν)  dr (  ν |  β   A, α p    ( · |  a   ∗  (s) )  )   dσ   p   (s | θ)  
 =  ∫ 

A
  
 

     ∫  S p    
 

    U (ν)  dr (  ν |  β   A, α p    ( · | a)  )   dα   p   (a | θ) . 
Therefore,

     ∫ Θ  
 
    ∫ 

A
  

 
   u (a,  β   A, α p    ( · | a) )  d α p   (a  |   θ)  d$ (θ) 

       ≥  ∫ Θ  
 
    ∫ 

A
  
 
    ∫  S p    

 
   U (ν)  dr (ν |  β   A, α p    ( · | a) )  d α p   (a | θ)  d$ (θ) 

       =  ∫  S q    
 
   U (ν)  dr (ν | t)  dq (t)  

       =  ∫  S p    
 

   U dp, which veri2es the claim. 

Now, 2x some optimal policy   p   ∗  ∈  ($)  , and let  α =  α  p   ∗     and  q =  q  p   ∗     be 
as delivered by the above claim. Let the measure  Q ∈ ∆ (A × ∆Θ)   over recom-
mended actions and posterior beliefs be that induced by   α p   . So

  Q ( A ˆ   ×  S ˆ  )  =  ∫ Θ  
 
    ∫ 

 A ˆ  
  
 
     1  β   A,α  ( · | a) ∈S    dα (a  |   θ)  d$ (θ)  

for Borel   A ˆ   ⊆ A,  S ˆ   ⊆ ∆Θ. 
Then,25

   ∫ ∆Θ  
 
    U dp ≤  ∫ 

A×∆Θ  
 
   u dQ ≤  ∫ ∆Θ  

 
    U dq ≤  ∫ ∆Θ  

 
   U dp, 

so that:

   ∫ ∆Θ  
 

   U dq =  ∫ ∆Θ  
 
   U dp, i.e., q is optimal; 

24 Indeed, we can de2ne  g  in (3) via:  g (a | s)  = 1  if   a   ∗  (s)  = a  and 0 otherwise.
25 Indeed, the inequalities follow from the above claim, the de2nition of  U  along with the property  

 mar g ∆Θ  Q = q , and optimality of  p , respectively.
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and 

   ∫ 
A×∆Θ  
 

   u (a, ν)  dQ (a, ν)  =  ∫ ∆Θ  
 
   U dq =  ∫ 

A×∆Θ  
 

    max  
 a ̃  ∈A

    u ( a ̃  , ν)  dQ (a, ν) . 

The latter point implies that  a ∈  arg max  a ̃  ∈A   u ( a ̃  , ν)   a.s.- Q (a, ν) .  In other words, 
the recommendation   (A, α)   is incentive-compatible as well. This completes the 
proof. ∎

We note that the claim in the above proof delivers something more than the state-
ment of Theorem 2. Indeed, given any 2nite-support information policy  p , the claim 
produces a constructive procedure to design an incentive-compatible recommenda-
tion policy which outperforms  p . The reason is that (in the notation of the claim):
 (i) If    a   ∗  |   S p      is injective, then   q p   = p , so that   (A,  α p  )   is an incentive-compatible 

recommendation policy inducing  p  itself.

 (ii) Otherwise,   |  S  q p     |  <  |  S p   |  .
In the latter case, we can simply apply the claim to   q p   . Iterating in this way—

yielding a new, better policy at each stage—eventually (in fewer than   |  S p   |   stages) 
leads to a recommendation policy which is incentive-compatible and outperforms  p .
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Gruber, Jonathan, and Botond Kőszegi. 2004. “Tax incidence when individuals are time-inconsistent: 

The case of cigarette excise taxes.” Journal of Public Economics 88 (9–10): 1959–87.
Gul, Faruk, and Wolfgang Pesendorfer. 2001. “Temptation and Self-Control.” Econometrica 69 (6): 

1403–35.
Hörner, Johannes, and Andrzej Skrzypacz. 2016. “Selling Information.” Journal of Political Economy 

124 (6): 1515–62. 
Kahneman, Daniel, and Amos Tversky. 1979. “Prospect Theory: An Analysis of Decision under Risk.” 

Econometrica 47 (2): 263–92.
Kamenica, Emir, and Matthew Gentzkow. 2011. “Bayesian Persuasion.” American Economic Review 

101 (6): 2590–2615.
Kemperman, J. H. B. 1968. “The General Moment Problem: A Geometric Approach.” Annals of Math-

ematical Statistics 39 (1): 93–122.
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