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A well-intentioned principal provides information to a rationally inattentive agent without 
internalizing the agent’s cost of processing information. Whatever information the principal 
makes available, the agent may choose to ignore some. We study optimal information 
provision in a tractable model with quadratic payoffs where full disclosure is not optimal. 
We characterize incentive-compatible information policies, that is, those to which the agent 
willingly pays full attention. In a leading example with three states, optimal disclosure 
involves information distortion at intermediate costs of attention. As the cost increases, 
optimal information changes from downplaying the state to exaggerating the state.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Information is intended to benefit its recipient by allowing better decision making. Meanwhile, learning or information 
processing can be costly. These costs can cause the recipient to ignore some available information. This motivated Simon 
(1971, 1996) to call for the design of “intelligent information-filtering systems.”

In our recent paper (Lipnowski et al., 2020, “LMW” hereafter), we propose a theoretical framework to study the 
information-filtering problem aimed at managing a receiver’s attention. Despite strong preference alignment, we show that 
a benevolent sender can have incentives to withhold information in order to induce an agent to pay “better” attention and 
make better decisions. While a necessary and sufficient condition is provided for when information should be withheld, 
optimization (i.e., how to optimally withhold information) is left open. The goal of this paper is to analyze this question in 
a tractable specification of LMW’s model.

We propose a quadratic model of a principal providing information to a rationally inattentive agent. The agent cares 
about his material loss, defined as the squared error between his action and the state, and also about the cost of processing 
information, defined as the squared Euclidean distance between his prior and posterior beliefs. The principal, however, 
is motivated only by the agent’s material welfare, as a teacher is motivated by her student’s educational outcomes or a 
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doctor by the fitness of her patient’s medical decisions. Given such costs, the agent decides what information to acquire, 
taking whatever information the principal provides as an upper bound. Choosing said upper bound optimally is our design 
problem.

The key message from LMW is that attention management is fundamentally about trading off issues, that is, different 
dimensions of information. With two states, information can never be misused, because its sole use is to separate one state 
from the other; as a result, it is always optimal for the principal to provide full information. With more than two states, 
however, information becomes multidimensional. Intuitively, the agent needs to decide which aspects of the state to learn 
about, while at the same time determining the total amount of information to acquire. The principal may then strictly prefer 
to withhold information to restrict the agent’s flexibility in garbling—though her sole objective is to help the agent make 
good decisions—so as to focus the agent on the most relevant issues.

The quadratic model in the present paper is arguably the simplest available model with more than two states, because 
the agent’s preferences over information are constant in a given “direction.” For this reason, the model can isolate the new 
forces that arise from multi-issue attention management. To study optimal disclosure, we first characterize (in Proposition 1) 
the information policies to which the agent willingly pays full attention. We find that incentive compatibility of distinguish-
ing any given pair of messages in a policy can be determined by simple comparison of its marginal cost and benefit, and 
that pairwise incentive compatibility between messages implies that the information policy is incentive compatible.

We apply our characterization of agent incentives to solve for the optimal attention management policy in a canonical 
example with three states. We explicitly derive the optimal policy for arbitrary prior beliefs and cost parameters, showing 
that it always takes a friendly form: The principal either downplays or exaggerates the state (Proposition 2). In this example, 
we can interpret the principal as a teacher who hopes to maximize her student’s performance on an (externally adminis-
tered) exam in which the answer θ to each question is true (1), false (−1) or uncertain (0). The student can provide an 
explanation for his response, so that his action a can be any number between −1 and 1, and his score, e.g., 4 − (a − θ)2, 
depends on how close his answer is to the correct one. At intermediate attention costs, partial disclosure is optimal even 
though the teacher wants the student to learn as much as possible. Specifically, when attention is relatively cheap, the 
teacher should present some of those questions with extreme answers (i.e., true or false) as uncertain (downplaying); 
when attention is relatively costly, the teacher should only emphasize the positive or negative side of those uncertain
questions (exaggerating). By carefully withholding information, the teacher incentivizes the student to pay more attention 
to the available and more relevant aspects, leading to even better decision making.

Related literature. Our paper lies at the interface of two literatures: persuasion through flexible information (Kamenica and 
Gentzkow, 2011) and rational inattention (Sims, 1998, 2003). The most related works, featuring well-intentioned information 
transmission with a flexibly inattentive audience, are those of Lipnowski et al. (2020) and Bloedel and Segal (2021).1

In Lipnowski et al. (2020), we propose the theoretical framework used in this paper, and find a necessary and sufficient 
condition for when attention management is useful. The present paper studies how to optimally manage attention, by 
specializing the framework to a tractable payoff environment.

Our exercise is closest in spirit to that of Bloedel and Segal (2021), which studies a similar problem with substantially 
different modeling assumptions. Most notably, the qualitatively different cost specifications make the respective analyses 
relevant to distinct applications.2 When information is provided by another party (the principal), the agent’s uncertainty 
could be about the realized message or about the underlying state of the world. In the model of Bloedel and Segal (2021), 
the agent bears an (entropy-based) cost to learn what message the principal has sent. In our model, following our previous 
paper, the agent bears a (quadratic) cost to learn the state. Thus, their cost specification is a cost of deciphering direct 
communication, while ours is better-suited to capture the cost of processing available data.

2. The model

We study the exact setting of LMW, specialized to a quadratic-payoff specification. Let � ⊆ R be a finite set of states 
and A be its convex hull. An agent must make a decision a ∈ A in a world with uncertain state θ ∈ � distributed according 
to a full-support prior distribution μ ∈ ��. When the agent chooses a in state θ , his material payoff is given by u(a, θ) :=
−(a − θ)2. The principal’s payoff is equal to the agent’s material utility, u.

In addition to his material utility, the agent also incurs an attention cost. As in the rational inattention literature, this 
cost is interpreted as the utility loss from processing information. To define it, first let

R (μ) :=
⎧⎨
⎩p ∈ ��� :

∫
��

ν dp(ν) = μ

⎫⎬
⎭

1 In addition, Lester et al. (2012) analyze evidence exclusion in courts of law, where a judge chooses which of the finite pieces of evidence should 
be considered by the jury who then choose a subset of those to examine at a cost. They provide examples in which evidence exclusion leads to fewer 
sentencing errors. We study the same basic tradeoff in a flexible-information framework. Wei (2021) applies our framework to misaligned preferences, 
studying a buyer-seller setting.

2 In addition to aligned preferences, Bloedel and Segal (2021) also study the case of misaligned preferences, which lend the principal two reasons to 
withhold information: to bias the agent’s decision, and to manipulate his attention.
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be the set of (information) policies, which are the distributions over the agent’s beliefs such that the mean equals the prior. 
It is well-known that signal structures and information policies are equivalent formalisms (e.g., Kamenica and Gentzkow, 
2011). For a given cost parameter κ > 0, we define the attention cost C : R (μ) →R+ given by

C(p) =
∫

��

c(ν) dp(ν) =
∫

��

κ ||ν − μ||2 dp(ν),

where || · || is the Euclidean norm on R� . This cost function is posterior separable, that is, linear in the induced distribu-
tion of posterior beliefs.3 By Jensen’s inequality, processing more information, in the sense of obtaining a policy p more 
(Blackwell) informative than q, denoted p �B q,4 will incur a higher cost.

The timing of the game is as follows:

– The principal first chooses an information policy p ∈ R(μ).
– The agent then decides to what extent he should pay attention to p: He chooses a policy q ∈ R(μ) such that q �B p. 

Such a policy q is called an (attention) outcome.
– Nature draws an agent belief ν ∈ �� via q.
– The agent chooses an action a ∈ A.
– Nature chooses a state θ ∈ � via ν .

We study principal-preferred subgame perfect equilibria of this game.
Define the principal’s and the agent’s indirect utilities at ν ∈ �� as:

U P (ν) = U (ν) := max
a∈A

∑
θ∈�

u(a, θ)ν(θ),

U A(ν) = U (ν) − c(ν).

The principal’s problem can then be formalized as follows:

sup
p,q

∫
��

U P dq

s.t. p ∈ R (μ) and q ∈ G∗(p),

(1)

where

G∗(p) := argmax
q∈R(μ): q�B p

⎧⎨
⎩

∫
��

U dq − C(q)

⎫⎬
⎭ = argmax

q∈R(μ): q�B p

∫
��

U A dq

is the agent’s optimal garbling correspondence. An information policy p∗ ∈ R(μ) is (principal-) optimal if (p∗, q∗) solves 
(1) for some outcome q∗ ∈ ���. The corresponding q∗ is an optimal (attention) outcome.

As formalized, it is clear that the principal’s problem is one of delegation. The policy p chosen by the principal only 
appears in the constraint and does not directly affect any party’s payoff. In effect, the principal makes available a menu of 
information policies, from which the agent picks his preferred one.

We carry out our analysis under specific assumptions on the form of the agent’s material payoff and his information 
processing cost. The foremost reason for our choice of the functional form is tractability: With quadratic preferences, we can 
fully characterize the set of incentive-compatible information policies, which serves as a foundation for finding an optimal 
policy.5 In addition to technical convenience, we see an important conceptual advantage to studying quadratic preferences. 
In short, quadratic preferences isolate the new forces that arise due to multidimensionality of the agent’s problem. See 
Appendix A.1 for a discussion on this point, and also for a more general class of quadratic preferences that enjoy the same 
advantages.

3 For discussion and decision-theoretic foundations of posterior-separable costs, see Caplin et al. (2021); Morris and Strack (2019); Hébert and Woodford 
(2021); Denti (2021).

4 For any p, q ∈ R(μ), p �B q if p is a mean-preserving spread of q, that is, there is some measurable r : �� → ��� such that (i) p(S) =∫
��

r(S|·) dq, ∀ Borel S ⊆ �� and (ii) r(·|ν) ∈ R(ν), ∀ν ∈ ��. As is standard, this formalism is equivalent to one in which the principal chooses an 
experiment � → �M P , the agent (having seen the choice of experiment but not a realized message) chooses a Blackwell garbling M P → �M A , and the 
agent observes the realization (in M A ) of the composed experiment. The agent’s garbling captures inattention and the loss of information it causes.

5 Such tractability also enables complete solutions in Ely et al. (2015), which uses the quadratic distance between beliefs to model preferences for 
suspense and surprise.
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3. Simplifying disclosure

In this section, we reduce the principal’s disclosure problem to an amenable form. We first recall the existence result 
established in our previous paper, with an additional simplification, to reduce the constraint set to incentive-compatible 
policies with small support. We then provide a meaningful characterization of such policies, exploiting the quadratic struc-
ture of the present model. As such, we set the stage for deriving principles and solutions to the attention management 
problem.

3.1. Rewriting the principal’s program

Our previous paper establishes the existence of solution to the principal’s problem, additionally showing that some 
optimum takes a special and convenient form.6 Say that an information policy p ∈ R(μ) is incentive compatible (IC) if the 
agent finds it optimal to pay full attention to it, that is, if p ∈ G∗(p); and say it is nonredundant if supp(p) is affinely 
independent.

Lemma 1. There exists a nonredundant solution q∗ to

max
q

∫
��

U P dp

s.t. (i) q ∈ R(μ)

(ii) q is IC.

(2)

Moreover, q∗ solves (2) if and only if (p∗,q∗) solves (1) for some p∗.

The lemma shows that focusing on nonredundant, incentive-compatible information policies is without loss. Since �
is finite, nonredundancy implies the need for fewer messages than there are states. Thus, Lemma 1 reduces an infinite-
dimensional optimization problem to a finite-dimensional one. In addition to having a small support, a nonredundant 
information policy enjoys another technical convenience: Its set of garblings is straightforward to describe, which simplifies 
the task of checking whether it is IC. Specifically, for all p, q ∈ R(μ) with p nonredundant,7

p �B q ⇐⇒ supp(q) ⊆ co [supp(p)] .

3.2. Payoffs and incentives

Below, we index statistical measures, such as expectation E and variance V , by the distribution of the underlying 
random variable. For example, Eνθ = ∫

�
θ̃ dν(θ̃), Vνθ =Eν [θ2] − [Eνθ]2 and EpVνθ = ∫

��
Vνθ dp(ν).

Principal’s payoff. The marginal distribution of actions is sufficient to compute our principal’s expected payoffs, due to her 
simple “match the state” motive. Indeed, as the agent’s optimal action at any belief ν ∈ �� is

a∗(ν) := argmax
a∈A

u(a, ν) = Eνθ,

the principal’s value is given by

U P (ν) := −Eν [(θ − a∗(ν))2] = −Vνθ,

which is strictly convex in ν .
Take any incentive-compatible information policy p ∈ R(μ), and note that∫

��

U P dp = −EpVνθ = VpEνθ −Vμθ = Vp[a∗(ν)] −Vμθ,

by the law of total variance. Therefore:

Observation 1. For any IC policies p and p′ , the principal strictly prefers p to p′ if and only if Vp[a∗(ν)] >Vp′ [a∗(ν)].

6 The result we report here is stronger than Lemma 1 as stated in LMW. However, the proof for this strengthened result was recorded in LMW’s Online 
Appendix.

7 See Wu (2018, Theorem 5). He assumes q to have finite support, but the general argument is identical.
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Psychological vs. Material Incentives. We now turn to the agent’s incentives. Our goal is to characterize the set of IC 
policies which serves as the constraint in the principal’s optimization problem. It turns out that IC can be characterized by 
a sequence of local comparisons between psychological cost and material benefit.

The agent’s attention cost at ν is

c(ν) := κ ||ν − μ||2 = κ
∑
θ

(νθ − μθ)
2,

so that his net indirect utility is

U A(ν) := U P (ν) − c(ν) =
⎡
⎣(∑

θ

νθ θ

)2

− κ
∑
θ

ν2
θ

⎤
⎦ + h(ν)

where νθ := ν(θ) and h(ν) is affine in ν .
To understand the agent’s attentional tradeoff in this model, consider first a binary-support policy. Fix some ν, ν ′ , and 

let xθ := νθ − ν ′
θ for all θ ∈ �. For ε ∈ [0, 1],

1

2

d2

dε2
U A(ν + ε(ν ′ − ν)) =

(∑
θ

xθ θ

)2

− κ
∑
θ

x2
θ (3)

= |Eνθ −Eν ′θ |2 − κ ||ν − ν ′||2.
This derivative measures the curvature of U A between ν and ν ′ and brings about two notions of distance between beliefs:

– The choice distance, |Eνθ −Eν ′θ |, which describes the change in action caused by a change in beliefs.
– The psychological distance, 

√
κ||ν − ν ′||, which is proportional to a standard distance between beliefs.

The psychological distance measures the marginal cost of extra attention in a given direction, while the choice distance 
measures the marginal instrumental benefit. A policy with binary support {ν, ν ′} is IC if and only if U A is convex between 
ν and ν ′ , that is, if and only if the choice distance exceeds the psychological distance.8 The next proposition generalizes this 
fact to all nonredundant policies.

Proposition 1. A nonredundant policy p ∈ R(μ) is IC if and only if

|an+1 − an| ≥ √
κ ||νn+1 − νn|| ∀n ∈ {1, . . . , N − 1}, (4)

where supp(p) = {ν1, . . . , νN} such that an :=Eνn (θ) and a1 ≤ · · · ≤ aN .

Condition (4), which we term order-IC, is apparently much weaker than IC. It can be interpreted as immunity to a 
particular small family of deviations by the agent: For each pair of consecutive (in terms of their induced action) messages, 
the agent would rather pay full attention than engage in the simple garbling that perfectly pools this pair and pays full 
attention to all other messages. In the present quadratic model, one such deviation is profitable if any deviation from full 
attention is profitable.9

Beyond being interpretable, the characterization of IC in Proposition 1 is useful. Below, we illustrate how it helps reduce 
the problem of optimal attention management. The next section will then use said reduction to fully solve a canonical 
example.

3.3. Implications of IC for optimal disclosure

For a nonredundant policy p with support {νn}N
n=1 such that N ≥ 2 and Eν1 (θ) ≤ · · · ≤EνN (θ), let the direction of p be 

the vector10

8 This observation follows from Jensen’s inequality, together with the observation that the univariate function ε �→ U A(ν + ε(ν ′ − ν)) is (being quadratic) 
either globally weakly convex or globally strictly concave.

9 In the appendix, we formulate a more general quadratic model of attention management, allowing for multidimensional action and state spaces. 
Appropriately generalizing the definitions of choice and psychological distances, we can show that Proposition 1 exactly goes through whenever the action 
space is unidimensional; moreover, even if the actions are not linearly ordered, an analogue of Proposition 1 (without a reference to “consecutive messages”) 
still holds.
10 Referring to “the” direction is a mild abuse of terminology when two distinct beliefs might induce the same action, leading to an ambiguous order 

over actions. Because such information policies will obviously never be IC (as pooling those beliefs is strictly profitable for the agent), this ambiguity is 
immaterial for our purposes.
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Fig. 1. Excluding Interior Policies.

μ

a

z

Fig. 2. Excluding Some Non-Interior Policies.

(
νn+1 − νn

||νn+1 − νn||
)N−1

n=1
.

The direction of an information policy is the vector of normalized changes in uncertainty from one belief to the next. We 
say that a policy p is interior if there exists another policy p′ with the same direction such that p′ �B p. The next corollary 
follows naturally from Proposition 1 and Observation 1.

Corollary 1. A nonredundant policy can be an optimal attention outcome only if no interior and IC policy induces the same distribution 
of actions.

Corollary 1 is helpful for ruling out a variety of information policies and reducing the dimension of our optimization 
problem. First, Corollary 1 implies that an IC information policy admits a strict improvement if it is itself interior. Said 
differently, information should be maximal given its direction. To illustrate graphically, let us consider the belief simplex 
in a three-state environment. Note that the direction of an information policy is unaffected by any affine transformation of 
beliefs (as in Figs. 1a and 1b) or changes in non-consecutive slopes (as in Fig. 1c). Consequently, such transformations leave 
the comparisons in (4) (hence, IC) unchanged, and each dashed policy in Fig. 1 is a strict improvement of the corresponding 
solid interior policy.

Moreover, Corollary 1 allows us to rule out some non-interior policies through a perturbation argument, by finding 
another interior policy that is IC and induces the same action distribution. To illustrate graphically, let us again consider the 
belief simplex in a three-state environment. In Fig. 2, the solid red policy is not interior, so it cannot be ruled out using the 
previous argument. Nonetheless, if we can find an interior perturbation (e.g., the dashed blue policy) to which it is easier 
to pay attention, while inducing the same action distribution (hence the same principal payoff),11 then the dashed policy 
enables a strict improvement, making the original policy suboptimal.

4. Optimal attention management: three states

We now apply our results in the previous section to pare down the search for optimal information in a model with three 
(evenly spaced) states, � = {−1, 0, 1}. We can interpret this scenario as a teacher creating a lesson plan to maximize her 
student’s score in an exam where the answer to each question is true (1), false (-1) or uncertain (0).

We represent beliefs in the (a, z) space, where z is the agent’s belief that θ is zero and a is his optimal action (see Figure 
OA.1 in the Online Appendix).12 Rearranging (4), a nonredundant policy p with N ≥ 2 supported beliefs {νn = ν(an,zn)}N

n=1 is 
IC, if and only if κ ≤ 2 and∣∣∣∣ zn+1 − zn

an+1 − an

∣∣∣∣ ≤ s∗(κ) :=
√

2 − κ

3κ
∀n ∈ {1, ..., N − 1}.

11 Fig. 2 represents beliefs by the probability z that θ = 0 and the induced action a. This representation is also used in the next section.
12 The associated belief is ν(a,z) = zδ0 + 1−z+a

2 δ1 + 1−z−a
2 δ−1, for z ∈ [0, 1] and a ∈ [z − 1, 1 − z].
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That is, a policy is IC if and only if the absolute slopes between consecutive beliefs are less than a cutoff.
Before stating our characterization, we introduce a language to speak about some special policies. Say the principal

downplays the state if, for some π1, π−1 ∈ [0, 1], she sends message:

m =

⎧⎪⎨
⎪⎩

0 : with probability 1, if θ = 0

θ : with probability 1 − πθ , if θ �= 0

0 : with probability πθ , if θ �= 0.

The principal downplays the state if she sometimes says 0 when the true state is one of the extremes. Complete downplaying 
(π−1 = π1 = 1) conveys no information; no downplaying (π−1 = π1 = 0) fully discloses the state; other forms convey 
partial information. Let 

{
pD

(π−1,π1) : (π−1,π1) ∈ [0,1]2
}

denote the policies induced by downplaying the state. Say that the 
principal exaggerates the state if, for some π ∈ [0, 1], she sends message:

m =

⎧⎪⎨
⎪⎩

θ : with probability 1, if θ �= 0

1 : with probability 1 − π, if θ = 0

−1 : with probability π, if θ = 0.

The principal exaggerates the state if she reports an extreme state when the true state is 0. Increasing π makes the agent 
more (less) certain that θ = m upon receiving m = 1 (m = −1). Let separating exaggeration refer to π ∈ {0, 1}. Policies 
induced by exaggerating the state are denoted 

{
pE
π : π ∈ [0,1]}.

Let aμ = μ1 − μ−1 be the agent’s optimal action at the prior, and define

κ1 := 1
2

κ2 := 2
3
4

(
1−|aμ |+μ0

1−|aμ |
)2+1

κ3 := 2

3
(

μ0
1−|aμ |

)2+1

κ4 := 2.

Note that κ1 < κ2 < κ3 < κ4 for any interior μ.

Proposition 2. In the three-state model, an optimal attention outcome:

1. fully reveals the state when κ ∈ (0, κ1];
2. downplays the state until (4) holds with equality when κ ∈ (κ1, κ2];
3. engages in separating exaggeration when κ ∈ [κ2, κ3];13

4. exaggerates the state until (4) holds with equality when κ ∈ (κ3, κ4];
5. reveals no information when κ ∈ (κ4,∞).

Moreover, for generic κ , every optimal attention outcome is of the above form.14

When attention comes at low cost, the principal keeps quiet (i.e., reports 0) on some extreme occasions and is truthful 
the rest of the time. That is, she downplays the state. As shown in Fig. 3, this invites either inaction from the agent, who 
chooses 0, or an extreme reaction {−1, 1}. The latter are never mistaken, because they happen in precisely the principal’s 
reported extreme state. However, inaction is harmful in extreme situations, so the agent makes all his mistakes through 
action 0. The frequency of mistakes, shown in Fig. 3, is chosen so that the agent is barely willing to pay full attention. 
Under this type of information disclosure, mistakes are large, always of size 1, but they are kept rare as long as κ ≤ κ2.

As inattention grows more severe, the principal increasingly downplays the state to keep the agent’s attention. Eventually, 
the principal switches to exaggerating the state to avoid the potentially harmful consequences of extreme behaviors and 
maintain the agent’s full attention. Exaggeration results in smaller mistakes (than under downplaying, because their size is 
strictly less than 1), although they occur more often. A complete proof of Proposition 2 is in the Online Appendix.

Our result implies that for intermediate attention costs, the principal can improve the material welfare of the agent by 
excluding some information. This observation recalls principles from the delegation literature (Szalay, 2005) showing that 
restricting an agent’s choices can incentivize information acquisition. By downplaying or exaggerating the state, the principal 
endogenously restricts the agent’s behavior, activating the same incentive channel.

13 In particular, π = 1 (π = 0) is optimal if and only if aμ ≥ 0 (aμ ≤ 0).
14 When κ = κ2, both downplaying and separating exaggeration are optimal, and continuum many optima exist that mix these two policies. For any other 
κ , there is a unique optimal attention outcome (up to reversing the role of 1 and −1 in the case that the prior is symmetric).
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κ ≤ κ1

(Full revelation)

μ
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κ1 < κ ≤ κ2

(Downplaying)

frequency of mistakes

μ
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z

κ2 ≤ κ ≤ κ3

(Separating exaggeration)

μ

a

z
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μ

a

z

κ > κ4

(No disclosure)

Fig. 3. Optimal attention outcomes.

5. Conclusion

This paper aims at understanding how a benevolent principal should optimally withhold information to help an inat-
tentive agent make informed decisions. Building on the framework of Lipnowski et al. (2020), we present a tractable 
environment with quadratic payoffs where incentive-compatible information can be fully characterized. We illustrate the 
implications of incentive compatibility for optimal disclosure, and further apply them to derive optimal information poli-
cies in a canonical example with multidimensional information. As such, this paper provides insights into how to optimally 
manage attention.

Appendix A

A.1. A general quadratic model of attention management

In this section, we outline a model of attention management with general quadratic preferences. Such a model is of 
interest for the following reason. The main result of LMW is that full information is universally optimal (that is, optimal for 
every choice problem and preference specification) if and only if the state space is binary. One can reinterpret this result as 
saying that any scope for beneficial attention management derives from the agent’s space of beliefs being multidimensional. 
We see quadratic preferences as particularly well-suited to isolate the richness imparted by multidimensional beliefs, as 
the benefits and costs of information—captured by the degree of convexity of U A and c—are constant along every “one-
dimensional slice” of the space of beliefs.15

The generalized model is exactly as in Section 2, except with a more general specification of the state space, action 
space, material objective, and cost of information. Given J ∈ N , let � ⊆ R J be some finite nonempty set, and A be the 
convex hull of � (or some compact subset of R J that contains it). Given arbitrary vectors γ , π ∈R� and arbitrary positive 
semidefinite matrices � ∈R J× J and � ∈R�×� , assume the material objective u : A ×� →R is given by u(a, θ) := γθ −(a −
θ)��(a − θ), and the attention cost functional c : �� →R is given by c(ν) := ν�π + (ν − μ)��(ν − μ), where μ ∈ �� is 
the prior. This specification captures all finite-state, quadratic models in which the agent optimally chooses her expectation 
a∗(ν) = ∑

θ∈� νθ θ of the state (and moreover, faces a Blackwell-monotone cost of information). The formulation of Section 2
corresponds to the case in which J = 1, γ = π = 0, � = 1, and � = κ I� for some κ > 0, where I� is the identity matrix.

Simple computations show that

U A(ν) = U P (ν) − c(ν) = a∗(ν)��a∗(ν) − ν��ν + h(ν)

for some affine h : �� →R. Define now the seminorms || · ||M on R J via ||y||M := √
y��y and || · ||P on R� via ||x||M :=√

x��x. Given two beliefs ν, ν ′ ∈ ��, we can define a choice distance between them as ||Eν ′θ − Eνθ ||M = ||a∗(ν ′) −
a∗(ν)||M , and a psychological distance as ||ν ′ − ν||P ; both of these formulae specialize to the forms given in our main 
model. Further replicating the computations before Proposition 1, for ε ∈ [0, 1],

1

2

d2

dε2
U A(ν + ε(ν ′ − ν)) = ||Eν ′θ −Eνθ ||2M − ||ν ′ − ν||2P .

15 More precisely, the second derivative in condition (3) is independent of ε .
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Hence, the following generalization of Proposition 1 can be established.16

Proposition 1*. In the generalized quadratic setting, a nonredundant policy p ∈ R(μ) is IC if and only if

||Eν ′θ −Eνθ ||M ≥ ||ν ′ − ν||P ∀ν,ν ′ ∈ supp(p). (5)

Moreover, if J = 1, and supp(p) = {ν1, . . . , νN } is such that an := Eνn (θ) satisfy a1 ≤ · · · ≤ aN , then it suffices to verify (5) only for 
the case that ν = νn and ν ′ = νn+1 for n ∈ {1, . . . , N − 1}.

A.2. Proof of Proposition 1

Lemma 2. In the general quadratic model of Section A.1, for any ν, ν ′ ∈ ��, the function U A |co{ν,ν ′} is convex [resp. strictly concave] 
if and only if ||Eν ′θ −Eνθ ||M ≥ [<]||ν ′ − ν||P . In particular, in the model of Section 2, this ranking reduces to |Eν ′θ −Eνθ | ≥ [<
]√κ||ν ′ − ν||.

Proof. Given any ν ∈ ��, the agent’s first-order condition is clearly solved at a = a∗(ν) := ∑
θ∈� νθ θ , and the objective is 

concave in the chosen action because � is positive semidefinite. Hence a∗(ν) is an optimal action. Therefore,

U A(ν) = U P (ν) − c(ν)

=
∫ {

γ (θ) − [a∗(ν) − θ]��[a∗(ν) − θ] − π(θ)
}

dν(θ) − ν��ν

=
∫ [

γ (θ) − θ��θ − π(θ)
]

dν(θ) + a∗(ν)��a∗(ν) − ν��ν.

Now, for ν, ν ′ ∈ �� and ε ∈ [0, 1], we have

1
2

d2

dε2 U A(ν + ε(ν ′ − ν)) = 1
2

d2

dε2

{
a∗ (

ν + ε(ν ′ − ν)
)�

�a∗ (
ν + ε(ν ′ − ν)

) − [
ν + ε(ν ′ − ν)

]�
�

[
ν + ε(ν ′ − ν)

]}
= [

a∗(ν ′) − a∗(ν)
]�

�
[
a∗(ν ′) − a∗(ν)

] − (ν ′ − ν)��(ν ′ − ν)

= ||a∗(ν ′) − a∗(ν)||2M − ||ν ′ − ν||2P .

The general result follows. Finally, to specialize the result to our main model, note that || · ||M = | · | and || · ||P = √
κ|| · || in 

this case. �
Let us now prove Proposition 1*, from which Proposition 1 follows directly.

Proof of Proposition 1*. Fixing any nonredundant p ∈ R(μ), we will first show that the following are equivalent:

1. p is IC.
2. U A |co{ν ′,ν ′′} is weakly convex for all ∀ν ′, ν ′′ ∈ supp(p).
3. ||Eν ′′θ −Eν ′θ ||M ≥ ||ν ′′ − ν ′||P for all ν ′, ν ′′ ∈ supp(p).

That (2) ⇐⇒ (3) follows directly from Lemma 2, so we now turn to showing (1) ⇐⇒ (2).
(1) ⇒ (2): Suppose condition (2) does not hold. As U A is quadratic, there then exist ν ′, ν ′′ ∈ supp(p) such that 

U A |co{ν ′,ν ′′} is strictly concave. Define the finite-support random posterior q ∈ G(p) by

q(ν) =

⎧⎪⎨
⎪⎩

0 : ν ∈ {ν ′, ν ′′}
p(ν ′) + p(ν ′′) : ν = p(ν ′)

p(ν ′)+p(ν ′′) ν
′ + p(ν ′′)

p(ν ′)+p(ν ′′) ν
′′

p(ν) : otherwise.

In words, q is a random posterior that replaces ν ′, ν ′′ in supp(p) with their conditional mean. By construction, p �B q, so 
that q ∈ G(p). Also, since U A |co{ν ′,ν ′′} is strictly concave, by Jensen’s inequality,

16 Moreover, if J = 1 and � is nonzero, then Corollary 1 applies, with an identical proof. To generalize to the multidimensional-action case, one requires a 
more comprehensive notion of “the direction of an information policy” that involves every pair of supported posteriors, not only consecutive ones. Adopting 
an analogous, more stringent definition of an interior information policy—which in general makes the result less powerful by ruling out a smaller family 
of information policies—an analogue Corollary 1 holds with an identical argument. The analysis of Section 4 is, of course, specific to the fully parametric 
environment of that section.
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∫
��

U A dq >

∫
��

U A dp.

This implies that p /∈ G∗(p), i.e. (1) does not hold.

(2) ⇒ (1): Suppose (2) holds. By Claims OA.4 and OA.6 of Lipnowski et al. (2020), there exists some Blackwell-maximal 
element q∗ ∈ G∗(p). Since � is finite and S := supp(p) is affinely independent, we know that S is finite, and that the map 
β : �S → co(S), defined by p �→ ∑

ν∈S p(ν)ν , is bijective.
Assume (toward a contradiction) that ∃ν∗ ∈ supp(q∗) \ S . As β is bijective and ν∗ /∈ S , we know that β−1(ν∗) is not 

a point mass. So ∃ν ′, ν ′′ ∈ S and ε > 0 such that β−1(ν ′|ν∗), β−1(ν ′′|ν∗) > 2ε. By continuity, there exists a neighborhood 
N ⊆ co(S) of ν∗ such that:

β−1(ν ′|ν),β−1(ν ′′|ν) > ε,∀ν ∈ N.

Note that q∗(N) > 0 as ν∗ ∈ supp(q∗).
Define f+, f− : �� → �� by ν �→ ν + ε(ν ′ − ν ′′)1ν∈N and ν �→ ν − ε(ν ′ − ν ′′)1ν∈N , respectively.17 Also, define

q′ := 1
2 q∗ ◦ f −1+ + 1

2 q∗ ◦ f −1− ∈ ���.

By construction, q′ �B q∗ . Moreover, since U A |co{ν ′,ν ′′} is convex, Lemma 2 tells us that U A |co{ν±ε(ν ′−ν ′′)} is also convex, 
∀ν ∈ N . This implies∫

��

U A dq′ ≥
∫

��

U A dq∗,

so that q′ ∈ G∗(p), contradicting maximality of q∗ . Therefore, supp(q∗) ⊆ S , i.e. q∗ ∈ �S . But β is bijective and β(q∗) = μ =
β(p), so that q∗ = p. Hence, p ∈ G∗(p), i.e. (1) holds.

Finally, having proved the three-way equivalence, we now specialize the model to the case of J = 1. Because || · ||M is a 
seminorm on R, it follows that || · ||M = λ| · | for some λ ∈R+ . Let N := |supp(p)|, and write supp(p) = {ν1, . . . , νN}, where 
an := a∗(νn) satisfy a1 ≤ · · · ≤ aN . Suppose ||an+1 − an||M ≥ ||νn+1 − νn||P for every n ∈ {1, . . . , N − 1}.

Fixing some i, j ∈ {1, . . . , N} with i < j, we now argue that ||a j − ai ||M ≥ ||ν j − ν i ||P . Consider two cases. First, suppose 
a j = ai . In this case, every n ∈ {i, . . . , j − 1} has ai ≤ an ≤ an−1 ≤ a j , so that ||an+1 − an||M = 0, and hence ||νn+1 − νn||P = 0. 
Because ν j − ν i = ∑ j−1

n=i (ν
n − νn−1), the triangle inequality yields ||ν j − ν i ||P ≤ ∑ j−1

n=i ||νn − νn−1||P , giving the desired 
inequality. Now focus on the complementary case that a j > ai . Direct computation then shows:

ν j − ν i

a j − ai
= 1∑ j−1

�=i

(
a�+1−a�

)
j−1∑
n=i

(
νn+1 − νn)

=
j−1∑
n=i

[
an+1−an∑ j−1

�=i

(
a�+1−a�

)
(

νn+1 − νn

an+1 − an

)]

∈ co

{
νn+1 − νn

an+1 − an

} j−1

n=i
.

As a seminorm is convex, and therefore quasiconvex, it follows that∥∥∥∥∥ν j − ν i

a j − ai

∥∥∥∥∥
P

≤ max
�∈{i,..., j−1}

∥∥∥∥ν�+1 − ν�

a�+1 − a�

∥∥∥∥
P

≤ λ,

and hence 
∥∥ν j − ν i

∥∥
P ≤ λ|a j − ai | = ∥∥a j − ai

∥∥
M , as required. �

Proof of Corollary 1. By Observation 1, we only need to show that any (nonredundant) policy that is IC and interior cannot 
be an optimal attention outcome.18 Let p be a policy that is IC and interior. By definition, there exists an alternative 
nonredundant policy p̃ with the same direction as p such that p̃ �B p. Since the principal strictly prefers the agent to 
process more information, we are done if p̃ is IC. But by Proposition 1, preserving the direction of an IC information policy 
preserves IC. �
17 Notice that since ν∗ /∈ S , one can choose ε and N small enough to ensure f+ and f− are well-defined ��-valued maps.
18 Note that the definition of an interior policy involves its direction, which is only defined for nonredundant policies and which is distinct by definition 

for any two policies with different support size (see Section 3.3). Hence, by definition, an interior policy is both nonredundant and informative.
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Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2022 .01.029.
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ONLINE APPENDIX: PROOF OF PROPOSITION 2

In this Online Appendix, we provide the complete proof of Proposition 2 in Lipnowski, Mathevet
and Wei (2022), which characterizes the optimal disclosure policy in the three-state model.

Information policies with two supported messages are called binary policies, and those with
three supported messages are called ternary policies. With three states, any nonredundant,
informative policy is either binary or ternary.

In what follows, we represent the belief space ∆Θ parametrically. Let

B = {
(a, z) ∈R2 : z ∈ [0,1], a ∈ [z−1,1− z]

}
.

For any (a, z) ∈B, let

ν(a,z) = zδ0 + 1− z+a
2

δ1 + 1− z−a
2

δ−1.

So ν(a,z) ∈∆Θ has a = Eθ∼ν(a,z)(θ) and z = ν(a,z)(0). By construction, the map (a, z) 7→ ν(a,z) is an affine
bijection from B to ∆Θ. Under this representation, Dirac measures in ∆Θ are extreme points of B:
δ−1 = ν(−1,0), δ0 = ν(0,1), and δ1 = ν(1,0). Also, the prior satisfies µ= ν(aµ,µ0), where aµ = µ1 −µ−1 and
(aµ,µ0) ∈ int(B). Figure OA.1 depicts the (a, z) representation of the belief space.

For any distinct beliefs ν= ν(a,z) and ν′ = ν(a′,z′), let (∆a,∆z)= (a−a′, z− z′). Note that

|a−a′| ≥p
κ||ν−ν′||

⇐⇒ |a−a′| ≥p
κ

√
(z− z′)2 +

(
1− z+a

2
− 1− z′+a′

2

)2
+

(
1− z−a

2
− 1− z′−a′

2

)2

⇐⇒ κ≤ 2, ∆a ̸= 0, and
∣∣∣∣∆z
∆a

∣∣∣∣≤
√

2−κ
3κ

=: s∗(κ). (OA.1)

By Proposition 1, a nonredundant p ∈R(µ) is IC, if and only if (OA.1) holds for any two consecutive
messages in supp(p). Finally, we fix notation for line segments that form the boundary of B:
L := co{(0,1), (−1,0)}, R := co{(0,1), (1,0)} and D := co{(−1,0), (1,0)}.

(aµ,µ0) a

z

(−1,0)

(0,1)

(1,0)

RL

D

FIGURE OA.1: (a, z)-REPRESENTATION OF ∆Θ

CLAIM OA.1. Let p ∈ R(µ) \ {δµ} be nonredundant and IC, with support {ν(an,zn)}m
n=1 such that

a1 < ·· · < am. If (a1, z1) ∈ int(B) or (am, zm) ∈ int(B), then p is interior.

1



Proof. Suppose that (a1, z1) ∈ int(B). For sufficiently small ϵ> 0, interiority of (a1, z1) implies that

(ã, z̃) := (a2, z2)+ (1+ϵ)(a1 −a2, z1 − z2) ∈B,

and {ν(ã,z̃), ν(a2,z2), . . . ,ν(am,zm)} is still affinely independent. There is then a mean-preserving spread
p̃ of p which is supported on {ν(ã,z̃), ν(a2,z2), . . . ,ν(am,zm)}.1 As z2−z̃

a2−ã = z2−z1

a2−a1 by construction, p̃ has the
same direction as p. Since p̃ is a mean-preserving spread of p, by definition we have p̃ ≻B p, and
so p is interior.

A symmetric argument proves that p is interior if (am, zm) ∈ int(B).

Below, we rule out ternary policies such that (when parametrized in B) the middle message lies
below the line segment between the two other messages.

CLAIM OA.2. Take any nonredundant ternary policy p ∈R(µ) with supp(p)= {
ν(a1,z1),ν(a2,z2),ν(a3,z3)

}
such that a1 < a2 < a3. If p is IC and

z2 ≤ a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3,

then p is not principal-optimal.

Proof. First, let us assume that z1 ≤ z3. Nonredundancy of p rules out the possibility that z2 =
a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3; therefore,
z2 < a3−a2

a3−a1
z1 + a2−a1

a3−a1
z3 ≤ z3.

Letting sℓ := z2−z1
a2−a1

and sr := z3−z2
a3−a2

, observe that

sr − sℓ = 1
a3−a2

z3 + 1
a2−a1

z1 −
(

1
a2−a1

+ 1
a3−a2

)
z2 = a3−a1

(a2−a1)(a3−a2)

[
a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3 − z2

]
> 0.

This implies sr > 0, because

(a2 −a1)sℓ+ (a3 −a2)sr = z3 − z1 ≥ 0.

Letting pi := p
(
ν(ai ,zi)

) ∈ (0,1) for i ∈ {1,2,3}, consider a small ϵ> 0, and define

(ã1, z̃1)= (a1, z1)

(ã2, z̃2)= (a2, z2 + p3ϵ)

(ã3, z̃3)= (a3, z3 − p2ϵ) .

All statements in what follows should be taken to mean, when ϵ> 0 is sufficiently small.
Applying Jensen’s inequality to the concave function 1−| · | ,

z2 < a3−a2
a3−a1

z1 + a2−a1
a3−a1

z3 ≤ a3−a2
a3−a1

(1−|a1|)+ a2−a1
a3−a1

(1−|a3|)≤ 1−|a2|.

1. To construct it, take a dilation on ∆Θ which fixes each of ν(a2,z2), ...,ν(am,zm) and splits ν(a1,z1) to a measure with
support {ν(ã,z̃), ν(a2,z2)}.

2



Combining this with z3 > z2 ≥ 0 tells us that (ã2, z̃2) , (ã3, z̃3) ∈ int(B). Next, define p̃ ∈∆∆Θ to be the
measure which puts mass pi on ν(ãi ,z̃i) for i ∈ {1,2,3}. Direct computation shows that p̃ ∈R(µ) and
that p̃ generates exactly the same action distribution as p. Now, to show that p̃ is IC, observe that
z̃3−z̃2
ã3−ã2

= z̃3−z̃2
a3−a2

∈ [0, sr] and z̃2−z̃1
ã2−ã1

= z̃2−z̃1
a2−a1

∈ [sℓ, sr]. So p̃ is order-IC if p is. Appealing to Proposition
1 says p̃ is IC. Finally, since (ã3, z̃3) ∈ int(B), Claim OA.1 tells us p̃ is interior. Hence, we have
constructed an interior and incentive-compatible p̃ which generates the same action distribution
as p. Thus, by Corollary 1, p is not principal-optimal.

A symmetric argument proves the same result in the case z1 ≥ z3.
Without loss of generality, we focus hereafter on the case that aµ ≥ 0.

CLAIM OA.3. Suppose a nonredundant p ∈ R(µ) is IC. If there exists ν(a,z) ∈ supp(p) such that
(a, z) ∈ relint(D), then p is not principal-optimal.

Proof. Say p has support {ν(a1,z1), . . . ,ν(am,zm)} such that a1 < ·· · < am and m ∈ {1,2,3}. First, let us
assume z1 ≤ zm.

If m = 1, then the result follows from µ0 > 0. If m = 3 and z2 ≤ a3−a2
a3−a1

z1+ a2−a1
a3−a1

z3, then the result
follows from Claim OA.2. We focus on the case that m ∈ {2,3}; z1 = 0; and if m = 3, then z2 > a2−a1

a3−a1
z3.

Letting pi := p
(
ν(ai ,zi)

) ∈ (0,1) for i ∈ {1, . . . ,m}, consider a small ϵ> 0 and, define,

(ãi, z̃i)=


(a1, z1 + p2ϵ) i = 1

(a2, z2 − p1ϵ) i = 2

(ai, zi) otherwise.

All statements in what follows are taken to mean, when ϵ> 0 is sufficiently small.
That z2 > 0 and (a1, z1) ∈ relint(D) imply (ã1, z̃1) , (ã2, z̃2) ∈ int(B). Defining p̃ ∈ ∆∆Θ to be the

measure which puts mass pi on ν(ãi ,z̃i) for i = 1, . . . ,m, observe that p̃ ∈ R(µ) and that p̃ gener-
ates exactly the same action distribution as p. Just as in the proof of Claim OA.2, an appeal to
Proposition 1, Claim OA.1, and Corollary 1 means we need only show that p̃ is order-IC.

But see that z̃2−z̃1
ã2−ã1

= z2−z1−(p1+p2)ϵ
a2−a1

∈
[
0, z2−z1

a2−a1

]
. Moreover, in the ternary case, z2−z1

a2−a1
< z3−z2

a3−a2

because z2 > a2−a1
a3−a1

z3, so that z̃3−z̃2
ã3−ã2

= z3−z2+p2ϵ
a3−a2

∈
[

z2−z1
a2−a1

, z3−z2
a3−a2

]
. The result follows.

A symmetric argument proves the same result in the case z1 ≥ z3.

LEMMA OA.1. Take any nonredundant binary policy p ∈R(µ) with supp(p)= {
ν(a1,z1),ν(a2,z2)

}
such

that a1 < a2. Suppose (p, p) is a solution to (1) (i.e. p is an optimal attention outcome). Then,

1. (a1, z1) ∈ L, (a2, z2) ∈ R;

2.
∣∣∣ z2−z1

a2−a1

∣∣∣≤ s∗(κ)

Proof. Claims OA.1 and OA.3 imply that (a1, z1), (a2, z2) ∈ L∪R; p ∈R(ν(aµ,µ0)) and (aµ,µ0) ∈ int(B)
then imply part (1). Part (2) follows from Proposition 1 and equation (OA.1).

LEMMA OA.2. Suppose 1
2 < κ< 2. Take any nonredundant ternary policy p ∈R(µ) with supp(p) ={

ν(a1,z1),ν(a2,z2),ν(a3,z3)
}

such that a1 < a2 < a3. Suppose (p, p) is a solution to (1) (i.e. p is an
optimal attention outcome). Then,

3



1. (a2, z2) ∈ int(B), (a1, z1) ∈ L, (a3, z3) ∈ R;

2. z2−z1
a2−a1

= s∗(κ), z3−z2
a3−a2

=−s∗(κ).

Proof. Since p is nonredundant and IC, Claims OA.1 and OA.3 imply that (a1, z1), (a3, z3) ∈ L∪R.
As s∗(κ) < 1 when κ > 1

2 , it cannot be (given Proposition 1) that L contains two distinct beliefs in
the support of p; similarly for R. This implies that (a1, z1) ∈ L, (a3, z3) ∈ R, and (a2, z2) ∈B\(L∪R).
But Claim OA.3 rules out (a2, z2) ∈ D as well. This delivers part (1).

Now we prove part (2). To start, it follows from Proposition 1 and equation (OA.1) that
∣∣∣ z2−z1

a2−a1

∣∣∣ ,
∣∣∣ z3−z2

a3−a2

∣∣∣≤
s∗(κ).

We now establish that
∣∣∣ z2−z1

a2−a1

∣∣∣= ∣∣∣ z3−z2
a3−a2

∣∣∣= s∗(κ). Assume (toward a contradiction) that this does

not hold. Let us first assume
∣∣∣ z2−z1

a2−a1

∣∣∣< s∗(κ). Consider a small ϵ> 0, and define the three vectors,

(ã1, z̃1)= (a1, z1)

(ã2, z̃2)= (1+ϵ) (a2, z2)−ϵ (a3, z3)

(ã3, z̃3)= (a3, z3) .

Taking ϵ> 0 to be sufficiently small, {(ãi, z̃i)}3i=1 will be three affinely independent vectors, all in B,

whose convex hull contains (0,µ0); and
∣∣∣ z̃2−z̃1

ã2−ã1

∣∣∣< s∗(κ). There is therefore a unique p̃ ∈R(µ) whose

support is {(ãi, z̃i)}3i=1, and p̃ is order-IC, since
∣∣∣ z̃3−z̃2

ã3−ã2

∣∣∣ = ∣∣∣ z3−z2
a3−a2

∣∣∣ ≤ s∗(κ). Proposition 1 guarantees
that p̃ is IC. But, by construction, the action distribution induced by p̃ is a strict mean-preserving
spread of that induced by p. Therefore, by Observation 1, p is not optimal, a contradiction.

A symmetric argument derives the same contradiction in the case
∣∣∣ z3−z2

a3−a2

∣∣∣< s∗(κ). Therefore, we

have
∣∣∣ z2−z1

a2−a1

∣∣∣= ∣∣∣ z3−z2
a3−a2

∣∣∣= s∗(κ).
Finally, nonredundancy implies that z2−z1

a2−a1
̸= z3−z2

a3−a2
, and Claim OA.2 rules out the possibility

that z2−z1
a2−a1

< 0< z3−z2
a3−a2

. Part (2) then follows.

We define three special information policies that will be used in the coming proofs.

• The “full disclosure” policy pF is such that supp(pF )= {ν(−1,0),ν(0,1),ν(1,0)}

• The “no information” policy pN is such that supp(pN)= {µ}

• The orthogonal policy pO is such that supp(pO)= {ν(µ0−1,µ0),ν(1−µ0,µ0)}

The above lemmas can be combined into the following claim, which reduces our search for
optimal attention outcomes to a single two-dimensional problem.

CLAIM OA.4. Suppose 1
2 < κ < 2, and suppose the nonredundant policy p ∈ R(µ) is an optimal

attention outcome. Then there exist (a1, z1), (a2, z2), (a3, z3) ∈B such that:

• (a1, z1) ∈ L, (a3, z3) ∈ R, and a1 ≤ a2 ≤ a3;

• z2 − z1 = s∗(κ)(a2 −a1), z3 − z2 =−s∗(κ)(a3 −a2);

• p{ν(a1,z1),ν(a2,z2),ν(a3,z3)}= 1.
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Proof. As κ≤ 2, the policy pO is IC, generating strictly higher principal payoffs than no information.
So p must be informative. Being nonredundant, it is either ternary or binary.

In the case that p is ternary, Lemma OA.2 delivers the result.
In the remaining case, p has binary support

{
ν(a1,z1),ν(a3,z3)

}
, where (a1, z1), (a3, z3) ∈ B with

a1 < a3. Lemma OA.1 then tells us that (a1, z1) ∈ L, (a3, z3) ∈ R, and
∣∣∣ z3−z1

a3−a1

∣∣∣ ≤ s, where s := s∗(κ).

Moreover, s ∈ (0,1) because 1
2 < κ< 2.

Now, the line of slope s through (a1, z1) and the line of slope −s through (a3, z3) have different
slopes (since s > 0), so that there they have a unique intersection point (a2, z2) ∈ R2. To prove the
claim, then, all that remains is to show is that a1 ≤ a2 ≤ a3 and (a2, z2) ∈B.

Define, for ã2 ∈ R, the gap g(ã2) = [z3 − s(ã2 −a3)]− [z1 + s(ã2 −a1)], which strictly decreases in
ã2, so that g−1(0) = {a2}. Since

∣∣∣ z3−z1
a3−a1

∣∣∣≤ s, g(a3) ≤ 0 ≤ g(a1). The intermediate value theorem then
says that a2 ∈ [a1,a3].

As s ≤ 1, a2 ≥ a1, and (a1, z1) lies (weakly) below the line containing L, it follows that (a2, z2)
lies below that line as well. As s ≤ 1, a2 ≤ a3, and (a3, z3) lies (weakly) below the line containing R,
it follows that (a2, z2) lies below that line as well. As s ≥ 0, a2 ≥ a1, and (a1, z1) lies (weakly) above
the line containing D, it follows that (a2, z2) lies above that line as well. Therefore (a2, z2) ∈B.

LEMMA OA.3. If 1
2 < κ< 2, then there exists an optimal attention outcome p such that one of the

following holds

• p is binary: supp(p)= {ν(a1,z1), ν(a2,z2)} for some (a1, z1) ∈ L, (a2, z2) ∈ R.

• p is ternary with critical slopes and support containing ν(1,0):2 supp(p)= {ν(a1,z1), ν(a2,z3), ν(1,0)}
for some (a1, z1) ∈ L, (a2, z2) ∈ int(B) with z2−z1

a2−a1
= s = z2

1−a2

Moreover, policies of the second form exist if and only if s∗(κ)> µ0
1−aµ

.

Proof. Here, s := s∗(κ) ∈ (0,1) because 1
2 < κ< 2.

Define the set T ⊆R6 of tuples ((ai, zi))3
i=1 ⊆ B3 such that:

• (a1, z1) ∈ L, (a3, z3) ∈ R, and a1 ≤ a2 ≤ a3;

• z2 − z1 = s(a2 −a1), z3 − z2 =−s(a3 −a2);

• (aµ,µ0) ∈ co{(a1, z1), (a2, z2), (a3, z3)}.

As s > 0, it follows that every element t ∈ T has {t1, t2, t3} an affinely independent subset of B.3

Given that (aµ,µ0) ∈ co{t1, t2, t3}, it follows that there is a unique pT
t ∈ R(µ)∩∆{νt1 ,νt2 ,νt3}. The

policy pT
t is IC by Proposition 1. Moreover, Claim OA.4 tells us that any nonredundant opti-

mal attention outcome is of this form. Accordingly, we can reformulate the principal’s problem as
maxt∈T

∫
∆ΘUP dpT

t .
Toward a parametrization of T , let A := {(a1,a2) : t = (a1, z1,a2, z2,a3, z3) ∈T }.
Given t = (a1, z1,a2, z2,a3, z3) ∈T , we can infer the following:

2. Recall our normalization that aµ ≥ 0.
3. In the extreme case where a2 = a1 (or a2 = a3), (a2, z2) and (a1, z1) (or (a2, z2) and (a3, z3)) collapse to one point,

so that {t1, t3} is still an affinely independent subset of B.
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• That (a1, z1) ∈ L implies z1 = 1+a1.

• Then, z2 = z1 + s(a2 −a1)= 1+ (1− s)a1 + sa2.

• Finally, (a3, z3) belongs both to R (so that z3 = 1− a3) and to the line of slope −s through
(a2, z2)—uniquely pinning it down as these two lines have different slopes. Direct computa-
tion then shows that (a3, z3)= (−a1 − 2s

1−s a2, 1+a1 + 2s
1−s a2).

So, for any (a1,a2) ∈R2, let

t(a1,a2) := (a1, 1+a1, a2, 1+ (1− s)a1 + sa2, −a1 − 2s
1−s a2, 1+a1 + 2s

1−s a2) ∈R6.

Consistent with the previous notation, let

t1(a1,a2)= (a1, 1+a1),

t2(a1,a2)= (a2,1+ (1− s)a1 + sa2),

t3(a1,a2)= (−a1 − 2s
1−s a2, 1+a1 + 2s

1−s a2).

The above derivations show that T = {t(a1,a2)}(a1,a2)∈A . Hence, we can view the principal’s problem
as max(a1,a2)∈A

∫
∆ΘUP dpT

t(a1,a2).
Now we consider two cases separately.

• If (a1,a2) ∈A and t2(a1,a2) ̸= t3(a1,a2) (i.e. a2 ̸= −1−s
1+s a1), then

a1 (1− s)+a2 (1+ s) ̸= 0.

Moreover, a1 < a2.4 Therefore, given (a1,a2) ∈ A , the following three numbers are all well-
defined:

p2(a1,a2) := a1(a1 +1−µ0)(1− s)+a2(2a1 +1−µ0 −aµ)s
−s(a2 −a1) [a1 (1− s)+a2 (1+ s)]

,

p3(a1,a2) := (1− s)
[
saµ+ (1− s)a1 + (1−µ0)

]
−2s [a1 (1− s)+a2 (1+ s)]

,

p1(a1,a2) := 1− p2(a)− p3(a).

Observe that p1(a)+ p2(a)+ p3(a)= 1 and (by direct, tedious computation)
∑3

i=1 pi(a)(ai, zi)=
(aµ,µ0). The affine independence property of {ti(a)}3i=1 then tells us that pT

t(a) =
∑3

i=1 pi(a)δνti (a) .

4. This is because, if a1 = a2, then (a1, z1)= (a2, z2)= (0,1). But then, the fact that (a3, z3) ∈ R implies that (aµ,µ0) ∈
R, contradicting (aµ,µ0) ∈ int(B).
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Now, the principal objective can be expressed (by direct, more tedious computation) as:5∫
∆Θ

UP dpT
t(a1,a2) +Vθ∼µ(θ)+a2

µ = Eν∼pT
t(a1,a2)

[a∗(ν)2]

= p1(a1,a2)a2
1 + p2(a1,a2)a2

2 + p3(a1,a2)
(−a1 − 2s

1−s a2
)2

= a2
1 −

a2
1 + (1−µ0)a1

s
−

(
2a1 + 1−µ0

1− s
+ 2s−1

1− s
aµ

)
a2. (OA.2)

• If (a1,a2) ∈A and t2(a1,a2)= t3(a1,a2) (i.e. a2 =−1−s
1+s a1), that (aµ,µ0) ∈ co{t1(a), t2(a)}, t1(a) ∈

L and t2(a) ∈ R imply that

(a1,a2)=
(
−1−µ0 + saµ

1− s
,
1−µ0 + saµ

1+ s

)
,

pT
t(a1,a2)(νt1)= 1− s

2
1−µ0 −aµ
1−µ0 + saµ

,

pT
t(a1,a2)(νt2)= 1+ s

2
1−µ0 +aµ
1−µ0 + saµ

.

The value of the principal’s objective is now∫
∆Θ

UP dpT

t
(
− 1−µ0+saµ

1−s ,
1−µ0+saµ

1+s

)+Vθ∼µ(θ)+a2
µ = p1

(
−1−µ0+saµ

1−s

)2 + p2

(
1−µ0+saµ

1+s

)2 = (1−µ0)2−s2a2
µ

1−s2 ,

which one can directly verify is consistent with the value of equation (OA.2) at (a1,a2) =(
−1−µ0+saµ

1−s , 1−µ0+saµ
1+s

)
.

Therefore, equation (OA.2) summarizes the principal’s payoff for all (a1,a2) ∈ A . Observe that
this objective is affine in a2. But, t(·) being continuous and T being compact, the set of a2 such
that (a1,a2) ∈A is (for fixed a1) a compact set of real numbers. We may therefore find a principal-
optimal attention outcome by restricting attention to the case that a2 is the largest or smallest
possible number for which (a1,a2) ∈ A . Letting A ∗ ⊆ A be the set of pairs with this property, we
can view the principal’s problem as

max
(a1,a2)∈A ∗

∫
∆Θ

UP dpT
t(a1,a2).

What does pT
t(a) look like if (a1,a2) ∈ A ∗? As t(·) is continuous, any (a1, z1,a2, z2,a3, z3) ∈ T

with (a3, z3) ∈ relint(R), (a2, z2) ∈ int(B) and µ0 ∈ int
(
co{(ai, zi)}3i=1

)
cannot have (a1,a2) ∈ A ∗. The

reason is that, from the definition of T , it would then contain t(a1,a2 ± ϵ) for sufficiently small ϵ.
So, if (a1,a2) ∈ A ∗, then (a3, z3) = (1,0),6 or (a2, z2) belongs to the boundary of B, or µ0 belongs to
the boundary of co{(ai, zi)}3i=1.

If (a3, z3)= (1,0), then we have established part (ii) of this lemma.

5. The “Vθ∼µ(θ)+a2
µ” term is an irrelevant constant, which we add for convenience. The first equality follows directly

from Observation 1.
6. It cannot be that (a3, z3)= (0,1) because aµ ≥ 0 and (aµ,µ0) ∈ int(B).
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If µ0 belongs to the boundary of co{(ai, zi)}3i=1, it must be that pi(a1,a2)= 0 for some i, then pT
t(a)

has binary support.
If (a2, z2) belongs to the boundary of B, since a1 < a2 and 0< s < 1, it cannot be that a2 ∈ L∪D.

Since −s ̸= −1, it can only be that (a2, z2) ∈ R if a2 = a3 =−a1 − 2s
1−s a2, i.e. if a2 =−1−s

1+s a1. But then
pT

t(a) also has binary support.
So any (a1,a2) ∈ A ∗ has pT

t(a) either binary, or ternary with ν(1,0) in the support (and critical
slopes), and the result follows.

Finally, for any t ∈ R6 s.t. (a3, z3) = (1,0), (a1, z1) ∈ L and z2−z1
a2−a1

= s = z2
1−a2

, we have (aµ,µ0) ∈
int[co{(a1, z1), (a2, z2), (a3, z3)}] if and only if s > µ0

1−aµ
. So if s ≤ µ0

1−aµ
, either t ∉ T or pT

t is bi-

nary; while if s > µ0
1−aµ

, pT
t is of the second form in this lemma. (See Figures OA.2 and OA.3 for

illustration.) The last part of Lemma OA.3 follows.

Graphically, when s > µ0
1−aµ

, for any given a1, varying a2 leads to policies depicted in Figure OA.2

(following the notation of Lemma OA.3’s proof). On the other hand, when s ≤ µ0
1−aµ

, any (a1,a2) ∈A ∗

leads to a binary policy, as depicted in Figure OA.3.

µ

a

z

(a1,a2) ∈A ∗

µ

a

z

(a1,a2) ∉A ∗

µ

a

z

(a1,a2) ∈A ∗

FIGURE OA.2: WHEN s > µ0
1−aµ

, FOR A FIXED a1, VARYING a2 SUCH THAT (a1,a2) ∈A .

µ

a

z

(a1,a2) ∈A ∗

µ

a

z

(a1,a2) ∉A ∗

µ

a

z

(a1,a2) ∈A ∗

FIGURE OA.3: WHEN s ≤ µ0
1−aµ

, FOR A FIXED a1, VARYING a2 SUCH THAT (a1,a2) ∈A .

Proof of Proposition 2. We will find a nonredundant optimal attention outcome, which exists by
Lemma 1. Note that a nonredundant p is an optimal attention outcome, if and only if it is IC and
principal-optimal, if and only if (p, p) is a solution to (1).

If κ ≤ κ1 = 1
2 , then s∗(κ) ≥ 1. Note that the support supp(pF ) of the full disclosure policy is

{ν(−1,0),ν(0,1),ν(1,0)}. So by Proposition 1 and condition (OA.1), pF is IC. Since pF ⪰B q for all q ∈R(µ)
and UP (ν) is convex, by Jensen’s inequality

(
pF , pF)

is a solution to (1), so pF is an optimal attention
outcome, and part (1) of Proposition 2 follows.

If κ > κ4 = 2, by equation (OA.1) any nonredundant information policy with more than one
messages is not IC. Therefore, the “no information” policy pN is the only nonredundant IC policy,
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and so is the solution to (2). Then by Lemma 1,
(
pN , pN)

is a solution to (1), so pN is an optimal
attention outcome, and part (5) of Proposition 2 follows.

If κ= κ4 = 2, then s∗(κ)= 0. Given equation (OA.1), then, any nonredundant p ∈R(µ) must have
p{ν(a,z) : (a, z) ∈ B, z = µ0}. But pO is IC too, and pO ⪰B p for such p. As UP is convex, it follows
that pO is an optimal attention outcome. For this value of κ, the content of part (4) of Proposition
2 follows.

Henceforth, we consider the remaining case that κ ∈ (κ1,κ4) = (1
2 ,2

)
, collectively covering parts

(2), (3), and (4)—excluding the special case of κ= κ4—of the proposition. Here, s := s∗(κ) ∈ (0,1). In
this case, Lemma OA.3 applies, telling us that there is an optimal attention outcome p∗ that has
one supported belief on each of L and R, and is either ternary with support containing ν(1,0) (with
slopes between adjacent beliefs equal to s) or binary.

• If p∗ is binary, then p∗ has support {ν(a1,z1), ν(a2,z2)} for some distinct (a1, z1) ∈ L and (a2, z2) ∈
R. Let s̃ := z2−z1

a2−a1
. The fact that (a1, z1) ∈ L and (a2, z2) ∈ R implies that s̃ ∈

[
− µ0

1−aµ
, µ0

1+aµ

]
. We

also know that s̃ ∈ [−s, s] by Lemma OA.1.

Given such s̃,

(a1, z1)=
(
−1−µ0 + s̃aµ

1− s̃
,
µ0 − s̃(1+aµ)

1− s̃

)
and

(a2, z2)=
(1−µ0 + s̃aµ

1+ s̃
,
µ0 + s̃(1−aµ)

1+ s̃

)
are the unique intersections of L and R, respectively, with the line of slope s̃ through (aµ,µ0).
Next, Bayes-plausibility tells us that

p∗{ν(a1,z1)}=
1− s̃

2
1−µ0 −aµ
1−µ0 + s̃aµ

p∗{ν(a2,z2)}=
1+ s̃

2
1−µ0 +aµ
1−µ0 + s̃aµ

Therefore, the principal’s objective can be written as (appealing to Observation 1)∫
∆Θ

UP dp∗ =Vµ∼p∗
[
a∗(ν)

]−Vθ∼µ(θ)

=
∫
∆Θ

(
a∗(ν)−aµ

)2 dp∗(ν)−Vθ∼µ(θ)

= 1−s̃
2

1−µ0−aµ
1−µ0+s̃aµ

(
−1−µ0+aµ

1−s̃

)2 + 1+s̃
2

1−µ0+aµ
1−µ0+s̃aµ

(
1−µ0−aµ

1+s̃

)2 −Vθ∼µ(θ)

= (1−µ0+aµ)(1−µ0+aµ)
2(1−µ0+s̃aµ)

(
1−µ0+aµ

1−s̃ + 1−µ0−aµ
1+s̃

)
−Vθ∼µ(θ)

=
(1−µ0)2 −a2

µ

1− s̃2 −Vθ∼µ(θ). (OA.3)

As 0≤ aµ < 1−µ0 (because (aµ,µ0) ∈ int(B)), the above objective is strictly increasing in |s̃|, so
p∗ being an optimal attention outcome implies that |s̃| =min{s, µ0

1−aµ
}.
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• If there is no binary optimal attention outcome, then p∗ is ternary with support {ν(a1,z1), ν(a2,z2), ν(1,0)},
(a1, z1) ∈ L and z2−z1

a2−a1
= s = z2

1−a2
. By the last part of Lemma OA.3, this is only possible when

s > µ0
1−aµ

. Recall that

p2(a1,a2)= a1(a1 +1−µ0)(1− s)+a2(2a1 +1−µ0 −aµ)s
−s(a2 −a1) [a1 (1− s)+a2 (1+ s)]

,

t3(a1,a2)= (−a1 − 2s
1−s a2, 1+a1 + 2s

1−s a2).

So, that t3 = (1,0) and p2(a1,a2)≥ 0 imply that a2 =−1−s
2s (1+a1) and a1 ∈

[
−1,−1−µ0−aµ

1−µ0+aµ

]
; and

moreover, any such pair has (a1,a2) ∈A . Substituting into (OA.2) yields∫
∆Θ

UP dp∗+Vθ∼µ(θ)=−a2
µ+a2

1 −
a2

1 + (1−µ0)a1

s
+

(
2a1 + 1−µ0

1− s
+ 2s−1

1− s
aµ

)
1− s
2s

(1+a1)

=−a2
µ+

1
2s

[
a1(1−aµ+µ0 −2s(1−aµ))+1−µ0 −aµ+2saµ

]
. (OA.4)

Note that the above objective function is affine in a1. Note also that when a1 = −1−µ0−aµ
1−µ0+aµ

,

p2(a1,a2)= 0, so that the binary policy with slope − µ0
1−aµ

is obtained. Since, by hypothesis, no

binary policy is an optimal attention outcome, a1 must be optimally set to −1, i.e. s > 1−aµ+µ0
2(1−aµ) .

Now, we consider various subcases for the value of κ, and find an optimal policy using payoffs
computed in (OA.3) and (OA.4).

• First, suppose κ ∈ (κ1,κ2] so that 1−aµ+µ0
2(1−aµ) ≤ s < 1. In (OA.4), it is optimal to set a1 =−1 because

s ≥ 1−aµ+µ0
2(1−aµ) . But since setting a1 =−1−µ0−aµ

1−µ0+aµ
results in an optimal binary policy (i.e. a binary

policy that maximizes the principal’s utility among all IC binary policies),7 Lemma OA.3 then
implies that the resulting ternary policy by setting a1 =−1 is an optimal attention outcome.
This proves part (2) of the proposition.

• Next, suppose κ ∈ [κ2,κ3], so that µ0
1−aµ

≤ s ≤ 1−aµ+µ0
2(1−aµ) . In (OA.4), it is optimal to set a1 =

−1−µ0−aµ
1−µ0+aµ

because s ≤ 1−aµ+µ0
2(1−aµ) , which, as noted before, results in a binary policy. This means

that any ternary policy with ν(1,0) in the support (and critical slopes) is dominated by a binary
policy. Then, by Lemma OA.3, we know that an optimal binary policy is optimal. That is, the
binary policy with slope |s̃| =min{s, µ0

1−aµ
}= µ0

1−aµ
is an optimal attention outcome. This proves

the part (3) of the proposition.

• Finally, suppose κ ∈ (κ3,κ4) so that 0 < s < µ0
1−aµ

. Then by Lemma OA.3, we know that an

optimal binary policy is optimal.8 That is, the binary policy with slope |s̃| =min{s, µ0
1−aµ

}= s is
an optimal attention outcome. This proves the remainder of part (4) of the proposition.

7. Note that now min{s, µ0
1−aµ

}= µ0
1−aµ

, and the resulting binary policy by setting a1 =− 1−µ0−aµ
1−µ0+aµ

has slope − µ0
1−aµ

.
8. Note that the last part of Lemma OA.3 says that policies of the second form (ternary policies with ν(1,0) in the

support and critical slopes) do not exist when s < µ0
1−aµ

, so we can only focus on binary policies.
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All that remains is the uniqueness result. Let us show that there is a unique (up to reflection)
optimal attention outcome whenever κ ̸= κ2.

If κ≤ 1
2 , then full information is IC, and it is the unique minimizer of p 7→ ∫

∆ΘUP dp over R(µ),
and so is the unique optimal attention outcome. If κ > 2, then no information is uniquely IC, and
so is the unique optimal attention outcome. If κ= 2, then every IC information policy is supported
on {ν(a,z) : (a, z) ∈B, z =µ0 }, a convex set over which UP is strictly convex; pO is therefore (being a
unique ⪰B-maximum over all such information policies) the unique optimal attention outcome.

Now, we focus on the remaining case of 1
2 < κ< 2, and let p∗ be an arbitrary optimal attention

outcome.
Letting P ∗ be the set of nonredundant optimal attention outcome, Claims OA.7 and OA.9 of

Lipnowski, Mathevet and Wei (2020, AER: Insights) tell us that p∗ ∈ co(P ∗). As UA is strictly
concave on L (since s < 1) and p∗ is IC, it must be that the positive measures p∗(·∩L) and p∗(·∩R)
both have support of size at most one. But, by Lemma OA.3, any element of co(P ∗) \ P ∗ would
violate this property. Therefore p∗ ∈P ∗, i.e. it is nonredundant.

We now show that p∗ is unique (up to reflection) unless κ= κ2. To this end, we need to rule out
both multiplicity within the class of policies of the form guaranteed by Lemma OA.3, and existence
of an optimal nonredundant policy outside of that class. The first part of the current proof already
shows that within that class, the optimal attention outcome is unique unless κ= κ2. We now argue
that, as long as κ ̸= κ2, no nonredundant policy outside that class can be an optimal attention
outcome. Following the notation of Lemma OA.3’s proof, take any (a1,a2) ∈ A \A ∗, and assume,
for a contradiction, that pT

t(a) is an optimal attention outcome. As ã2 7→
∫
∆ΘUP dpT

t(a1,ã2) was shown
to be affine, this can only be true if the affine function is constant, so that pT

t(a) generates the same
payoff to the principal as pT

t(a1,a2) and pT
t(a1,ā2) do, where (a1,a2), (a1, ā2) ∈ A ∗ with a2 < a2 < ā2.

In particular, both pT
t(a1,a2) and pT

t(a1,ā2) are also optimal attention outcomes. Consider alternative

cases of κ ∈ (1
2 ,2)\{κ2}= (κ1,κ2)∪ (κ2,κ3)∪ [κ3,κ4).

• If κ ∈ (κ1,κ2)∪(κ2,κ3), then pT
t(a1,a2) is ternary and pT

t(a1,ā2) is binary. But, as we argued above,
the optimal ternary attention outcome and the optimal binary attention outcome are strictly
payoff ranked for κ ̸= κ2. This is a contradiction to pT

t(a1,a2) and pT
t(a1,ā2) both being optimal

attention outcomes.

• If κ ∈ [κ3,κ4), then both pT
t(a1,a2) and pT

t(a1,ā2) are binary, while one element in supp(pT
t(a1,a2))

is in int(B) (see the left panel of Figure OA.3 for illustration). By Claim OA.1, pT
t(a1,a2) is not

principal-optimal, a contradiction to pT
t(a1,a2) being an optimal attention outcome. ■
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