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MOTIVATION

Land developer interested in a large plot

Different parcels owned by different landholders

Acquire the whole plot or nothing

Eminent domain may be undesirable
▶ Respect individual property rights

Treat different sellers “fairly”
▶ Payment proportional to land endowment

Questions:
1. Which trading rules are optimal?
2. Are simple mechanisms optimal?
3. Which sellers are influential in optimal mechanism?
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Model



ENVIRONMENT

Buyer and a group i ∈ N = {1, . . . ,N} of multiple sellers

Allocation: probability x ∈ [0, 1] of trade

Transfers: (mi)i∈N ∈ RN paid by the buyer to respective sellers
▶ Mechanisms required to satisfy mi = σi ∑j mj

▶ Shares σi > 0 exogenous, with ∑j σj = 1

▶ Let m ∶= ∑j mj, scalar

Buyer’s profit: bx − m

Each seller i has payoff mi − σiθix, where θi is private
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INTERPRETING THE MODEL

Land development

▶ Seller i has land share σi > 0 and per-unit value θi

ui = mi − σiθix

▶ Notice ui ∝ m − θix

Other examples

▶ Commodity cartels (σi = production share)
▶ Procuring inheritance assets

Selling to a group

▶ Maintenance for homeowners’ association
▶ Committee purchasing by organization (collective funds)
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DISTRIBUTIONAL ASSUMPTIONS

Types θi ∈ Θi = [θi, θ̄i] satisfy:

▶ Independence

▶ θi < b < θ̄i

▶ CDF Fi admits a continuous, strictly positive density fi

▶ Virtual value ϕi(θi) ∶= θi +
Fi
fi
(θi) strictly increasing

⟹ ϕi ∶= ϕi(θi) is also atomless with convex support



RELATED (THEORETICAL) LITERATURE

Mechanisms for public goods
▶ e.g., d’Aspremont Gérard-Varet 1979, Güth Hellwig 1986,

Mailath Postlewaite 1990

Voting mechanisms without transfers
▶ e.g., Rae 1969, Azrieli Kim 2014

Property rights in mechanism design
▶ e.g., Myerson Satterthwaite 1983,

Cramton Gibbons Klemperer 1987

Posted-price mechanisms
▶ e.g., Riley Zeckhauser 1983, Hart Nisan 2017

Redistribution in mechanism design
▶ e.g., Mirrlees 1971, Dworczak Kominers Akbarpour 2021



MECHANISMS
An allocation rule is measurable x ∶ Θ → [0, 1]

A transfer rule is bounded measurable m ∶ Θ → R

A (direct) mechanism is a pair (x,m) of both

Mechanism is. . .
▶ incentive compatible (IC) if

θi ∈ arg max
θ̂i∈Θi

E [m(θ̂i,θ−i) − θix(θ̂i,θ−i)] ∀i ∈ N, ∀θi ∈ Θi

▶ individually rational (IR) if

E [m(θi,θ−i) − θix(θi,θ−i)] ≥ 0 ∀i ∈ N, ∀θi ∈ Θi

[Veto rights]

▶ optimal if it maximizes profit E[bx(θ) − m(θ)] among IC, IR



Implementability



WHICH ALLOCATION RULES ARE IMPLEMENTABLE?

Which x admit m such that (x,m) is IC?

Lemma: Given allocation rule x, the following are equivalent:

1. Some m makes (x,m) IC.

2. x is interim monotone, i.e., Xi decreasing ∀i.

Proof idea:
▶ With separable transfers, just Myerson 1981

▶ Would be enough to make interim transfer rules arbitrary

▶ But we can’t—e.g., can’t have Mi(⋅) ≡ 0 and Mj(⋅) ≡ 1

▶ Can use m(θ) ∶= constant +∑i Mi(θi)
▶ Translating interim transfer doesn’t affect IC
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REVENUE EQUIVALENCE FOR TRADE WITH A GROUP

▶ Interim transfer rule for agent i pinned down by payment
formula, up to constant

▶ EMi(θi) = Em(θ) = EMj(θj) by iterated expectations
▶ So 1 (not N) constants

Lemma: If x is interim monotone, then buyer’s optimal value
among IC, IR mechanisms with allocation rule x is

min
i∈N

E [x(θ) (b −ϕi)]

Proof idea:
▶ Make IR bind for someone
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Optimal mechanisms



OPTIMAL ALLOCATION RULE

Given ω ∈ ∆N, define the allocation rule xω by

xω(θ) ∶= 1ω⋅ϕ(θ)≤b

Theorem: (loose version)
The “unique” optimal allocation rule is xω for some ω.

Can say more
▶ Which ω is optimal?
▶ (Of course:) What interim transfers go with it?
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OPTIMAL ALLOCATION RULE: PROOF IDEAS

Solve
max

x
min

i
E [x(θ) (b −ϕi)]

Seek maximin strategies for this two-player zero-sum game:
▶ Maximizer chooses allocation rule x/a.e.

▶ Minimizer chooses i ∈ N—mixed strategy ω ∈ ∆N
▶ Payoff is g(x, ω) ∶= E [x(θ) (b − ω ⋅ϕ)]

Features of this 2PZS game:
▶ The game is convex/compact/affine/continuous (weak*)
▶ Every ω admits a unique Max best response: xω
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OPTIMAL ALLOCATION RULE: PROOF IDEAS

So unique maximin strategy x exists

, and:

x maximin ⟺ x played in NE
⟺ x = xω for ω played in NE

Moreover,

ω played in NE ⟺ ω best response to xω
⟺ ω minimax
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OPTIMAL ALLOCATION RULE

Theorem:
An interim-monotone allocation rule x∗ is optimal iff
x∗(θ) = xω(θ) almost surely, for unique ω ∈ ∆N satisfying these
equivalent conditions:

▶ supp ω ⊆ arg maxi∈N E [ϕi ∣ ω ⋅ϕ ≤ b]
▶ ω solves minω∈∆N E [(b − ω ⋅ϕ)+]



AN EXAMPLE

Say N = 2 and θi ∼ U[0, 1]

An optimal (indirect) mechanism:

▶ Bidders simultaneously bid si ≥ 0

▶ Provisional price is equal to p = p(s1, s2) = s1 + s2

▶ Trade at price p if and only if b ≥ p

▶ Equilibrium: bid = type
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Posted prices



DEFINING POSTED PRICES

Posted prices: ubiquitous simple mechanism
▶ Exact optimality: Myerson 1981, Riley Zeckhauser 1983
▶ Approximate optimality: Hart Nisan 2017

With one agent, posted price has two features
▶ Transfer ∝ probability of trade
▶ Allocation step function: agent chooses whether to trade

How to generalize with multiple agents?

Definition:
Say (x,m) is a (collective) posted price if m = px for some p ∈ R.
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SUBOPTIMALITY OF POSTED PRICES

Proposition:
No posted price mechanism is optimal.

Interpretation: optimal mechanisms typically
▶ Rely “smoothly” on sellers’ private information
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SUBOPTIMALITY OF POSTED PRICES
QUANTIFYING GAINS OF RICHER PRICING

Suppose θi ∼ U[0, 1], and b is low enough that Xi(1) = 0

Then
optimal value

optimal value from posted price
=

(N + 1)N

N! 2N

▶ If N = 2, then = 1.125
▶ If N = 5, then = 2.025
▶ If N = 10, then ≈ 6.98
▶ If N = 25, then ≈ 455



SUBOPTIMALITY OF POSTED PRICES: PROOF IDEA

Consider any IC collective posted price with price p
▶ Mi(θ̂i) − θiXi(θ̂i) = (p − θi)Xi(θ̂i)
▶ IC ⟹ Xi constant below and above p

▶ So Xi is either discontinuous at p or constant

Now, consider any optimal mechanism: xω
▶ If ωi < 1, then Xi continuous
▶ If ωi > 0, then Xi non-constant because

ω ⋅ ϕ(θ) < b < ω ⋅ ϕ(θ̄)

▶ Can’t have ωi = 1 because j ≠ i has

E [ϕj ∣ ϕi ≤ b] = E[ϕj] = θ̄j > b > E [ϕi ∣ ϕi ≤ b]
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The role of heterogeneity



RANKING WEIGHTS

Optimal mechanism described by endogenous weights (ωi)i

Weights determine who we “pay attention” to

Relationship between ω and seller characteristics?



RANKING WEIGHTS

Definition: Let yL and yH be random variables with CDFs FL
and FH. Say yH is above yL in the reversed hazard-rate order
(denoted yH ≿ yL) if inf supp(yL) ≤ inf supp(yH) and FH

FL
is

weakly increasing above inf supp(yL)

Interpretation: FOSD conditional on being below any cutoff

Proposition: If ϕi ≿ ϕj, then ωi ≥ ωj
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RANKING WEIGHTS: PROOF IDEA

Suppose ϕi ≿ ϕj but ωi < ωj

Uniqueness ⟹ enough to show ω̃ with flipped (ωi, ωj) has

E [(b − ω̃ ⋅ϕ)+] ≤ E [(b − ω ⋅ϕ)+] .

So letting η(y) ∶= E [min {0, y − b +∑k≠i,j ωkϕk}], need

Eη (ωiϕi + ωjϕj) ≤ Eη (ωjϕi + ωiϕj)

Off-the-shelf stochastic ranking result—η increasing concave
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RANKING WEIGHTS & LAND SHARES

Giving higher weight to agents with higher value distributions

In principle, independent of land shares

▶ If θi ∼ θj, then ωi = ωj whatever σi and σj are.

Natural relationship between σi and Fi depends on setting

▶ Farming vs. manufacturing? Higher σi ↝ higher ωi.

▶ Small vs. medium farm? Higher σi ↝ lower ωi.
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An advertisement



SEE THE PAPER FOR...

Dominant strategies

Ex-post participation

Beyond veto bargaining

Pre-market trade

The full Pareto frontier



Wrapping up



WHAT WE’VE SEEN

Model of buying from seller group with shared property rights

Proportional transfers don’t hamper implementability

Optimally use weighted allocation rule—endogenous weights

Simple pricing leaves money on the table

Weights reflect heterogeneity: value ranking ↝weight ranking



Thanks!


