Buying from a Group

Nima Haghpanah Aditya Kuvalekar Elliot Lipnowski Penn State Essex Columbia

Caltech, May 2024

MOTIVATION

Land developer interested in a large plot

Different parcels owned by different landholders

Acquire the whole plot or nothing

MOTIVATION

Land developer interested in a large plot

Different parcels owned by different landholders

Acquire the whole plot or nothing

Eminent domain may be undesirable

Respect individual property rights

Treat different sellers "fairly"

Payment proportional to land endowment

MOTIVATION

Land developer interested in a large plot

Different parcels owned by different landholders

Acquire the whole plot or nothing

Eminent domain may be undesirable

Respect individual property rights

Treat different sellers "fairly"

Payment proportional to land endowment

Questions:

- 1. Which trading rules are optimal?
- 2. Are simple mechanisms optimal?
- 3. Which sellers are influential in optimal mechanism?

Model

ENVIRONMENT

Buyer and a group $i \in N = \{1, ..., N\}$ of multiple sellers

Allocation: probability $x \in [0, 1]$ of trade

Transfers: $(m_i)_{i \in N} \in \mathbb{R}^N$ paid by the buyer to respective sellers

- Mechanisms required to satisfy $m_i = \sigma_i \sum_j m_j$
- Shares $\sigma_i > 0$ exogenous, with $\sum_i \sigma_j = 1$
- Let $m := \sum_{j} m_{j}$, scalar

ENVIRONMENT

Buyer and a group $i \in N = \{1, ..., N\}$ of multiple sellers

Allocation: probability $x \in [0, 1]$ of trade

Transfers: $(m_i)_{i \in N} \in \mathbb{R}^N$ paid by the buyer to respective sellers

- Mechanisms *required* to satisfy $m_i = \sigma_i \sum_j m_j$
- Shares $\sigma_i > 0$ exogenous, with $\sum_i \sigma_j = 1$
- Let $m := \sum_{j} m_{j}$, scalar

Buyer's profit: bx - m

Each seller *i* has payoff $m_i - \sigma_i \theta_i \times$, where θ_i is private

INTERPRETING THE MODEL

Land development

Seller *i* has land share $\sigma_i > 0$ and per-unit value θ_i

$$u_i = m_i - \sigma_i \boldsymbol{\theta}_i \mathbf{x}$$

• Notice $u_i \propto m - \theta_i x$

INTERPRETING THE MODEL

Land development

Seller *i* has land share $\sigma_i > 0$ and per-unit value θ_i

$$u_i = m_i - \sigma_i \boldsymbol{\theta}_i \mathbf{x}$$

• Notice
$$u_i \propto m - \theta_i x$$

Other examples

- Commodity cartels (σ_i = production share)
- Procuring inheritance assets

INTERPRETING THE MODEL

Land development

Seller *i* has land share $\sigma_i > 0$ and per-unit value θ_i

$$u_i = m_i - \sigma_i \boldsymbol{\theta}_i \mathbf{x}$$

• Notice
$$u_i \propto m - \theta_i x$$

Other examples

- Commodity cartels (σ_i = production share)
- Procuring inheritance assets

Selling to a group

- ► Maintenance for homeowners' association
- Committee purchasing by organization (collective funds)

DISTRIBUTIONAL ASSUMPTIONS

Types $\theta_i \in \Theta_i = [\underline{\theta}_i, \overline{\theta}_i]$ satisfy:

- ► Independence
- $\blacktriangleright \ \underline{\theta}_i < b < \bar{\theta}_i$
- CDF F_i admits a continuous, strictly positive density f_i
- Virtual value $\varphi_i(\theta_i) := \theta_i + \frac{F_i}{f_i}(\theta_i)$ strictly increasing

 $\implies \varphi_i := \varphi_i(\theta_i)$ is also atomless with convex support

Related (Theoretical) Literature

Mechanisms for public goods

 e.g., d'Aspremont Gérard-Varet 1979, Güth Hellwig 1986, Mailath Postlewaite 1990

Voting mechanisms without transfers

• e.g., Rae 1969, Azrieli Kim 2014

Property rights in mechanism design

 e.g., Myerson Satterthwaite 1983, Cramton Gibbons Klemperer 1987

Posted-price mechanisms

• e.g., Riley Zeckhauser 1983, Hart Nisan 2017

Redistribution in mechanism design

MECHANISMS

An **allocation rule** is measurable $x : \Theta \rightarrow [0, 1]$

A **transfer rule** is bounded measurable $m : \Theta \rightarrow \mathbb{R}$

A (direct) mechanism is a pair (x, m) of both

Mechanism is...

• incentive compatible (IC) if

 $\theta_i \in \arg \max_{\hat{\theta}_i \in \Theta_i} \mathbb{E} \left[m(\hat{\theta}_i, \boldsymbol{\theta}_{-i}) - \theta_i x(\hat{\theta}_i, \boldsymbol{\theta}_{-i}) \right] \forall i \in N, \ \forall \theta_i \in \Theta_i$

▶ individually rational (IR) if

 $\mathbb{E}\left[m(\theta_i, \boldsymbol{\theta}_{-i}) - \theta_i x(\theta_i, \boldsymbol{\theta}_{-i})\right] \ge 0 \ \forall i \in N, \ \forall \theta_i \in \Theta_i$

[Veto rights]

• **optimal** if it maximizes profit $\mathbb{E}[bx(\theta) - m(\theta)]$ among IC, IR

Implementability

Which *x* admit *m* such that (x, m) is IC?

Lemma: Given allocation rule *x*, the following are equivalent:

- 1. Some m makes (x, m) IC.
- 2. *x* is interim monotone, i.e., X_i decreasing $\forall i$.

Which *x* admit *m* such that (x, m) is IC?

Lemma: Given allocation rule *x*, the following are equivalent:

- 1. Some m makes (x, m) IC.
- 2. *x* is interim monotone, i.e., X_i decreasing $\forall i$.

Proof idea:

▶ With separable transfers, just Myerson 1981

Which x admit m such that (x, m) is IC?

Lemma: Given allocation rule *x*, the following are equivalent:

- 1. Some m makes (x, m) IC.
- 2. *x* is interim monotone, i.e., X_i decreasing $\forall i$.

Proof idea:

- ▶ With separable transfers, just Myerson 1981
- Would be enough to make *interim* transfer rules arbitrary

▶ But we can't—e.g., can't have $M_i(\cdot) \equiv 0$ and $M_i(\cdot) \equiv 1$

Which x admit m such that (x, m) is IC?

Lemma: Given allocation rule *x*, the following are equivalent:

- 1. Some m makes (x, m) IC.
- 2. *x* is interim monotone, i.e., X_i decreasing $\forall i$.

Proof idea:

- ▶ With separable transfers, just Myerson 1981
- Would be enough to make *interim* transfer rules arbitrary

▶ But we can't—e.g., can't have $M_i(\cdot) \equiv 0$ and $M_j(\cdot) \equiv 1$

• Can use $m(\theta) := \text{ constant } + \sum_i M_i(\theta_i)$

Translating interim transfer doesn't affect IC

REVENUE EQUIVALENCE FOR TRADE WITH A GROUP

- Interim transfer rule for agent *i* pinned down by payment formula, up to constant
- ► $\mathbb{E}M_i(\theta_i) = \mathbb{E}m(\theta) = \mathbb{E}M_j(\theta_j)$ by iterated expectations
- ► So 1 (not *N*) constants

REVENUE EQUIVALENCE FOR TRADE WITH A GROUP

- Interim transfer rule for agent *i* pinned down by payment formula, up to constant
- ► $\mathbb{E}M_i(\boldsymbol{\theta}_i) = \mathbb{E}m(\boldsymbol{\theta}) = \mathbb{E}M_j(\boldsymbol{\theta}_j)$ by iterated expectations
- ► So 1 (not *N*) constants

Lemma: If x is interim monotone, then buyer's optimal value among IC, IR mechanisms with allocation rule x is

 $\min_{i \in \mathbb{N}} \mathbb{E}\left[x(\boldsymbol{\theta})\left(b - \varphi_i\right)\right]$

Proof idea:

Optimal mechanisms

Given $\omega \in \Delta N$, define the allocation rule x_{ω} by

 $x_{\omega}(\theta) := \mathbb{1}_{\omega \cdot \varphi(\theta) \le b}$

Given $\omega \in \Delta N$, define the allocation rule x_{ω} by

 $x_{\omega}(\theta) \coloneqq \mathbb{1}_{\omega \cdot \varphi(\theta) \le b}$

Theorem: (loose version) The "unique" optimal allocation rule is x_{ω} for some ω .

Given $\omega \in \Delta N$, define the allocation rule x_{ω} by

 $x_{\omega}(\theta) \coloneqq \mathbb{1}_{\omega \cdot \varphi(\theta) \le b}$

Theorem: (loose version)

The "unique" optimal allocation rule is x_{ω} for some ω .

Can say more

- Which ω is optimal?
- (Of course:) What interim transfers go with it?

Solve

 $\max_{x} \min_{i} \mathbb{E}[x(\theta)(b-\varphi_{i})]$

Solve

$$\max_{x} \min_{i} \mathbb{E}[x(\theta)(b-\varphi_{i})]$$

Seek maximin strategies for this two-player zero-sum game:

- ▶ Maximizer chooses allocation rule *x*/_{a.e.}
- Minimizer chooses $i \in N$ —mixed strategy $\omega \in \Delta N$
- Payoff is $g(x, \omega) := \mathbb{E}[x(\theta)(b \omega \cdot \varphi)]$

Solve

$$\max_{x} \min_{i} \mathbb{E}[x(\theta)(b-\varphi_{i})]$$

Seek maximin strategies for this two-player zero-sum game:

- ▶ Maximizer chooses allocation rule *x*/_{a.e.}
- Minimizer chooses $i \in N$ —mixed strategy $\omega \in \Delta N$
- Payoff is $g(x, \omega) := \mathbb{E}[x(\theta)(b \omega \cdot \varphi)]$

Features of this 2PZS game:

- ► The game is convex/compact/affine/continuous (weak*)
- Every ω admits a unique Max best response: x_{ω}

So unique maximin strategy *x* exists

So unique maximin strategy *x* exists, and:

 $x \text{ maximin} \iff x \text{ played in NE}$ $\iff x = x_{\omega} \text{ for } \omega \text{ played in NE}$

So unique maximin strategy *x* exists, and:

 $x \text{ maximin} \iff x \text{ played in NE}$ $\iff x = x_{\omega} \text{ for } \omega \text{ played in NE}$

Moreover,

 $\omega \text{ played in NE} \iff \omega \text{ best response to } x_{\omega}$ $\iff \omega \text{ minimax}$

Theorem:

An interim-monotone allocation rule x^* is optimal iff $x^*(\theta) = x_{\omega}(\theta)$ almost surely, for *unique* $\omega \in \Delta N$ satisfying these equivalent conditions:

• supp
$$\omega \subseteq \arg \max_{i \in N} \mathbb{E} [\varphi_i \mid \omega \cdot \varphi \leq b]$$

•
$$\omega$$
 solves $\min_{\omega \in \Delta N} \mathbb{E} \left[(b - \omega \cdot \varphi)_+ \right]$

AN EXAMPLE

Say N = 2 and $\theta_i \sim \mathcal{U}[0, 1]$

An optimal (indirect) mechanism:

AN EXAMPLE

Say N = 2 and $\theta_i \sim \mathcal{U}[0, 1]$

An optimal (indirect) mechanism:

- Bidders simultaneously bid $s_i \ge 0$
- Provisional price is equal to $p = p(s_1, s_2) = s_1 + s_2$
- Trade at price *p* if and only if $b \ge p$
- Equilibrium: bid = type

Posted prices

DEFINING POSTED PRICES

Posted prices: ubiquitous simple mechanism

- Exact optimality: Myerson 1981, Riley Zeckhauser 1983
- Approximate optimality: Hart Nisan 2017

With one agent, posted price has two features

- Transfer \propto probability of trade
- Allocation step function: agent chooses whether to trade

How to generalize with multiple agents?

DEFINING POSTED PRICES

Posted prices: ubiquitous simple mechanism

- Exact optimality: Myerson 1981, Riley Zeckhauser 1983
- Approximate optimality: Hart Nisan 2017

With one agent, posted price has two features

- Transfer \propto probability of trade
- Allocation step function: agent chooses whether to trade

How to generalize with multiple agents?

Definition:

Say (x, m) is a **(collective) posted price** if m = px for some $p \in \mathbb{R}$.

SUBOPTIMALITY OF POSTED PRICES

Proposition:

No posted price mechanism is optimal.

SUBOPTIMALITY OF POSTED PRICES

Proposition:

No posted price mechanism is optimal.

Interpretation: optimal mechanisms typically

Rely "smoothly" on sellers' private information

SUBOPTIMALITY OF POSTED PRICES

QUANTIFYING GAINS OF RICHER PRICING

Suppose $\theta_i \sim \mathcal{U}[0, 1]$, and *b* is low enough that $X_i(1) = 0$

Then $\frac{\text{optimal value}}{\text{optimal value from posted price}} = \frac{(N+1)^N}{N! 2^N}$

- ▶ If *N* = 5, then = 2.025
- If N = 10, then ≈ 6.98
- If N = 25, then ≈ 455

Consider any IC collective posted price with price p

$$\blacktriangleright M_i(\hat{\theta}_i) - \theta_i X_i(\hat{\theta}_i) = (p - \theta_i) X_i(\hat{\theta}_i)$$

• IC \implies X_i constant below and above p

Consider any IC collective posted price with price p

$$\blacktriangleright M_i(\hat{\theta}_i) - \theta_i X_i(\hat{\theta}_i) = (p - \theta_i) X_i(\hat{\theta}_i)$$

- IC \implies X_i constant below and above p
- So X_i is either discontinuous at p or constant

Consider any IC collective posted price with price *p*

$$\blacktriangleright M_i(\hat{\theta}_i) - \theta_i X_i(\hat{\theta}_i) = (p - \theta_i) X_i(\hat{\theta}_i)$$

- IC \implies X_i constant below and above p
- So X_i is either discontinuous at p or constant

Now, consider any optimal mechanism: x_{ω}

• If $\omega_i < 1$, then X_i continuous

Consider any IC collective posted price with price *p*

$$\blacktriangleright M_i(\hat{\theta}_i) - \theta_i X_i(\hat{\theta}_i) = (p - \theta_i) X_i(\hat{\theta}_i)$$

- IC \implies X_i constant below and above p
- So X_i is either discontinuous at p or constant

Now, consider any optimal mechanism: x_{ω}

- If $\omega_i < 1$, then X_i continuous
- If $\omega_i > 0$, then X_i non-constant because

$$\omega \cdot \varphi(\underline{\theta}) < b < \omega \cdot \varphi(\overline{\theta})$$

• Can't have $\omega_i = 1$ because $j \neq i$ has

$$\mathbb{E}\left[\varphi_{j} \mid \varphi_{i} \leq b\right] = \mathbb{E}[\varphi_{j}] = \bar{\theta}_{j} > b > \mathbb{E}\left[\varphi_{i} \mid \varphi_{i} \leq b\right]$$

The role of heterogeneity

RANKING WEIGHTS

Optimal mechanism described by endogenous weights $(\omega_i)_i$

Weights determine who we "pay attention" to

Relationship between ω and seller characteristics?

RANKING WEIGHTS

Definition: Let \mathbf{y}_L and \mathbf{y}_H be random variables with CDFs F_L and F_H . Say \mathbf{y}_H is above \mathbf{y}_L in the **reversed hazard-rate order** (denoted $\mathbf{y}_H \succeq \mathbf{y}_L$) if $\inf \operatorname{supp}(\mathbf{y}_L) \leq \inf \operatorname{supp}(\mathbf{y}_H)$ and $\frac{F_H}{F_L}$ is weakly increasing above $\inf \operatorname{supp}(\mathbf{y}_L)$

Interpretation: FOSD conditional on being below any cutoff

RANKING WEIGHTS

Definition: Let \mathbf{y}_L and \mathbf{y}_H be random variables with CDFs F_L and F_H . Say \mathbf{y}_H is above \mathbf{y}_L in the **reversed hazard-rate order** (denoted $\mathbf{y}_H \succeq \mathbf{y}_L$) if $\inf \operatorname{supp}(\mathbf{y}_L) \leq \inf \operatorname{supp}(\mathbf{y}_H)$ and $\frac{F_H}{F_L}$ is weakly increasing above $\inf \operatorname{supp}(\mathbf{y}_L)$

Interpretation: FOSD conditional on being below any cutoff

Proposition: If $\varphi_i \succeq \varphi_j$, then $\omega_i \ge \omega_j$

Suppose $\varphi_i \succeq \varphi_j$ but $\omega_i < \omega_j$

Suppose $\varphi_i \gtrsim \varphi_j$ but $\omega_i < \omega_j$

Uniqueness \implies enough to show $\tilde{\omega}$ with flipped (ω_i, ω_j) has

$$\mathbb{E}\left[(b-\tilde{\omega}\cdot\varphi)_+\right] \leq \mathbb{E}\left[(b-\omega\cdot\varphi)_+\right].$$

Suppose $\varphi_i \gtrsim \varphi_j$ but $\omega_i < \omega_j$

Uniqueness \implies enough to show $\tilde{\omega}$ with flipped (ω_i, ω_j) has

$$\mathbb{E}\left[(b - \tilde{\omega} \cdot \varphi)_+\right] \le \mathbb{E}\left[(b - \omega \cdot \varphi)_+\right].$$

So letting
$$\eta(y) \coloneqq \mathbb{E}\left[\min\left\{0, y - b + \sum_{k \neq i, j} \omega_k \varphi_k\right\}\right]$$
, need
$$\mathbb{E}\eta\left(\omega_i \varphi_i + \omega_j \varphi_j\right) \le \mathbb{E}\eta\left(\omega_j \varphi_i + \omega_i \varphi_j\right)$$

Suppose $\varphi_i \gtrsim \varphi_j$ but $\omega_i < \omega_j$

Uniqueness \implies enough to show $\tilde{\omega}$ with flipped (ω_i, ω_j) has

$$\mathbb{E}\left[(b - \tilde{\omega} \cdot \varphi)_+\right] \leq \mathbb{E}\left[(b - \omega \cdot \varphi)_+\right].$$

So letting
$$\eta(y) := \mathbb{E} \left[\min \left\{ 0, \ y - b + \sum_{k \neq i, j} \omega_k \varphi_k \right\} \right]$$
, need
$$\mathbb{E} \eta \left(\omega_i \varphi_i + \omega_j \varphi_j \right) \le \mathbb{E} \eta \left(\omega_j \varphi_i + \omega_i \varphi_j \right)$$

Off-the-shelf stochastic ranking result— η increasing concave

RANKING WEIGHTS & LAND SHARES

Giving higher weight to agents with higher value distributions

In principle, independent of land shares

• If
$$\theta_i \sim \theta_j$$
, then $\omega_i = \omega_j$ whatever σ_i and σ_j are.

RANKING WEIGHTS & LAND SHARES

Giving higher weight to agents with higher value distributions

In principle, independent of land shares

• If $\theta_i \sim \theta_j$, then $\omega_i = \omega_j$ whatever σ_i and σ_j are.

Natural relationship between σ_i and F_i depends on setting

- Farming vs. manufacturing? Higher $\sigma_i \rightsquigarrow$ higher ω_i .
- Small vs. medium farm? Higher $\sigma_i \rightsquigarrow \text{lower } \omega_i$.

An advertisement

SEE THE PAPER FOR...

Dominant strategies

Ex-post participation

Beyond veto bargaining

Pre-market trade

The full Pareto frontier

Wrapping up

WHAT WE'VE SEEN

Model of buying from seller group with shared property rights

Proportional transfers don't hamper implementability

Optimally use weighted allocation rule-endogenous weights

Simple pricing leaves money on the table

Weights reflect heterogeneity: value ranking ~ weight ranking

Thanks!

