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Abstract

We study a basic trade-off that organizations face: competition versus col-

laboration. Maintaining competing approaches provides option value when

the best choice is uncertain. Collaborating on a single approach prevents

inefficient use of resources. We model project development and selection by

a principal interacting with two agents who prefer their respective project.

Opposed interests undermine agents’ incentive to collaborate, causing inef-

ficiencies. We show a time-varying threshold rule is uniquely optimal: the

principal selects the first project to achieve a sufficient lead. The optimum

entails initial competition, always followed by permanent collaboration. Our

proof uses new martingale methods applying weak solutions.
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Dilmé, Bob Gibbons, Marina Halac, Navin Kartik, Aaron Kolb, Annie Liang, MathOverflow
user #143907, Stephen Morris, Barry Nalebuff, Harry Pei, Ben Polak, João Ramos, Debraj Ray,
Tomasz Sadzik, Rani Spiegler, Balázs Szentes, Yu Fu Wong, and Bill Zame for helpful feed-
back. We are especially grateful to Mykhaylo Shkolnikov for his advice. We also thank various
conference and seminar participants, especially Martin Cripps and Meg Meyer, who served as
discussants for this paper in the ERC 2019 Frontiers in Design conference and the NBER Fall
2020 Organizational Economics Working Group, respectively. A previous draft of this paper was
circulated with the title “Curtailing Competition.” Aditya Kuvalekar gratefully acknowledges
financial support by MICIN/ AEI/10.13039/501100011033 grant (PGC2018-096159-B-I00) from
the National Plan, PID2019-107259RB-I00 grant from Agencia Estatal de Investigaciòn del Gob-
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Internal competition. . . permeates the excellent companies. It entails

high costs of duplication. . . overlapping divisions, multiple development

projects, [and] lost development dollars. . .Yet the benefits, though less

measurable, are manifold in terms of commitment [and] innovation. . .

Peters and Waterman Jr. (2003)

In Search of Excellence: Lessons from America’s Best-Run Companies

1. Introduction

In the face of uncertainty, organizations often create internal competition to deter-

mine the best course of action. Maintaining and developing competing approaches

provides option value, when the best course of action is initially uncertain. For

example, political parties use primaries to select a preferred candidate. A large

literature in political science has studied the costs and benefits of candidate selec-

tion via intra-party political competition. A party has difficulty predicting a priori

how public sentiment toward a candidate—particularly the valence or non-policy

related appeal of a candidate—may change over time and which candidate will

be ultimately more attractive to the electorate.1 Holding primaries allows a party

to adapt its final choice to changing public sentiment. Adams and Merrill III

(2008) cite this “information-revealing advantage of holding a primary—leading

to a high-quality nominee.”2 At the same time, inducing competition via pri-

maries entails costs: allowing more than one candidate means precious resources

are spent on candidates who are ultimately unsuccessful (Adams and Merrill III,

2008).

Using internal competition to adapt to an uncertain environment is not unique

to political organizations. Many successful companies create internal competition

between teams, assigning multiple research teams to solve the same technolog-

ical problem or engaging distinct business units to develop competing product

prototypes. Consider the example of the IT infrastructure firm Telstar Commu-

nications that had two distinct 50-person teams working on two competing mid-

dleware technology platforms—AX and EX (see Birkinshaw, 2001). Each team

1Carey and Polga-Hecimovich (2006) report that primaries are useful to parties in identifying
candidates with higher valence, something that is hard to know ex ante. They write, “Primaries
may simply be more effective than elite-driven search processes in identifying candidates with
broad popular appeal . . . Carlos Menem’s emergence . . . in Argentina is an example.”

2Adams and Merrill III (2008) write, “[In] many plausible scenarios the strategic advan-
tage arising from the primary electorate’s ability to select a high-quality nominee—i.e., one
whose campaigning skills prove attractive to voters (such as Bill Clinton and Ronald Reagan)—
outweighs the strategic disadvantage that the primary pulls the party’s nominee away from the
center of the general electorate.”
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worked on its own platform, knowing the firm would ultimately adopt exactly one

platform.3 When the most promising approach is not clear ex ante, sowing com-

petition rather than collaboration between teams gives an organization flexibility

to adapt its choice based on what the future will look like. But the benefit of

flexibility must be balanced with the costs of duplication, or the efficiency loss of

wasting productive effort on the “wrong” approach.

This tension between the adaptive benefits and the efficiency losses of com-

petition inside organizations is at the heart of our paper. Our central question

is how to design optimal selection rules that harness both the flexibility gains of

competition and the efficiency gains of collaboration.

Formally, we study a finite-horizon game in continuous time, in which a princi-

pal interacts with two agents until a deadline T . Each agent has their own project.

The principal evaluates the projects as they are developed and must pick one of

them when the deadline arrives. At every instant, an agent decides how to allo-

cate a unit of effort between working on their own project and providing assistance

(collaborating) on the other agent’s project. Each project’s evolution is governed

by a drift that is increasing in the total effort expended on the project by the two

agents, and by exogenous Brownian shocks. Effort is costless. The vector of the

projects’ current state of development is publicly observed by both agents and the

principal in real time, even though effort choices are not observed—or at least not

contractible. The principal’s payoff is equal to the state of the project she chooses

at the deadline; she does not benefit from the state of the other project. The agents

have conflicting interests, in that each wants their own project to be chosen. Our

goal is to characterize the principal-optimal selection rule (that chooses a project

at the deadline as a function of the history of projects’ evolution), assuming the

principal can commit to any history-dependent rule.

Intuitively, the principal strives to achieve the following three objectives: mak-

ing the best possible project choice ex ante, fostering collaboration among agents

(make them work on the same project), and tailoring the final choice as uncertainty

resolves about which project will yield a higher payoff.

First, we show that in the principal’s first-best policy, ignoring agency prob-

lems, the principal would simply wait until the deadline and pick the project with

the higher final state. Moreover, at any instant, she would like both agents to col-

laborate, that is, to allocate all of their effort to the project that is currently ahead

(i.e., has a higher state at that time), to maximize the likelihood that this effort is

3Tech giant IBM similarly fosters competition between teams for would-be product ideas,
encouraging different teams to try competing approaches to the same problem (Peters and Wa-
terman Jr., 2003).
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productively useful. The first-best policy captures the intuition that the principal

wants to foster collaboration, while constantly adjusting the project choice as un-

certainty resolves, to ensure the agents collaborate on the “right” project. But it

is not incentive compatible for the agents, because they will each strictly prefer to

work on their own project. Consider another benchmark, in which the principal

can make no prior commitments regarding the eventual project choice. It is easy

to see that, in this case too, the principal will pick the project with the higher

ex-post state at the deadline. A unique equilibrium between the agents ensues,

with no collaboration. Agents would rather compete, each focusing all effort on

their own project. The result is an inefficient use of the agents’ efforts.

The natural question, then, is whether the principal can curtail competition

and foster some efficient collaboration. Giving the principal commitment power

can help. For example, suppose the principal commits to choosing the project

that is first to take a lead by a specified margin. It is easy to see how such a rule

can outperform the outcome under no commitment (pure competition). Moreover,

it is incentive compatible, because once an agent’s project is chosen irreversibly,

agents are indifferent and thus willing to collaborate. At this point, one might

wonder whether the only way for the principal to induce agents to collaborate

is to make an irreversible choice at some point. One may reasonably conjecture

that with strictly opposing interests, if an agent thought their project could be

adopted in the future after enough improvement, however small the likelihood,

they would strictly prefer to work on their own project. Perhaps surprisingly,

this conjecture is false. Many incentive-compatible decision rules induce agents to

switch back and forth between competing and collaborating.4 Indeed, the space

of history-contingent selection rules that can improve upon the no-commitment

outcome by fostering some collaboration is rich and unwieldy, and our main result

characterizes the optimal incentive-compatible selection rule.

We show the unique principal-optimal selection rule has a simple form: the

principal commits to a time-dependent, decreasing lead threshold {ẑt}t∈[0,T ] that

decreases to zero as the deadline approaches, such that a project is chosen at

the first instant t at which its state exceeds that of the other by at least ẑt.

Agent equilibrium behavior therefore also has a simple pattern, namely, that in

an initial competitive regime (before a project is chosen by the principal), agents

allocate all effort toward their own project. This phase is followed by permanent

collaboration; that is, agents collaborate on the chosen project (the first to achieve

the threshold lead) until the deadline. In particular, regardless of the time horizon,

a non-degenerate phase of collaboration always exists. The main force behind

4See section 3.3 for a more detailed discussion on this point.
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this two-phase structure is the option value arising from frontloading competition:

sustaining temporary collaboration before additional competition necessitates that

the principal not change her expected project choice during the collaboration

phase. In that case, however, she can do better by frontloading competition,

saving collaboration for when it can be better targeted. The decreasing lead

threshold captures the diminishing benefits of option value from competition.

This two-phase optimal contract with inevitable collaboration from some point

onward is broadly consistent with what we observe in our motivating applications.

American presidential primaries typically produce a presumptive nominee well

before the deadline (the last primary), after which everyone supports the chosen

nominee.5 Similarly, competing teams in organizations are eventually brought

together toward a common approach once enough relative uncertainty has been

resolved. At Telstar, top-level executives finally chose EX over AX, and both teams

subsequently collaborated on EX to build a common platform for the future.6

The derivation of the optimal contract proceeds in four logical steps. We first

show any contract is outperformed by one in which the principal resolves her de-

cision quickly. Intuitively, if she does not adapt her current choice adequately to

project shocks for some time, she is not utilizing the option value of competition.

Speeding up her decision makes room for additional collaboration targeted to the

eventual chosen project.7 Second, we show the principal conditions only on rela-

tive performance, because aggregate shocks are both irrelevant to the principal’s

objective and uninformative about agent behavior. Third, we show it is optimal

for the principal to consider two-phase policies with initial competition until a

stopping time, followed by a permanent switch to collaboration; in particular, she

makes a constrained-efficient choice with the partial information available when

ending competition, and has both agents collaborate thereafter on the chosen win-

ner. Finally, we show the principal optimally chooses a project only when its lead

over the other project is sufficiently large, lowering her standards closer to the

deadline. Intuitively, when ending competition and choosing a project, the prin-

cipal foregoes the option value from adjusting to projects’ future shocks, but this

5In her speech announcing she was suspending her campaign for the 2008 US Democratic nom-
ination, Hillary Rodham Clinton publicly urged her supporters that it was time for her and them
“to take [their] energy, [their] passion, [their] strength, and do all [they] can to help elect Barack
Obama” (see https://www.nytimes.com/2008/06/07/us/politics/07text-clinton.html). Following
an intense competition, Clinton joined the Obama effort, telling her supporters, “[Work] as hard
for Barack Obama as you have for me.”

6At IBM, teams are allowed to work on disparate approaches until, at some point, the firm
conducts performance “shootouts” to pick one (Peters and Waterman Jr., 2003).

7A similar force manifests in delayed investment when firms face uncertainty about an im-
pending government policy choice (see Stokey, 2016). In that setting, as in ours, the flow of
decision-relevant information is exogenous to current investment decisions.
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option value vanishes as the deadline approaches.

A key feature of the optimal policy is that the initial phase of competition is

always temporary. Regardless of the horizon, collaboration starts strictly before

the deadline, with probability 1. This feature implies arbitrarily large ex-post

inefficiencies can occur on path. In other words, for any given margin, with positive

probability, the project that is not chosen ends up ahead at the deadline, by more

than that margin. But the probability of such mistakes vanishes as the duration

of collaboration grows long.

Finally, briefly discussing our methodological contribution is worthwhile. Al-

though the optimal selection rule and its qualitative properties are intuitive in

hindsight, deriving them is not easy, because of the richness of the space of possi-

ble rules. Our continuous-time model is useful in simplifying the problem. Every

selection rule induces a natural martingale—the expected eventual project choice

given the current history—which allows us to recast the principal’s problem as

an easier stochastic control problem, in which the principal is deciding dynam-

ically how to respond to contemporaneous shocks, even though the true design

problem is a static decision based on a rich history.8 However, given our finite-

horizon setting, even the existence of an optimal control is not immediate. Even

if existence were guaranteed, the non-stationarity of the problem makes deriving

qualitative features of the optimal rule difficult. So, instead of using the standard

toolkit of Hamilton-Jacobi-Bellman equations, we adopt a different approach. We

consider a particular relaxation of the principal’s problem, allowing for more per-

missive weak solutions of stochastic differential equations. Weak solutions enable

us to use the known equivalence between Itô integrals and time-changed Brown-

ian motions to construct optimal controls with the economically intuitive features

described above. We hope this approach of appealing directly to martingale meth-

ods to simplify the principal’s problem will be applied more broadly in economic

theory.

1.1. Related Literature

At a high level, our paper is indebted to the perspective of organizations as polit-

ical coalitions, as outlined by March (1962) and Cyert and March (1963), which

highlights that individuals within organizations have goals that are often distinct

from the goals of the organization, and the role of the executive is that of a po-

8This same approach is, in principle, available even in discrete time. Our continuous-time
formulation makes the principal’s space of choices of how to respond to contemporaneous shocks
considerably simpler, just as it does in, say, Sannikov (2008).
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litical broker who cannot solve such problems by simple payments.9 We focus on

one such conflict—that different members would like the organization to support

their own pet initiatives, which may undermine collaboration.

Our paper is related to the work on multi-agent experimentation. See, for in-

stance, Bolton and Harris (1999), Keller et al. (2005), Bonatti and Hörner (2011),

and Halac et al. (2017). The fundamental trade-offs are different though. In those

papers, agents face an incentive to free-ride on each others’ costly experimenta-

tion.10 Free-riding is absent from our model. Our central trade-off is between

retaining option value via competition and harnessing gains from collaboration.

Another important difference is that, in our model, the flow of information is ex-

ogenous and unaffected by agents’ choices. Hence, even though our principal faces

an exploration-exploitation trade-off as players do in that literature, its source is

quite distinct. In experimentation models, a decision-maker trades off the infor-

mation generated from exploration against the myopic value of exploitation that

it crowds out. In our paper, information arrives exogenously, but when the prin-

cipal uses it to inform future choices, she distorts the agents’ current effort choice.

In our first-best solution, no such trade-off exists: the principal can both exploit

(induce collaboration on the leading project) and explore (adapt choice to the

projects’ evolution). But doing so violates agent incentives. So, our exploration-

exploitation trade-off arises endogenously, exactly because of the agency problem.

The closest work to ours is that of Bonatti and Rantakari (2016), where each

agent first chooses what type of project to develop and how hard to work on it

over time, after which they negotiate over the adoption choice. Agent interests are

partially aligned. The focus is on studying the nature of projects agents choose

to develop and the negotiations that ensue. A key lesson is that the project-

selection mechanism can feed into the development stage when agents may distort

the organization’s decision. This feature also arises in the static model of Hirsch

and Shotts (2015) and the two-period model of Callander and Harstad (2015).11

This lesson sets the stage for our design problem.

A large literature on dynamic contests focuses on moral hazard—effort provision—

in contests while abstracting away from collaboration (e.g., Benkert and Letina,

2020; Moscarini and Smith, 2007; Ryvkin, 2022). These papers are primarily con-

cerned, therefore, with eliciting high effort from the players. In our work, with

9See Gibbons (2020) for a detailed survey.
10Free-riding in teams is an extensively studied topic outside the experimentation framework

as well. For example, see Holmström (1982), Mookherjee (1984), and Legros and Matsushima
(1991). More thematically related to our work, Marino and Zabojnik (2004) show how internal
competition can be beneficial in addressing the free-rider problem.

11See also Farrell and Simcoe (2012), who study related distortions in standards adoption
across firms that produce complementary products.
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no margin for total effort, we can focus on incentivizing the agents to direct their

efforts towards the better project improving efficiency.

Finally, our paper contributes methodologically to the growing literature on

dynamic mechanism design without transfers (e.g., Aghion and Jackson, 2016;

Deb et al., 2018; Guo and Hörner, 2020). Within that literature, future alloca-

tive decisions may optimally be distorted in response to current shocks, either

to provide present incentives (as in Meyer, 1992) or in response to learning or

other payoff-relevant shocks (as in Meyer, 1991). Both these sources of dynam-

ics arise in McClellan (2021), whose principal faces a hypothesis-testing problem

subject to interim participation constraints for a privately informed agent. Like

us, McClellan (2021) employs tools from the literature on dynamic contracting in

continuous time (e.g., DeMarzo and Sannikov, 2006; Sannikov, 2008) and studies

his principal’s sequential problem directly to circumvent analyzing a partial differ-

ential equation. We are hopeful our techniques—appealing to martingale methods

rather than HJB equations to reduce the principal’s control problem, and passing

between weak and strong solutions—will be used more extensively in dynamic

mechanism design without transfers.

2. Model

A principal interacts with two agents i ∈ I = {−1, 1} in continuous time over a

finite horizon of length T . Each agent i has a project with evolving state X i. The

principal must pick one of the two projects at the deadline T . At every instant,

each agent must allocate a unit of effort between working on their own project

and providing assistance on the other agent’s project. Let ait ∈ [0, 1] denote the

fraction of effort that agent i allocates to their own project at time t. Agent i

allocates the remaining (1−ait) of their effort to helping agent −i on their project.

We interpret (1−ait) as the extent to which agent i collaborates. Effort is costless

and contributes to projects’ development continuously over time. Formally, the

productive state of each project X i
t as of time t evolves via

dX i
t =

[
β + µ(ait + (1− a−i

t ))
]
dt+ σ dBi

t,

where B1 and B−1 are independent standard Brownian motions on a filtered

probability space ⟨Ω,F , {Ft}t≥0,P⟩ satisfying the usual conditions; parameters

β, µ, σ ∈ R have µ, σ > 0; agent i chooses a progressively measurable [0, 1]-valued

stochastic process ai on ⟨Ω, {Ft}t≥0,P⟩; and project i has exogenous initial state

X i
0 ∈ R. The vector of project states is publicly observed by both agents and the
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principal, and effort-allocation choices are not observed. For convenience, define

∆X := X1 −X−1 and ΣX := X1 +X−1,

and define ∆B, ΣB, and ∆a analogously.

In our main analysis, the principal commits at time zero to an arbitrary project-

selection rule. Formally, the principal chooses a {−1, 1}-valued random variable

y on ⟨Ω,F ,P⟩ for a payoff of Xy
T ; that is, the principal’s profit is equal to the

productive state of the chosen project. Without loss, let us normalize σ = µ = 1,

β = −1, and X1
0 +X−1

0 = 0.12 Therefore, after normalization, project X i follows

dX i
t = i∆at dt+ dBi

t,

and the principal’s expected payoff is

E
[
1+y
2
X1

T + 1−y
2
X−1

T

]
= 1

2
E[y∆XT ].

Each agent wants her project to be chosen; that is, agent i gets payoff iy. Given

any (y, a1, a−1), we can define qit := E[iy|Ft] as agent i’s continuation value at

any t ≤ T . In what follows, we write agent incentives from the point of view of

agent 1. So, we drop the superscript i and define qt := q1t = E[y|Ft]. We denote

the current leader at any time t ≤ T by ℓt := argmaxi∈I X
i
t .

2.1. Discussion of assumptions

Let us discuss some of our modeling assumptions.

Unobservable effort choice: We assume the agent’s choice of effort allocation

is unobservable to the principal—or at least non-contractible. In the political ap-

plication, this assumption is reasonable. Political parties are decentralized and do

not closely monitor candidate effort, and much of the effort taken by politicians is

behind-the-scenes work. In the case of a firm, we interpret effort as creative effort.

Many modern technology companies foster innovation and develop new solutions

by giving employees the flexibility to spend a fraction of their time on projects of

their choice. We view effort in our model as such unmonitored time that agents

can choose to use on their own or another agent’s pet project.

12Counting time in different units, we may assume without loss that σ = µ; then, positively
rescaling the state (and thus principal payoffs), we may take σ = µ = 1; and finally, because
adding a constant to both projects’ initial states or both projects’ drifts simply adds a constant
to the principal’s payoff (not altering any incentives or the quality of information about agents’
behavior), we may further assume β = −1 and X1

0 +X−1
0 = 0. When we state our main theorem,

we clarify exactly how these parameters alter the form of the optimal selection rule.
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Agency: We cast our organization’s problem as a principal-agent problem in

which an incentive conflict causes the principal to distort her selection rule. A

simple alternative model, but without conflict, that would generate similar dy-

namics is one in which a monolithic organization operates two projects at fixed

flow costs and can permanently shut one down at any time. Such a model would

generate identical dynamics: In fact, a crucial step in our analysis (Lemma 3) es-

tablishes that our principal’s problem with agency conflict reduces to the problem

mentioned above—choosing the time for irreversible project termination. In this

sense, the characterization of optimal project selection in the simpler alternative

model is a by-product of our analysis. Our richer modeling of an organization pro-

vides a microfoundation of how such dynamics can arise: The cost of maintaining

option value arises from a collaborative agency cost of responding to contempora-

neous shocks, and irreversible termination emerges from the optimal frontloading

of competition.

Fixed agent payoff, no transfers: We assume an agent gets no payoff from the

value of the chosen project itself. This assumption is again consistent with the

leading application, in which all that the candidate cares about in the primary

stage is being the chosen nominee. In a firm, we interpret the agents’ preference for

having their project chosen as akin to empire-building motives, with individuals

seeking to increase their scope and influence within organizations.13 If we allowed

the principal to offer agents a share of the chosen project or to make transfers,

inducing collaboration would be easier. Our optimal rule highlights how, despite

a severe lack of instruments, the principal can still foster some collaboration.14

Exogenous information: We assume information is exogenous. This assump-

tion is appropriate for settings in which effort is mainly instrumental. For instance,

political candidates can affect their chances of success by devoting more or less

effort to campaigning, but campaigning effort allocation does not help predict

how public sentiment may change in the future. We abstract from the potential

information-generating role of effort. As mentioned in section 1.1, the literature

on experimentation focuses on this role and models an exploitation-exploration

trade-off that is technological: exploring a risky option means giving up the my-

opic gains from exploiting the safe option. Our modeling choice enables us to make

the different point that, even if information arrives exogenously, which means a

single decision-maker would face no trade-off between exploration (competition)

13See https://www.investopedia.com/terms/e/empirebuilding.asp for more on empire-building.
14We are interested in organizations facing distortions that cannot be directly contracted away.

This modeling choice reflects the classic (Gibbons, 2020; March, 1962) view of “the executive
. . . [as] a political broker who cannot solve the problem of conflict by simple payments to the
participants and agreement on a superordinate goal.”
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and exploitation (collaboration), using this information to inform future choices

can still entail costly distortions because of agent incentives.

Continuous time: Our choice of a finite-horizon continuous-time model allows

us to simplify the optimization problem and derive qualitative features of the op-

timal decision rule. The reader may wonder, after seeing the simple form of the

optimal rule, whether it could not have been generated in a two-period model.

It turns out that solving a two-period model is not clean, and moreover does not

yield some economically substantive insights that our model delivers. For instance,

a two-period model cannot demonstrate the somewhat unintuitive point that the

principal can get agents to switch back and forth between competing and collabo-

rating in an incentive-compatible way, despite their directly opposed interests—or

the point that inducing the agents to do so is strictly suboptimal. A two-period

model also cannot deliver the insight that the optimal rule involves a bounded

phase of competition followed by collaboration, with most of the time being spent

collaborating when the duration is long.

3. Benchmarks

We start with two benchmark settings. First, we characterize a first-best solution,

maximizing the principal’s ex-ante expected profit in the absence of agent incentive

constraints. Next, we describe the equilibrium of the three-player game in which

the principal cannot commit to a decision rule and must make a static project

choice when the deadline arrives.

3.1. First-best solution: Ignoring agent incentives

Toward defining the principal’s first-best problem formally, let A denote the set of

[0, 1]2-valued progressively measurable processes on {Ft}t and let Y denote the set

of {−1, 1}-valued random variables on F . We want to solve the following planner

problem:

sup
a∈A, y∈Y

EXy
T = 1

2
E[y∆XT ]

s.t. dX i
t = ∆at dt+ dBi

t, X1
0 = x1

0, X−1
0 = x−1

0 .

The proposition below shows the first-best solution is for the principal to choose

the project with the higher output at the deadline and, at every instant before the

deadline, have both agents collaborate on the current leader. One part is obvious:

the principal will clearly choose the better project ex post. We also show that at
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any instant before the deadline, it is optimal to have the agents collaborate on the

current best guess of which project will be ultimately chosen, so that the effort is

productive. Formally, we observe that it is optimal to set ∆at = 1 when ∆Xt > 0

and ∆at = −1 when ∆Xt < 0.

Proposition 1: The following policy attains the principal’s first-best profit:

• The principal chooses project yFB = ℓT , the leader as of time T ;

• Each agent works on the current leader, that is,

(a1t , a
−1
t ) =

(1, 0) : X1
t ≥ X−1

t

(0, 1) : X1
t < X−1

t .

The intuition for this result is straightforward. Because the principal will opti-

mally choose the ex-post best project, her objective can be rewritten as 1
2
E|∆XT |,

an increasing transformation of (∆X)2. But then the given control increases the

drift of (∆X)2 more than any other control does, at any given level of (∆X)2.

A classic comparison theorem from the theory of stochastic differential equations

(Ikeda and Watanabe, 1977) says this control yields a stochastically maximal dis-

tribution of (∆XT )
2.

3.2. No principal commitment

It is immediate that if the principal could not commit, she would (as in the

above first-best solution) choose the leading project when the deadline arrives.

In other words, the principal’s behavior will be ex-post optimal: y = ℓT . This

observation in turn implies no collaboration will occur, with each agent finding it

dominant to devote all their effort to their own project to maximize the chance

that it is the eventual winner. Indeed, consider any effort decision of agent −i

and any hypothetical effort choice ai for agent i. Raising ai to 1 (i.e., never

collaborating) increases agent i’s payoff weakly in every state, and strictly with

positive probability if they were not already almost surely making the latter choice

at almost every time.

Proposition 2: If the principal cannot commit:

• The principal chooses project yFB = ℓT , the leader as of time T ;

• Each agent works on their own project; that is, (a1t , a
−1
t ) = (1, 1).
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3.3. Can commitment be useful?

The first-best solution has the agents collaborating at every instant, whereas in

the equilibrium with no principal commitment, getting any collaboration off the

ground is not possible. The natural question is whether a principal with some com-

mitment power can foster some collaboration to get better equilibrium outcomes.

In this section, we demonstrate informally that if the principal could commit to

a decision rule ex ante, she may be able to improve her payoff. Such a principal

could, for example, offer any of the following contracts:

Principal’s Pet Project: Consider a project-selection rule where the principal

simply commits to picking her pet project i, and has agents collaborate on

the pet project.

This rule maximizes the benefits of collaboration on the favored project

for length of time T , completely forgoing the benefits of choosing the cor-

rect project. It is easy to see this contract can indeed outperform the no-

commitment outcome for a range of parameter values.

Unassailable Lead: Another project-selection rule for the principal has the agents

start out competing and commits to picking a project irreversibly if it is the

first to take on a lead of at least L. The agents then collaborate on this

chosen project.

Note this contract can also improve upon the no-commitment outcome,

again by curtailing competition and allowing some collaboration on a fa-

vored project. This time, the favored project is the early leader who “wins”

the initial competition by overtaking by a specified lead threshold.

Early-Lead Advantage: Finally, consider the following more elaborate selection

rule that gives an early leader an advantage, though the advantage is not

unassailable. If a project i is the first to take on a lead of L, the princi-

pal chooses this early leader i with probability p ≥ 1
2
at the deadline. If

project −i subsequently catches up so that agent i’s lead is reduced to 0,

and −i remains ahead at the deadline, project i is chosen only with proba-

bility 2p−1. However, if project i is again ahead at the deadline, i is chosen

with probability 1. Under this rule, agents start out competing. When an

early leader i emerges, both agents start collaborating on the early-leader

project and start competing again if and when the early lead disappears.

This selection rule is incentive compatible—in particular, agents willingly

collaborate when an early leader emerges because the probability of the early

12



leader being chosen at the deadline, conditional on the lead disappearing, is

still 1
2
(1)+ 1

2
(2p− 1) = p. Moreover, such a rule can dominate the outcomes

under both the no-commitment and the unassailable-lead contracts.

These examples offer two key takeaways. (i) They demonstrate commitment power

can indeed help the principal improve upon the non-commitment outcome, by in-

ducing some collaboration. (ii) Because agent interests are directly opposed, one

might conjecture that the only way to make agent i collaborate is to commit to

abandoning project i once and for all. The early-lead-advantage contract demon-

strates this reasonable conjecture is actually false: an agent can be willing to

collaborate even when they know that, with sufficient improvement, their project

can be chosen in the future.

Indeed, the space of all history-dependent contracts is large and rich, and the

substance of our main result is to identify the uniquely optimal one.

4. Agent Incentives and the Principal’s Problem

Recall the principal can choose an arbitrary {−1, 1}-valued random variable y on

⟨Ω,F ,P⟩, and her expected payoff E[Xy
T ] depends on the resulting agent behavior.

So, we start with expressing agent incentive compatibility more concretely. An

agent’s strategy is incentive compatible if it maximizes the agent’s expected utility

(continuation value), given the principal’s selection rule. Recall that agent 1’s

continuation value at time t is qt and agent −1’s is −qt, where qt := E[y|Ft]

describes the interim expected project choice. By the martingale representation

theorem (Karatzas and Shreve, 1998, Theorem 3.4.15), a progressively measurable

R2-valued process on {Ct = (c∆t , c
Σ
t )}t on filtration {Ft}t≥0 exists whose time-t

quadratic variation has finite expectation for every t ≥ 0 and such that15

dqt =
[
c∆t (d∆Xt − 2∆̃at dt) + cΣt dΣXt

]
, (1)

where ∆̃at is the equilibrium-anticipated ∆at, and the law of motion d∆Xt is

influenced by the chosen ∆at. Intuitively, we can think of c∆t and cΣt as project

sensitivities that describe how the interim expected project choice responds to rel-

ative and aggregate shocks of the two projects. It is immediate from the expression

above that for agent incentive compatibility, we must have

∆at = 0 whenever c∆t ̸= 0. (2)

15That is, qt = q0 +
∫ t

0

[
c∆
t̃
(d∆Xt̃ − 2∆̃at̃ dt̃) + cΣ

t̃
dΣXt̃

]
almost surely.

13



Indeed, given c∆t > 0 [resp. c∆t < 0], both agents would have a strict incentive to

choose ait = 1 [resp. ait = 0]. Further, we can rewrite the principal’s profit, Π, as

below.

Π = 1
2
E[y∆XT ]

= 1
2
E[qT∆XT ]

= 1
2
q0∆X0 + E

∫ T

0

(qt∆at) dt+ 1
2
E[qT∆BT ]

= 1
2
q0∆X0︸ ︷︷ ︸
ex-ante

+E
∫ T

0

 qt∆at︸ ︷︷ ︸
collaboration

+ c∆t︸︷︷︸
adaptivity

 dt,

where the last equality comes from the standard formula for quadratic covariation

of stochastic integrals. Writing down the objective in this way clarifies that, apart

from making the correct ex-ante project choice, the principal has two levers to

increase profit: (i) adapting the project choice to relative productivity shocks,

which will (by (2)) induce agents to compete on their respective projects; and (ii)

eliminating the efficiency loss of competition by having agents collaborate.

Imposing the agent incentive-compatibility constraint (2), we can derive an

upper bound for the principal’s objective:

Π ≤ 1
2
q0∆X0 + E

∫ T

0

(
1c∆t =0|qt|+ c∆t

)
dt.

Recall that qt is the interim expected project choice. So, we can see from the

above expression that to get efficient collaboration, the principal should have the

agents fully collaborate on the “current favorite,” that is, the project currently

more likely to be chosen by the principal—indeed, such collaboration whenever c∆t
is zero is the only away to attain the upper bound. Note that the current favorite

may not be the project that is currently ahead, because the former is endogenous

to the principal’s chosen contract. Determining what the current favorite is at any

time is an essential part of the characterization of the optimal contract.

Hence, we can write the principal’s problem as:

sup
{Ct=(c∆t ,cΣt )}t

1
2
q0∆X0 + E

∫ T

0

(
1c∆t =0|qt|+ c∆t

)
dt, (O)

where qt is given by (1), or equivalently, dqt = c∆t d∆Bt + cΣt dΣBt. (3)

14



5. The Optimal Selection Rule

Our main result describes the form of the uniquely optimal project-selection rule.

Theorem 1: An optimal contract exists and is unique.16 A bounded, continuous,

nondecreasing function z̄ : R+ → R+ with z0 = 0 and zt > 0 for every t > 0 exists,

such that (whatever is the duration T until the deadline) the following is optimal:

• The principal chooses project y∗ = ℓτ∗, the leader as of time17

τ ∗ := inf{t ∈ [0, T ] : |∆Xt| ≥ z̄T−t};

• Each agent works on their own project before τ ∗;

• Both agents work on project y∗ from time τ ∗ onward.

Figure 1: Project 1 is selected Figure 2: Project −1 is selected

Figures 1 and 2 show realized paths of projects’ relative performance in which

projects 1 and −1 are chosen, respectively. Consistent with the theorem, a winner

is chosen and permanent collaboration begins the first time one project’s lead

exceeds the threshold. Figure 3 demonstrates a realization in which the project

choice (project 1) turns out to be ex-post inefficient.

16Any two optimal incentive-compatible selection rules almost surely have the same chosen
project and the same agent choices at almost every time.

17In the zero-probability event that τ∗ = T and X1
T = X−1

T , the principal may choose arbi-
trarily.
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Figure 3: An ex-post inefficient choice

Recall, the theorem is stated with the normalizations σ = µ = 1, β = −1

and ΣX0 = 0. Given arbitrary σ, µ, β, and ΣX0, it is easy to deduce that agents

compete until the first instant t̃ at which one project is leading by a margin of at

least

z̃t̃ :=
σ2

µ
z̄(µ2

σ2

)
(T−t̃),

at which point that project is chosen and collaborated upon until the deadline. In

particular, the initial aggregate state (ΣX0) and baseline development rate (β) are

irrelevant, for the same reasons that aggregate performance is optimally ignored.

Because each quantity enters the threshold rule in two places, comparative statics

with respect to the marginal product of effort (µ) and the project volatility (σ) are

more delicate, depending on detailed features of the function z̄. However, some

features are easy: for instance, raising µ while holding the ratio µ/σ fixed raises

the lead threshold at every time. Finally, extending the deadline (T ) leads to a

larger lead threshold at every time, whereas changing the initial project asymmetry

(∆X0) in favor of one project has no effect on the standards and hence makes that

project more likely to be chosen.

The remainder of the section is dedicated to proving the theorem. A common

approach to solving a stochastic control problem like the one in (O) is to heuris-

tically derive the HJB equation, establish the existence of a smooth solution to

it, and appeal to a verification theorem that such a solution is in fact the princi-

pal’s optimal value function. However, this direct approach has two limitations.
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Given the finite horizon, the HJB equation would be a partial differential equation,

and so establishing the existence of a smooth solution to it is not straightforward.

Moreover, even if its existence were guaranteed, establishing qualitative properties

of the optimal selection rule would be hard without an explicit characterization

of a solution to the PDE. So, we adopt a different route. Because the argument

is not typical of the optimal contracting literature, we describe our approach in

section 5.1 below. We then present the formal results.

5.1. Approach to characterizing the optimal selection rule

Our first technical step is to consider relaxations of the principal’s problem that

allow for weak solutions.18 Recall that in the control problem (O), the principal

has to choose interim expected project choice q and project sensitivities C. Allow-

ing weak solutions means we now allow the principal to additionally choose the

underlying Brownian motions that drive projects’ random evolution (while still

respecting the law governing this evolution as stated in the model section).19 In

a typical discrete-time model, such a relaxation would be irrelevant, but in the

present setting, it is a useful tool for the analyst. Given this broader definition

of a control, we then proceed to show restricting attention to controls that have

various economically intuitive features is without loss of optimality.

In Lemma 1, we show the principal sets (c∆, cΣ) to be somewhat large until

either she decides on her choice of project or the deadline arrives. Notice from (3)

that qt is unchanged during a phase when c∆ = 0. Thus, conjecturing that the

principal cannot be worse off if she backloads collaboration to a time when it may

be better targeted is reasonable. The lemma establishes this intuition applies more

generally—the principal can backload collaboration by continuously speeding up

decision-making whenever ∥(c∆, cΣ)∥ is too small, thus creating residual time at

the end for collaboration.

In Lemma 2, we show the principal ignores aggregate shocks. Given our earlier

observation that cΣ does not affect the principal’s objective function or agent

18Although permitting weak solutions is the most nonstandard sense in which we relax the
principal’s problem, it is not the only one. Additionally, we consider only certain necessary
conditions for agent incentives and use an objective function that is generally only an upper
bound on the principal’s objective. As is typical, when combining these arguments yields an
incentive-compatible contract at which the augmented objective coincides with the true objective,
optimality of such a contract then follows.

19Other papers on continuous-time optimal contracting, and elsewhere in the optimal control
literature, appeal to weak solutions of stochastic differential equations (e.g., Sannikov, 2008). We
believe our specific use of weak solutions is novel. Namely, we solve a relaxed program entailing
weak solutions as a solution method to characterize principal-optimal IC strong solutions. We see
this difference as significant because strong solutions are arguably more natural for organizational
design settings in which the shock process is beyond the principal’s control.
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incentives, and that aggregate shocks are not an informative signal of agents’

choices, it is intuitive that the principal should set cΣ = 0.

In Lemma 3, we show we can reduce the principal’s (relaxed) problem to an

optimal stopping problem in which the principal chooses a time when she stops

competition and switches the agents to collaboration on the current leader as of

that moment, until the deadline. In particular, it is optimal for the principal to

have the agents stop competing at some time, make a constrained-efficient choice

with the partial information she has, and switch to collaboration on the chosen

project thereafter.

The result from Lemma 3 is non-trivial. But once we have established compe-

tition is ended once and for all, showing the threshold for doing so should decline

over time is straightforward. We formalize this fact in Lemma 4, by showing the

stopping rule is a decreasing threshold20: the principal switches to collaboration

on a project as soon as its lead over the other project is sufficiently large, with

this lead standard becoming less demanding as the deadline approaches.

In the final step, we show that even though the above qualitative features

are derived for relaxations of the principal’s problem, these relaxations are payoff-

irrelevant in the sense that the projects’ Brownian shock process provides the same

payoff for this incentive-compatible policy as the principal could have attained

under the weak solution.

5.2. Mathematical preliminaries

We start by defining a permissive notion of a control that will be convenient.

Definition 1: A control is a tuple C = ⟨Ω,F , {Ft}t≥0,P, B, C, q⟩ such that

(i) ⟨Ω,F , {Ft}t≥0,P⟩ is a filtered probability space satisfying the usual condi-

tions;

(ii) B = (∆B,ΣB) = {Bt}t≥0 is an R2-valued stochastic process on {Ft}t≥0,

such that 1√
2
B is a standard Brownian motion;

(iii) C = (c∆, cΣ) = {Ct}t≥0 is a progressively measurable R2-valued process on

{Ft}t≥0 whose time-t quadratic variation has finite expectation for every t ≥
0;

(iv) q = {qt}t≥0 is a [−1, 1]-valued martingale on {Ft}t≥0;

(v) qt = q0 +
∫ t

0
C · dB almost surely while |qt| < 1.

20Studying costly sequential sampling problems that a single decision-maker faces, Fudenberg
et al. (2018) show decreasing threshold rules can arise even without a deadline.
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Defining the notion of a Brownian base is also convenient. A Brownian base

is any tuple ⟨Ω,F , {Ft}t≥0,P, B⟩ satisfying properties (i) and (ii) above.

Note that if a principal must optimally choose a control defined as above, she

also chooses the underlying stochastic process and probability space. Of course, in

our principal’s problem in (O), she has no such choice. She must take a particular

Brownian base ⟨Ω,F , {Ft}t≥0,P, B⟩ as given. But considering this relaxation of

the principal’s problem is convenient.

Given a control C = ⟨Ω,F , {Ft}t≥0,P, B, C, q⟩, we define

τC := T ∧ inf{t ∈ [0, T ) : |qt| = 1},

J(C) := 1
2
q0∆X0 + E

[∫ τC

0

(
1c∆t =0|qt|+ c∆t

)
dt+ T − τC

]
.

Intuitively, given a control, τC is the stopping time associated with that control

when qt hits a boundary, or when the principal has no choice left to make, and

J(C) is the payoff that the principal would get if the control were followed until

τC and then agents collaborated on the choice at τC.

Note expression (O) implies J(C) is an upper bound on the payoff of the prin-

cipal. In what follows, we consider the optimal control problem with J(C) as the
objective.

5.3. Decide quickly

We first establish a quantitative claim about optimal selection rules. For the

principal to resolve uncertainty somewhat quickly is without loss of optimality.

Specifically, if the principal is deciding which project to choose slowly enough that

its flow benefits are smaller than those from collaboration on a chosen project, she

can improve her payoff by speeding up her decision-making (higher ||C||) and defer

any saved time toward end-game collaboration on her chosen project. Formally,

this claim amounts to showing that restricting attention to controls such that

||Ĉ|| ≥ 1 is without loss of optimality.

Lemma 1: For any control C, a control Ĉ exists whose Euclidean norm satisfies

||Ĉ|| ≥ 1 and such that J(Ĉ) ≥ J(C). Moreover, J(Ĉ) > J(C) unless, almost

surely, ||Ct|| ≥ 1 for almost every t ∈ [0, T ) with |qt| < 1.

The interested reader can refer to the Appendix for the proof, but we summa-

rize the logic here.

The proof is constructive, modifying a control without this property to a supe-

rior one with this property. Specifically, the fractal property of Brownian motion

allows us to construct a superior control, by replacing the underlying Brownian
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motion with a law-equivalent time change of the same, and our sensitivity coef-

ficient C with one that is scaled up whenever the original one had ||C|| < 1, in

such a way that the expected project choice q follows the same trajectory. Intu-

itively, this argument is akin to “slowing down the clock” without changing the

trajectory of the expected project choice, thus simply speeding up the original

decision-making process and creating some residual time at the end. The benefit

of rescaling time in this way is that this “extra” residual time can be utilized for

efficient collaboration on a chosen project for a flow benefit of 1. Of course, the

cost of this speeding up is that the duration for collecting flow payoffs is reduced.

Note that holding fixed an expected project choice q0, the principal’s payoff in (O)

is a sum of the total net value of competition (
∫ T

0
c∆t dt) and the total accrued

value of collaboration (
∫ T

0
1c∆t =0|qt|). Thus, the foregone flow payoff is either c∆t (if

from competition) or 1c∆t =0|qt| (if from collaboration), both of which are bounded

above by 1. Thus, the cost of lost flow payoff as a result of speeding up is always

less than the benefit of the extra collaboration time.

5.4. Respond only to relative performance

We next establish that for the principal to respond to the relative performance

of projects, and not to aggregate shocks, is without loss of optimality. Absent

an agency problem, such a choice is, of course, allocatively efficient; we show this

property remains optimal even when respecting agent incentives.

Lemma 2: For any control C, a control Ĉ exists that satisfies ĉ∆ ≥ 1 and ĉΣ = 0,

and such that J(Ĉ) ≥ J(C). Moreover, J(Ĉ) > J(C) unless, almost surely, c∆ ≥ 1

and cΣ = 0 for almost every t ∈ [0, T ) with |qt| < 1.

We show constructively that restricting attention to controls that ignore ag-

gregate shocks and respond to relative shocks (i.e., set ĉΣ = 0 in such a way that

||Ĉ|| = ||C||, which leaves ĉ∆ ≥ 1 > 0) is without loss of optimality. By responding

solely to contemporaneous relative shocks while maintaining the degree to which

she resolves uncertainty based on current shocks, the principal can better capital-

ize on the gains of competition today while keeping the law of qt fixed—and so

without affecting her ability to respond optimally in the future. Such a change will

still entail a potential cost of foregone current collaboration, but if the principal is

resolving uncertainty sufficiently quickly (which she optimally does by Lemma 1),

these costs are smaller than the gains to more effective competition.

For the interested reader, the proof of this lemma is a good example of why

weak solutions are especially useful. The conclusion of Lemma 2—that cΣt is almost

surely zero—is a natural conjecture because cΣt neither affects players’ incentives

20



nor enters the objective function. But establishing this conjecture formally (by

standard methods) would require us to write down the HJB equation correspond-

ing to (O) and prove both existence of a solution and concavity. The difficulty

is that with a discontinuous flow payoff, our HJB equation does not belong to a

class of well-understood partial differential equations. Reasoning through weak

solutions circumvents this challenge. To see the basic idea, suppose that, on some

paths, we have cΣt ≥ 1 and c∆t = 0. Then, we would conjecture that swapping cΣt
and c∆t on those histories would lead to a payoff improvement (flow payoff being

|qt| ≤ 1 ≤ cΣt ) while keeping the law unchanged. But such a swapping opera-

tion changes the path of qt. Permitting weak solutions enables us to construct

new Brownian motions using the original ones and to work with these alternate

controls that deliver a payoff improvement while preserving the law of motion.

Although swapping arguments of this kind have been commonly used in studying

dynamic incentive problems in discrete time, we hope our toolkit can facilitate

similar arguments in continuous-time models.

5.5. First compete, and then collaborate on the winner

Next, we show we can bound the payoff attainable in the present optimal control

problem by an optimal stopping problem. The principal’s problem reduces to one

in which she picks a stopping time at which she switches from pure competition

to permanent collaboration on the chosen project until the deadline.

Lemma 3: For any control C such that c∆ ≥ 1 and cΣ = 0, the stopping time τ :=

τC has J(C) ≤ T+E
[
1
2
|∆X0 +∆Bτ | − τ

]
. Moreover, J(C) < T+E

[
1
2
|∆X0 +∆Bτ | − τ

]
unless, almost surely, qτ is equal to the sign of ∆X0 +∆Bτ if ∆X0 +∆Bτ ̸= 0.

The lemma follows from a direct computation of J(C), given properties of C.
The details are in the Appendix. This lemma reduces our principal’s problem to a

non-strategic optimal stopping problem. To see why, notice {Yt =
1
2
(∆X0+∆Bt)}t

is an exogenous Brownian motion. Subtracting the constant term T from the

principal’s objective, the lemma says her modified objective is no greater than

sup
stopping times τ≤T

E [|Yτ | − τ ] ,

which is exactly the value of an optimal stopping problem with constant flow cost,

terminal value |Y |, and deadline T . As with our other lemmas, we eventually show

this upper bound is attained, and so the two problems are equivalent.
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5.6. The winner is the first to take a large enough lead

The final building block is to show the optimal stopping rule takes an intuitive

form, permanently switching to collaboration on the leading project when it first

takes a large enough lead, where the standard for “large enough” becomes less

demanding as the deadline approaches.

Lemma 4: A function z̄ : R+ → R+ exists, such that for any Brownian base

B and any (T, z) ∈ R+ × R, τ ∗T,z,B := inf{t ∈ [0, T ] : |z + ∆Bt| ≥ z̄T−t} is a

(B, T )-stopping time,21 and every Brownian base B̂ and (B̂, T )-stopping time τ̂

have

E
[
1
2
|z +∆Bτ∗T,z,B

| − τ ∗T,z,B

]
≥ E

[
1
2
|z + ∆̂B τ̂ | − τ̂

]
,

with equality if and only if τ̂ is almost surely equal to τ ∗
T,z,B̂. Moreover, z̄ is

bounded, continuous, and nondecreasing, with z̄0 = 0 and z̄T > 0 for every T > 0.

The proof is in the Appendix, but we sketch the argument here. We have an

optimal stopping problem, where a decision-maker observes a driftless Brownian

motion at a constant flow cost and can stop at any time before a deadline, where

stopping yields a payoff equal to its absolute value. The finite deadline makes

the problem non-stationary, and so we do not attempt to derive a closed-form

solution for the optimal stopping rule, but instead derive qualitative features of

it. Classic results from the optimal-stopping literature imply that in our problem,

the uniquely optimal policy is to stop as soon as the optimal and stopping values

coincide. Thus we analyze the (continuous) optimal value function, taking as ar-

guments the time remaining and the current state of the Brownian motion, and

show the set of values of the Brownian motion at which the optimal value func-

tion strictly exceeds the absolute value (stopping value) is a bounded, symmetric,

nonempty interval that shrinks as the deadline approaches. Boundedness obtains

by considering a relaxed problem with no deadline and using existing results for

problems with an infinite horizon. The set shrinks as the deadline approaches,

because the decision-maker’s objective is unchanged but is subject to a tighter

constraint. A limit argument shows it contains zero when near enough to the

deadline, and hence (given monotonicity) contains zero at every time. It is sym-

metric about zero because the objective and law of motion are. Finally, it is an

interval around zero because the value function is convex, whereas the terminal

value is affine on either side of zero.

21A (B, T )-stopping time is a stopping time on the filtration underlying B that respects dead-
line T . See Definition 2 in the Appendix.
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5.7. Characterizing the optimal selection rule

We next show that the qualitative features we derived for the solution to the

relaxed principal’s problem (permitting weak solutions) also apply to the optimal

rule in our original problem. Accordingly, the unique optimal selection rule takes

the simple form described in our main theorem.

Proof of Theorem 1. Taking z̄ to be the function delivered by Lemma 4, let Π∗

be the principal value generated by the behavior named in the theorem. Note the

described agent behavior is incentive compatible given this selection rule: agents

are indifferent from τ ∗ until the deadline, and they increase their probability of

being the time-τ ∗ leader by working on their own projects.

Consider now an arbitrary selection rule by the principal, together with incentive-

compatible agent behavior, and let Π be the principal’s value from adopting it. As

we have shown in section 4, it generates some control C such that the J(C) ≥ Π.

Now, let us apply the lemmas referenced above. Lemma 2 delivers some control

Ĉ such that ĉ∆ > ĉΣ = 0 and such that J(Ĉ) ≥ Π, the latter inequality being strict

unless, almost surely, c∆ > cΣ = 0 for almost every t ∈ [0, T ) with |qt| < 1 (in

which case, we can take Ĉ = C without loss). Lemma 3 then tells us the stopping

time τ̂ := τĈ has T + E
[
1
2
|∆X0 + ∆̂B τ̂ | − τ̂

]
≥ Π, strictly so unless qτ̂ is almost

surely equal to the sign of ∆X0+∆̂B τ̂ if ∆X0+∆̂B τ̂ ̸= 0. Finally, Lemma 4 tells us

τ ∗ (as defined in the statement of the theorem) has T+E
[
1
2
|∆X0 +∆Bτ∗| − τ ∗

]
≥

Π, strictly so unless τ̂ is almost surely equal to τ ∗
T,z,Ĉ.

The above arguments directly deliver the theorem. First, they show the prin-

cipal’s optimal value is Π∗ = T + E
[
1
2
|∆X0 +∆Bτ∗| − τ ∗

]
, making the described

behavior principal-optimal. Second, they establish that Π < Π∗ (making the given

selection rule and agent behavior suboptimal) unless, almost surely, the selected

project is the same and agent choices are the same at almost every time.

6. Discussion

6.1. Duration of collaboration, and ex-post inefficiency

An implication of our characterization of the optimal contract is that the length

of the competition phase is probabilistically bounded, in two senses. First, for

any deadline T , a phase of collaboration always exists, because the threshold col-

lapses as the deadline approaches. Second, if we increased the time horizon T ,

although the duration of the competition phase would increase (in the sense of
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first-order stochastic dominance), the duration of competition would remain uni-

formly bounded.22 Put differently, not only is the collaboration phase reached

with probability 1 for any T , but also, when the project is of a very long-term

nature, most of its development is spent collaborating.

Fostering collaboration increases the value of the principal’s chosen project, but

the inefficiency caused by picking the “wrong” project on-path can be arbitrarily

large; that is, given any M > 0, the probability that Xy
T + M < X−y

T is strictly

positive.23 Nevertheless, because collaboration starts early in expectation, the

probability of an error approaches zero as the project horizon grows long.

6.2. Cancellation of projects before the deadline

In our setting, the principal chooses an optimal stopping time at which she makes a

choice and then has both agents collaborate on the chosen project. An alternative

interpretation is one in which the principal chooses when to irreversibly cancel one

of the projects, after which both agents must work on the remaining project. A

richer contracting environment in which the principal can choose to irreversibly

cancel is more consistent with our motivating applications and is indeed equivalent

to our current model. On the one hand, the principal cannot be worse off in

the richer environment, because she can always abstain from canceling projects.

Conversely, the principal can always simulate cancellation through a selection rule

by deciding on a project in advance and having the agents collaborate on the

chosen project. Moreover, in the richer model allowing irreversible termination,

our optimal selection rule from Theorem 1 can be implemented in equilibrium,

without commitment. The principal could simply terminate the project that is

lagging behind by the current lead threshold, with each agent working on their

own project unless it is canceled.

6.3. Agent indifference in the collaboration phase

Under our optimal rule, when agents collaborate, they are indifferent between

competing and collaborating. Such indifference is common in many standard

22That is, some finite-mean random variable τ∞ exists such that the duration of the compe-
tition phase is first-order-stochastically dominated by τ∞. Indeed, one could take τ∞ to be the
optimal stopping time from an analogous stopping problem with no deadline, which is known
to exhibit a constant lead threshold—the proof of Lemma 4 notes that it is 1√

2
. The constant

threshold is finite because the option value of continuing vanishes with the probability of the
Brownian motion revisiting zero, and a finite |∆X| threshold is surpassed in finite expected time
because the constant volatility is non-zero.

23This observation is of course a consequence of the projects’ evolution being a Brownian
motion and thus having unbounded supports.
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contracting environments, but constructing a similar contract with strict incentives

is typically possible by offering a small positive transfer to agents.24 In our setting

with no transfers, no obvious way exists to turn weak incentives into strict ones.

Indeed, the best that the principal can achieve in any strict equilibrium is simply

the no-commitment solution.25

But, following the spirit of classical contract theory arguments, we ask what

happens if the principal could provide monetary incentives up to a fixed budget of

ϵ > 0 (assuming for simplicity that agents have separable preferences over money

and project choice). Observe that, in this case, implementing the optimum from

Theorem 1 in a strict equilibrium would be easy. For example, letting τ ∗ and y∗

be as defined in the statement of Theorem 1, the principal could augment the

given selection rule by further giving both agents a prize of ϵ
2
if and only if the

collaboration phase goes better than expected, that is,

Xy∗

T > Eτ∗ [X
y∗

T ] = Xy∗

τ∗ + (β + 2µ)(T − τ ∗).

This contract clearly gives agents strict incentives to collaborate on the chosen

project, and it does not distort incentives in the initial phase of competition, be-

cause an agent’s monetary prize of ϵ
2
will be earned with probability 1

2
conditional

on any outcome of the initial competition. Moreover, one can show the principal’s

optimal value converges to ours as ϵ → 0. One can also similarly modify the model

with small-scale monetary incentives to accomodate a small effort cost or a small

preference for an agent to work on their own project.

Hence, our model is perhaps best interpreted as a parsimonious version of

the ϵ ≈ 0 model (in which strict incentives are without loss), wherein agents’

empire-building motives overwhelm monetary incentives of a realistic scale. The

contribution of this paper is to show that, somewhat surprisingly, fostering a degree

of collaboration in equilibrium is still possible and optimal despite the paucity of

powerful incentivizing instruments.

24For example, optimally inducing high effort in a textbook binary-action moral hazard model
with contractible transfers will leave the agent indifferent, but modifying the contract to pro-
vide slightly higher-powered incentives will approximate the same principal value under strict
incentive compatibility.

25Given that agents’ interests are directly opposed, every strict equilibrium has the agents
always working on opposite projects. The best the principal can do subject to this constraint,
then, is to choose the best project ex post.
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7. Appendix: Omitted Proofs

In this appendix, we provide proofs that we omitted from the main text of the

paper.

7.1. Proof of Proposition 1

First, because the ex-post efficient rule y = ℓT maximizes the principal’s objective

statewise, we may recast her problem as

sup
a∈A

1
2
E|∆XT |

s.t. dX i
t = (ait − a−i

t ) dt+ dBi
t, X1

0 , X−1
0 .
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Now, before showing the described agent behavior is optimal, observe that our

posited optimal control is indeed well defined: Following Example 1.2 of Yamada

(1973), the stochastic differential equation

d∆Xt = 2 sign(∆Xt) dt+ d∆Bt

admits a unique strong solution. Optimality then follows readily from a compari-

son theorem. Indeed, following identically the proof of Theorem 2.1 in Ikeda and

Watanabe (1977), any alternative control has a (weakly) first-order-stochastically

dominated distribution of |∆XT |.26

7.2. Proof of Lemma 1

Let τ := τC, and assume without loss that c∆t = 1 and cΣt = 0 whenever t ≥ τ .

Moreover, assume without loss (changing C on a measure zero set) that C is zero

on any time interval where it is a.e. zero.

We now proceed to define our candidate Ĉ. Define

γt := 1 ∧ ||Ct|| (where || · || is the Euclidean norm on R2)

ζt :=

∫ t

0

γ2
s ds (nondecreasing and 1-Lipschitz, with slope 1 after τ)

λu := inf{t ≥ 0 : ζt > u}

F̂u := Fλu =

{
E ∈ F∞ : E ∩ {λ(u) ≤ t} ∈ Ft ∀t ≥ 0

}
B̂u :=

∫ λu

0

γt dBt

Ĉu :=

 1
γλu

Cλu : Cλu ̸= (0, 0)

(1, 0) : Cλu = (0, 0)

q̂u := qλu

Ĉ := ⟨Ω,F , {F̂u}u≥0,P, B̂, Ĉ, q̂⟩.

First, we observe that λu is a {Ft}t≥0-stopping time for each u ≥ 0, and that

the tuple ⟨Ω,F , {F̂u}u≥0,P, B̂⟩ is a Brownian base. These facts follow directly

from applying the Dambis-Dubins-Schwarz theorem (Karatzas and Shreve, 1998,

Theorem 3.4.6) to M = 1√
2
B̂, with the observation that (applying the formula for

26That result shows a control ∆at = − sign(∆Xt) minimizes |∆XT |—in fact, minimizes each of
{|∆Xt|}t∈[0,T ]—in an FOSD sense. However, reproducing the proof nearly verbatim establishes
that control ∆at = sign(∆Xt) maximizes |∆XT |.
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quadratic variation of an Itô process)

⟨M⟩t =
∫ λt

0

γ2
s ds = ζt.

To see that Ĉ is a control, all that remains is to check that q̂u = q̂0 +
∫ u

0
Ĉ · dB̂,

or equivalently that
∫ u

0
Ĉ · dB̂ =

∫ λu

0
C · dB. Let us defer this property until the

end of the proof, and first show the desired value ranking holds if this stochastic

differential equation holds.

Taking for granted that Ĉ is a control, we now proceed to show that J(Ĉ) ≥
J(C). To this end, first observe that∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆u

)
du =

∫ τ

0

(
1ĉ∆ζt

=0|q̂ζt |+ ĉ∆ζt

)
dζt

=

∫ τ

0

(
1ĉ∆ζt

=0|q̂ζt |+ ĉ∆ζt

)
γ2
t dt

=

∫ τ

0

(
1c∆t =0|qt|γt + c∆t

)
γt dt,

so that

τ − ζτ +

∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆u

)
du−

∫ τ

0

(
1c∆t =0|qt|+ c∆t

)
dt

=

∫ τ

0

[
1− γ2

t +
(
1c∆t =0|qt|γt + c∆t

)
γt −

(
1c∆t =0|qt|+ c∆t

)]
dt

=

∫ τ

0

[
(1− γ2

t )− (1− γ2
t )1c∆t =0|qt| − (1− γt)c

∆
t

]
dt

=

∫ τ

0

(1− γt)
[
(1 + γt)(1− 1c∆t =0|qt|)− c∆t

]
dt.

Finally, that ĉ∆t = 1 for every t ≥ ζτ implies

J(Ĉ)− J(C) = E
[∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆u

)
du+ T − ζt

]
− E

[∫ τ

0

(
1c∆t =0|qt|+ c∆t

)
dt+ T − τ

]
= E

[
τ − ζt +

∫ ζτ

0

(
1ĉ∆u =0|q̂u|+ ĉ∆u

)
du−

∫ τ

0

(
1c∆t =0|qt|+ c∆t

)
dt

]
= E

∫ τ

0

(1− γt)
[
(1 + γt)(1− 1c∆t =0|qt|)− c∆t

]
dt.

The value ranking will then follow if we establish that (1−γt)
[
(1 + γt)(1− 1c∆t =0|qt|)− c∆t

]
is nonnegative for any t ∈ [0, τ ], and is strictly positive if ||Ct|| < 1 and |qt| < 1.

We observe this inequality in three exhaustive cases:
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1. If γt = 1, then ||Ct|| ≥ 1 and the term is zero.

2. If c∆t = 0 and γt ̸= 1, then the term is (1 − γt)(1 + γt)(1 − |qt|), which is

strictly positive if |qt| < 1, and is zero if |qt| = 1.

3. If c∆t ̸= 0 and γt ̸= 1, then c∆t ≤ ||Ct|| = γt, so that the term is

(1− γt)
[
(1 + γt)− c∆t

]
≥ (1− γt)1 > 0.

We return now to our one unresolved detail: showing that
∫ u

0
Ĉ · dB̂ =

∫ λu

0
C ·

dB, which will (because ||Ĉ|| ≥ 1 by construction) establish the lemma. Letting

Mλ be the local martingale on {F̂u}u≥0 given by Mλ
u :=

∫ λu

0
C · dB, it will be

useful to consider the R3-valued local martingale M⃗ on {F̂u}u≥0 given by

M⃗u :=

∆̂Bu

Σ̂Bu

Mλ
u

 =

∫
λu

0

γ d∆B

γ dΣB

C · dB

 .

By direct computation, and using the fact that 1√
2
(∆̂B, Σ̂B) is a standard Brow-

nian motion, the quadratic covariation (matrix) process of M⃗ up to time u ≥ 0 is

given by

⟨M⃗⟩u = 2

 u 0
∫ λu

0
γc∆

0 u
∫ λu

0
γcΣ∫ λu

0
γc∆

∫ λu

0
γcΣ

∫ λu

0
||C||2

 .

Toward further simplifying the above expression, consider any process ξ ∈ {γc∆, γcΣ, ||C||2}.
Then, interpreting the expression ξ

γ2 arbitrarily wherever ξ = γ = 0, observe that

∫ λu

0

ξ =

∫ λu

0

ξ
γ2 dζ =

∫ λu

0

ξλζ
γ2
λζ

dζ =

∫ ζλu

0

ξλ
γ2
λ
=

∫ u

0

ξλ
γ2
λ
.

Substituting in the definition of Ĉ, it follows that

⟨M⃗⟩u = 2

∫
u

0

 1 0 ĉ∆

0 1 ĉΣ

ĉ∆ ĉΣ ||Ĉ||2

 .

Now, defining the local martingales M̂, ˆ̃M on {F̂u}u≥0 via M̂u :=
∫ u

0
ĉ∆ d∆̂B and

ˆ̃Mu :=
∫ u

0
ĉΣ dΣ̂B, our goal is to show the process M̂ + ˆ̃M −Mλ is almost surely

zero. But because the process is a local martingale, it suffices to show its quadratic
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variation is zero. And indeed,

1
2

〈
M̂ + ˆ̃M −Mλ

〉
u

= 1
2

〈
M̂

〉
u
+ 1

2

〈
ˆ̃M
〉
u
+ 1

2

〈
Mλ

〉
u
+
〈
M̂, ˆ̃M

〉
u
−
〈
M̂, Mλ

〉
u
−

〈
ˆ̃M, Mλ

〉
u

=

∫ u

0

[
(ĉ∆)2 + (ĉΣ)2 + ||Ĉ||2

]
+ 0−

∫ u

0

[
ĉ∆ d⟨∆̂B, Mλ⟩+ ĉΣ d⟨Σ̂B, Mλ⟩

]
= 2

∫ u

0

||Ĉ||2 − 2

∫ u

0

[
ĉ∆(ĉ∆) + ĉΣ(ĉΣ))

]
= 0, as required.

7.3. Proof of Lemma 2

Following Lemma 1, we may assume without loss that ||Ĉ|| ≥ 1. Let us define our

candidate Ĉ. Define

ĉ∆t := ||Ct|| (the Euclidean norm)

ĉΣt := 0

∆̂Bt :=

∫ t

0

(
c∆

||C|| d∆B + cΣ

||C|| dΣB
)
=

∫ t

0

1

ĉ∆
dq

Σ̂Bt :=

∫ t

0

(
cΣ

||C|| d∆B + −c∆

||C|| dΣB
)

Ĉ := ⟨Ω,F , {Ft}t≥0,P, B̂, Ĉ, q⟩.

From Itô isometry, it is straightforward to see that 1
2
Es

[
(Bt − Bs)(Bt − Bs)

′] =

(s−t)I2 where I2 ∈ R2×2 is the identity matrix. That 1√
2
B is a standard Brownian

then follows from Lévy’s characterization of the same. It follows readily that Ĉ is

a control. Moreover, that τĈ = τC implies

J(Ĉ)− J(C) = E
∫ τC

0

[(
1ĉ∆t =0|qt|+ ĉ∆t

)
−
(
1c∆t =0|qt|+ c∆t

)]
dt

= E
∫ τC

0

[
||Ct|| −

(
1c∆t =0|qt|+ c∆t

)]
dt.

To see the value ranking, observe that the integrand has

||Ct|| −
(
1c∆t =0|qt|+ c∆t

)
≥ min{||Ct|| − c∆t , ||Ct|| − |qt|},

which is always nonnegative, and is strictly positive if cΣ ̸= 0 and |qt| < 1.
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7.4. Proof of Lemma 3

The diffusion process (q,∆B) has zero drift and volatility process (c∆, 1). Applying

Dynkin’s formula to the function (q,∆B) 7→ qτ∆Bτ therefore yields 1
2
E[qτ∆Bτ ] =

E
∫ τ

0
c∆t dt. Moroever, Doob’s optional stopping theorem tells us E[qτ ] = q0.

Therefore,

J(C) = 1
2
q0∆X0 + E

[∫ τ

0

(
1c∆t =0|qt|+ c∆t

)
dt+ T − τ

]
= 0 + T − Eτ + 1

2
q0∆X0 + E

∫ τ

0

c∆t dt

= T − Eτ + 1
2
E[qτ ]∆X0 +

1
2
E[qτ∆Bτ ]

= T − Eτ + 1
2
E
[
qτ (∆X0 +∆Bτ )

]
≤ T − Eτ + 1

2
E|∆X0 +∆Bτ |,

where the inequality is strict unless qτ (∆X0 +∆Bτ ) = |∆X0+∆Bτ | almost surely.

7.5. Proof of Lemma 4

The arguments supporting Lemma 4 concern features of a particular optimal stop-

ping problem.

Definition 2: Given a Brownian base B = ⟨Ω,F , {Ft}t≥0,P, B⟩ and a horizon

T ∈ [0,∞], a (B, T )-stopping time is a [0, T ]-valued {Ft}t≥0-stopping time.

Say a (B, T )-stopping time is optimal (given (B, T )) if it maximizes E
[
1
2
|z +∆Bτ | − τ

]
over all (B, T )-stopping times τ .

We start with proving two technical claims. The first result is that a reflected

Brownian motion grows slowly enough in expectation to enable the use of various

machinery from the optimal stopping literature.

Claim 1: Any Brownian base B, any z ∈ R, and any κ > 0 have

E sup
t∈R+

(|z +∆Bt| − κt) < ∞.

Proof. Observe that

E sup
t∈R+

(|z +∆Bt| − κt) = Emax

{
sup
t∈R+

(z +∆Bt − κt), sup
t∈R+

(−z −∆Bt − κt)

}
≤ E sup

t∈R+

(z +∆Bt − κt) + E sup
t∈R+

(−z −∆Bt − κt),
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but the latter expectations are finite. Indeed, result IV.32 from Borodin and

Salminen (2012) implies a Brownian motion with strictly negative drift has a

global maximum that is exponentially distributed, and hence of finite mean.

The following claim adapts standard reasoning about the structure of optimal

stopping problems to our specific one. It says the associated optimal value function

is well behaved, that an optimal stopping rule exists and can be read from the

optimal value function, and that the above depend only on the law governing the

state rather than the specific source of randomness driving the state.

Claim 2: A continuous function v : R+ × R → R exists, such that for any

Brownian base B and any (T, z) ∈ R+ × R, the (B, T )-stopping time

τT,z,v,B := T ∧ inf{t ∈ [0, T ] : v(T − t, z +∆Bt) =
1
2
|z +∆Bt|}

is optimal and generates

E
[
1
2
|z +∆BτT,z,v,B | − τT,z,v,B

]
= v(T, z).

Moreover, every optimal (B, T )-stopping time is almost surely ≥ τT,z,v,B.

Proof. First, fix any Brownian base B, and let vB : R+×R → R be the associated

optimal value function. That is, for any (T, z) ∈ R+ × R, let vB(T, z) be the

supremum of E
[
1
2
|z +∆Bτ | − τ

]
over all (B, T )-stopping times τ . This function

is real-valued (i.e., never takes value ∞) by Claim 1.

Let us observe that vB is continuous. To see this, consider any (T, z), (T̃ , z̃) ∈
R+ × R. For any (B, T )-stopping time τ , it is immediate that τ ∧ T̃ is a (B, T̃ )-
stopping time. Therefore,

E
[
1
2
|z +∆Bτ | − τ

]
− vB(T̃ , z̃)

≤ E
[
1
2
|z +∆Bτ | − τ

]
− E

[
1
2
|z̃ +∆Bτ∧T̃ | − τ ∧ T̃

]
= 1

2
E [|z +∆Bτ | − |z̃ +∆Bτ∧T̃ |]− E

[
τ − τ ∧ T̃

]
≤ 1

2
E [|z +∆Bτ | − |z̃ +∆Bτ∧T̃ |]

≤ 1
2
E |(z +∆Bτ )− (z̃ +∆Bτ∧T̃ )|

≤ 1
2
|z − z̃|+ 1

2
E |∆Bτ −∆Bτ∧T̃ |

≤ 1
2
|z − z̃|+ 1

2
E
∣∣∣∆B(τ∧T̃ )+|T−T̃ | −∆Bτ∧T̃

∣∣∣
≤ 1

2
|z − z̃|+ 1√

π

√
|T − T̃ |.
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Taking the supremum over all such τ then implies

vB(T, z)− vB(T̃ , z̃) ≤ 1
2
|z − z̃|+ 1√

π

√
|T − T̃ |.

Because this inequality holds for all such pairs, the function vB is continuous.

Given Claim 1 and continuity of vB, Corollary 2.9 from Peskir and Shiryaev

(2006) implies τT,z,vB,B is optimal, thereby generating E
[
1
2
|z +∆BτT,z,vB,B | − τT,z,vB,B

]
=

vB(T, z). Moreover, Theorem 2.4 from Peskir and Shiryaev (2006) implies that any

other optimal (B, T )-stopping time is almost surely ≥ τT,z,vB,B.

But now, given any (T, z) ∈ R+ × R, consider any other Brownian base B̂.
That τT,z,vB,B̂ is a (B̂, T )-stopping time implies

vB̂(T, z) ≥ E
[
1
2
|z + ∆̂BτT,z,vB,B̂

| − τT,z,vB,B̂

]
= E

[
1
2
|z +∆BτT,z,vB,B | − τT,z,vB,B

]
= vB(T, z),

where the first equality holds because B and B̂ have identical laws.

Because both B and B̂ were arbitrary, it follows that vB is the same for every

Brownian base B.

With the above two claims in place, we now proceed to prove the lemma.

Proof of Lemma 4. Let v : R+ × R → R be as delivered by Lemma 2, and de-

fine the set G := {(T, z) ∈ R+ × R : v(T, z) > 1
2
|z|}, which is relatively open in

R+×R because v is continuous. For each T ∈ R+, let GT := {z ∈ R : (T, z) ∈ G},
which is open because G is. Let us make some easy starting observations about

this family of sets. First, clearly, G0 = ∅. Next, the set GT is weakly increasing

(with respect to set containment) in T ∈ R+. Indeed, v is nondecreasing in its

first argument because, for any Brownian base B and pair of times t, T ∈ R+

with t ≤ T , every (B, t)-stopping time is a (B, T )-stopping time too. Finally,

each GT is symmetric about zero. Indeed, v is even in its second argument be-

cause, for any (T, z) ∈ R+ × R and Brownian base B = ⟨Ω,F , {Ft}t≥0,P, B⟩, any
(B, T )-stopping time τ is also a (⟨Ω,F , {Ft}t≥0,P,−B⟩, T )-stopping time, and

E
[
1
2
|(−z) + (−∆B)τ | − τ

]
= E

[
1
2
|z +∆Bτ | − τ

]
.

Now, we observe that every T ∈ (0,∞) has GT ∋ 0. Indeed, because T is

always a (B, T )-stopping time for any Brownian base B, we have

v(T, 0)− |0| ≥ 1
2
E(∆BT )− T =

√
T
π
− T,
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which is strictly positive for T < 1
π
. Therefore, 0 ∈ GT for every T ∈ (0, 1

π
), which

implies (given monotonicity of T 7→ GT ) that 0 ∈ GT for every T ∈ (0,∞).

Next, let us see that
⋃

T∈R+
GT is a bounded set. To see this, we consider

the relaxation of our optimal stopping problem without a deadline and apply a

previously obtained solution to that time-stationary problem. Specifically, fix a

Brownian base B = ⟨Ω,F , {Ft}t≥0,P, B⟩, and let v∗ : R → R take any z ∈ R to

the supremum of E
[
1
2
|z +∆Bτ | − τ

]
over all finite-mean (B,∞)-stopping times

τ . Clearly, v∗ ≥ v(T, ·) for every T ∈ R+, and so G ⊆ R+ ×G∗, where G∗ := {z ∈
R : v∗(z) > 1

2
|z|}. But Theorem 16.1 from Peskir and Shiryaev (2006) explicitly

computes the continuation region for this problem (G∗ in our notation) as the set

(− 1√
2
, 1√

2
).

Finally, let us observe that GT is convex for every T ∈ (0,∞). Because GT ∋ 0

and R \ GT ⊇ (−∞,− 1√
2
] ∪ [ 1√

2
,∞), the property would follow if we knew both

R+ \ GT and R− \ GT were convex. But, because 1
2
| · | is affine on R+ and on

R−, the property would, in fact, follow if we knew v were (weakly) convex in its

second argument. Let us now establish that fact. For any Brownian base B, time

T ∈ R+, weight θ ∈ [0, 1], and states z0, z1 ∈ R, each (B, T )-stopping time τ has

E
[
1
2
|(1− θ)z0 + θz1 +∆Bτ | − τ

]
≤ E

[
1
2
(1− θ) |z0 +∆Bτ |+ θ |z1 +∆Bτ | − τ

]
= (1− θ)E

[
1
2
|z0 +∆Bτ | − τ

]
+ θE

[
1
2
|z1 +∆Bτ | − τ

]
≤ (1− θ)v(T, z0) + θv(T, z1).

Taking the supremum over all such τ then implies v (T, (1− θ)z0 + θz1) ≤ (1 −
θ)v(T, z0) + θv(T, z1), as desired.

We are now ready to define z̄ : R+ → R+. First, let z̄0 := 0. Then, for

each T ∈ (0,∞), we have established that GT is a convex open neighborhood

of zero that is symmetric about zero. That is, GT = (−z̄T , z̄T ), where z̄T :=

supGT > 0. Then the open set G = {(T, z) ∈ R+ × R : z < |z̄T |}. Moreover,

our above arguments establish that z̄T > 0 for T > 0 (because 0 ∈ GT ); that

z̄ is nondecreasing (because T 7→ GT is weakly increasing with respect to set

containment); and that z̄ is bounded (because GT ⊆ G∗ = (− 1√
2
, 1√

2
) for every

T ∈ R+). The only remaining property of z̄ to show is continuity.

Assume for a contradiction that z̄ is discontinuous at some T ∈ R+. Because z̄

is nondecreasing, both limt↘T z̄t and, if T > 0, limt↗T z̄t exist; interpret the latter

limit as z̄0 = 0 in the case that T = 0. Then, let z := 1
2
limt↘T z̄t +

1
2
limt↗T z̄t

and ϵ := 1
4
limt↗T z̄t − 1

4
limt↘T z̄t. So 0 < ϵ < z, and z̄t is below z− ϵ [resp. above

z + ϵ] for any t ∈ R+ with t < T [resp. t > T ]. Fixing a Brownian base B, let
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τ := inf{t ≥ 0 : |∆Bt| ≥ ϵ}. Now, let v be as delivered by Lemma 2, and let

v̄ := max v([T, T + 1]× {z − ϵ, z + ϵ}) ∈ R. Then, any s ∈ (0, 1] has

2
[
v(T + s, z)− 1

2
|z|

]
= 2E [v(T + s− s ∧ τ, z +∆Bs∧τ )− s ∧ τ ]− z

= E {1τ≥s [z +∆Bs − 2s]}+ 2E {1τ<s [v(T + s− τ, z +∆Bτ )− τ ]} − z

≤ E {1τ≥s [z +∆Bs − 2s]}+ P{τ < s}(2v̄)− z

= P{τ < s}(2s+ 2v̄ − z)− 2s+ E [∆Bs − 1τ<s∆Bs]

= P{τ < s}(2s+ 2v̄ − z)− 2s+ 0− E {1τ<sE[∆Bs|Fτ ]}
= P{τ < s}(2s+ 2v̄ − z)− 2s− E[1τ<s∆Bτ ]

≤ P{τ < s}[2s+ 2v̄ − ϵ]− 2s

Observe now that τ < s if and only if the absolute value of Wiener process

W := 1√
2
∆B exceeds ϵ√

2
at some time in [0, s]. But the probability of this event is

no more than twice the probability that |Ws| > ϵ√
2
,27 which is 2Φ

(
−ϵ√
2s

)
because

φ is even and Ws ∼ N (0,
√
s
2
). Therefore,

v(T + s, z)− 1
2
|z| ≤ 1

2
P{τ < s}[2s+ 2v̄ − ϵ]− s

≤ 2Φ
(

−ϵ√
2s

)
[2s+ 2v̄ − ϵ]− s.

But L’Hôpital’s rule tells us

lim
s→0

Φ

(
−ϵ√
2s

)
s

= lim
L→∞

Φ

(
−ϵ√
2
L

)
L−2 = ϵ

2
√
2
lim
L→∞

φ
(

−ϵ√
2
L
)
L3 = ϵ

4
√
π
lim
L→∞

e−
ϵ2

4
L2

L3 = 0.

Therefore, v(T + s, z) < 1
2
|z| for sufficiently small s > 0, in contradiction to the

definition of v.

Finally, we turn to establishing the uniqueness property of the optimal stopping

time. Fix any Brownian base B, any (T, z) ∈ R+ × R, and any (B, T )-stopping
time τ with E

[
1
2
|z +∆Bτ | − τ

]
. Letting τ ∗ := τ ∗T,z,B, Claim 2 establishes that

τ ≥ τ ∗ almost surely. Assume now, for a contradiction, that τ is not almost surely

equal to τ ∗. Let us observe that some (B, T )-stopping time τ̃ ≤ τ exists such that,

with positive probability, τ > τ̃ and |z + ∆Bτ̃ | > z̄T−τ̃ .
28 But then, defining the

27Indeed, letting τ̃ be the first time |W | takes value ϵ√
2
, the probability that |Ws| > ϵ√

2
is

at least the probability that τ̃ < s and Wτ̃ lies between 0 and Ws—which is equal to half the
probability of τ̃ < s.

28For instance, one can use τ̃ := τ ∧ ( 1n + τ∗) for sufficiently large n ∈ N.
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alternative (B, T )-stopping times

τ ′ :=

τ : |z +∆Bτ̃ | ≤ |z̄T−τ̃ |

τ̃ : |z +∆Bτ̃ | > |z̄T−τ̃ |

and τ̄ := τ ∧ inf{t ∈ [τ ′, T ] : |z +∆Bt| ≤ |z̄T−t|}, optimality of τ implies

0 ≥ E
[
1
2
|z +∆Bτ ′| − τ ′

]
− E

[
1
2
|z +∆Bτ | − τ

]
≥ E

[
1
2
|z +∆Bτ ′| − τ ′

]
− E

{
E
[
v(T − τ̄ , z +∆Bτ̄ )− τ̄

∣∣∣∣Fτ̄

]}
= E(τ̄ − τ ′) + 1

2
E
{
E
[
|z +∆Bτ ′| − |z +∆Bτ̄ |

∣∣∣∣Fτ̄

]}
= E(τ̄ − τ ′) + 1

2
E
{
1z+∆Bτ̃>z̄T−τ̃

E
[
∆Bτ̃ −∆Bτ̄

∣∣∣∣Fτ̄

]
+ 1z+∆Bτ̃<−z̄T−τ̃

E
[
∆Bτ̄ −∆Bτ̃

∣∣∣∣Fτ̄

]}
= E(τ̄ − τ ′) + 0

= E
[
1|z+∆Bτ̃ |>|z̄T−τ̃ |1τ>τ̃ (τ̄ − τ̃)

]
> 0,

a contradiction. This establishes the unique optimality of τ ∗ (up to almost sure

equality), and hence the lemma.
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