ATTENTION MANAGEMENT

Elliot Lipnowski Laurent Mathevet Chicago NYU Dong Wei Berkeley

BRIC, June 2019

INFORMATION IS COSTLY TO PROCESS

nutritional details

loan contracts

drugs' side effects

retirement plans

INFORMATION IS COSTLY TO PROCESS

nutritional details

loan contracts

drugs' side effects

retirement plans

Question: When should this affect disclosure choices?

FANCY-ASS QUOTATIONS

Because disclosers can proffer, and disclosees can receive, only so much information, mandated disclosures effectively keep disclosees from acquiring other information.

"The Failure of Mandated Disclosure"

Ben-Shahar & Schneider

FANCY-ASS QUOTATIONS

Because disclosers can proffer, and disclosees can receive, only so much information, mandated disclosures effectively keep disclosees from acquiring other information.

"The Failure of Mandated Disclosure"

Ben-Shahar & Schneider

The real design problem is not to provide more information to people...but [to design] intelligent information-filtering systems.

"The Sciences of the Artificial"

Simon

Model

FIRST, WITHOUT MATH

Principal chooses information to give to agent

Agent chooses garbling to acquire, at a cost

Agent sees signal realization

Agent makes decision, generating material benefit

Principal only values material benefit

$\mu \in \Delta \Theta, \quad u : A \times \Theta \to \mathbb{R}, \quad c : \Delta \Theta \to \mathbb{R}$

 $\mu \in \Delta \Theta, \quad u : A \times \Theta \to \mathbb{R}, \quad c : \Delta \Theta \to \mathbb{R}$

Principal chooses $p \in \Delta \Delta \Theta$ with $\int \nu \, dp(\nu) = \mu$ Agent chooses a garbling $q \in \Delta \Delta \Theta$ with $q \leq_{MPS} p$

Bears cost $C(q) = \int c \, dq$

Agent sees realized signal $\nu \in \Delta \Theta$ drawn via *q* Agent makes choice $a \in A$

Material benefit $\int u(a, \cdot) d\nu$

Principal values only material benefit

 $\mu \in \Delta \Theta, \quad u : A \times \Theta \to \mathbb{R}, \quad c : \Delta \Theta \to \mathbb{R}$

Principal chooses $p \in \Delta \Delta \Theta$ with $\int \nu \, dp(\nu) = \mu$ Agent chooses a garbling $q \in \Delta \Delta \Theta$ with $q \leq_{MPS} p$

Bears cost $C(q) = \int c \, dq$

Agent sees realized signal $\nu \in \Delta \Theta$ drawn via *q* Agent makes choice $a \in A$

Material benefit $\int u(a, \cdot) d\nu$

Principal values only material benefit

 A, Θ compact metrizable; u, c continuous; c convex

The principal's problem

PRINCIPAL-OPTIMAL EQUILIBRIUM

Define interim (indirect) payoff functions $U_A, U_P : \Delta \Theta \rightarrow \mathbb{R}$ via

$$U_P(\nu) := \max_{a \in A} \int u(a, \cdot) \, \mathrm{d}\nu$$
$$U_A(\nu) := U_P(\nu) - c(\nu)$$

PRINCIPAL-OPTIMAL EQUILIBRIUM

Define interim (indirect) payoff functions $U_A, U_P : \Delta \Theta \rightarrow \mathbb{R}$ via

$$U_P(\nu) := \max_{a \in A} \int u(a, \cdot) \, \mathrm{d}\nu$$
$$U_A(\nu) := U_P(\nu) - c(\nu)$$

Then agent's best responses $G^* : \Delta \Delta \Theta \rightrightarrows \Delta \Delta \Theta$ given by

$$G^*(p) \coloneqq \arg \max_{q \leq_{\mathrm{MPS}} p} \int U_A \, \mathrm{d}q$$

PRINCIPAL-OPTIMAL EQUILIBRIUM

Define interim (indirect) payoff functions $U_A, U_P : \Delta \Theta \rightarrow \mathbb{R}$ via

$$U_P(\nu) := \max_{a \in A} \int u(a, \cdot) \, \mathrm{d}\nu$$
$$U_A(\nu) := U_P(\nu) - c(\nu)$$

Then agent's best responses $G^* : \Delta \Delta \Theta \rightrightarrows \Delta \Delta \Theta$ given by

$$G^*(p) \coloneqq \arg \max_{q \leq_{\mathrm{MPS}} p} \int U_A \, \mathrm{d}q$$

So principal's problem is

$$\max_{p,q\in\Delta\Delta\Theta:\ \int\nu\ \mathrm{d}p(\nu)=\mu}\int U_P\ \mathrm{d}q\quad \mathrm{s.t.}\ q\in G^*(p)$$

A SIMPLER PROGRAM

Lemma

 (p^*, q^*) solves the principal's problem for some p^* if and only if q^* solves

$$\max_{q \in \Delta \Delta \Theta} \int U_P \, dq$$

s.t. (i) $\int \nu \, dq(\nu) = \mu$
(ii) $q \in G^*(q)$.

Moreover, there exists a solution q^* which, if $|\Theta| < \infty$, has affinely independent support.

When is full disclosure optimal?

MAIN THEOREM

Let
$$p^F \in \Delta \Delta \Theta$$
 have $p^F(\{\delta_\theta\}_{\theta \in \hat{\Theta}}) := \mu(\hat{\Theta})$

Theorem

Given Θ , the following are equivalent:

- (p^F, q) solves the principal's problem for some q, given any ⟨A, μ, u, c⟩.
- ► $|\Theta| \le 2$.

KEY IDEA: MULTIPLE ISSUES

Let q^F be agent's best-response to full information

• Provide
$$p \succ_{\text{MPS}} q^F \implies$$
 will be ignored

• Provide
$$p \prec_{\text{MPS}} q^F \implies$$
 will be harmful

Benefit to providing Blackwell-incomparable p

BINARY UNCERTAINTY

PROOF SKETCH

Any \tilde{q} incomparable to q^F cannot have $\tilde{q} \in G^*(\tilde{q})$.

A THREE-STATE EXAMPLE

Three ordered states with an action tailored for each

 $\Theta = A = \{-1, 0, 1\}$

"Guess-the-state" preferences

 $u(a,\theta) = -(a-\theta)^2$

Symmetric prior

$$\mu = \left(\frac{1-\mu_0}{2}, \mu_0, \frac{1-\mu_0}{2}\right)$$
 for some $\mu_0 \in (0, 1)$

Shannon cost

 $c(\nu) = \kappa [H(\mu) - H(\nu)]$ for some $\kappa > 0$

AUXILIARY PROBLEM: RESTRICTED ACTION

For $\emptyset \neq B \subseteq A$, consider what would happen if principal could restrict agent's behavior to *B* while providing p^F ?

Let $v_i(B)$ be player *i*'s value from this auxiliary problem

AUXILIARY PROBLEM: RESTRICTED ACTION

For $\emptyset \neq B \subseteq A$, consider what would happen if principal could restrict agent's behavior to *B* while providing p^F ?

Let $v_i(B)$ be player *i*'s value from this auxiliary problem

Claim 1

There exist (μ_0, κ) such that

- 1. $v_A\{-1,1\} > v_A\{0\}$
- 2. $v_P\{-1,1\} > v_P\{-1,0,1\}$

AUXILIARY PROBLEM: RESTRICTED ACTION

For $\emptyset \neq B \subseteq A$, consider what would happen if principal could restrict agent's behavior to *B* while providing p^F ?

Let $v_i(B)$ be player *i*'s value from this auxiliary problem

Claim 1

There exist (μ_0, κ) such that

- 1. $v_A\{-1,1\} > v_A\{0\}$
- 2. $v_P\{-1,1\} > v_P\{-1,0,1\}$

Related to Szalay's (2005) "Extreme Options" paper

ENDOGENOUSLY RESTRICTING ACTIONS

Claim 2

Let (μ_0, κ) be as in Claim 1 and p^O be as drawn. Then

1. There is a unique $q^F \in G^*(p^F)$ and $q^O \in G^*(p^O)$ 2. $\int U_P dq^O > \int U_P dq^F$

ENDOGENOUSLY RESTRICTING ACTIONS

WHAT WE'VE SEEN

Can't always rely on listener to process available information

Framework to think about feedback on provided information

Limiting information helps, even absent a persuasive motive

One-issue environments are special

Thanks!

