
Simplifying Bayesian Persuasion

Elliot Lipnowski*†
University of Chicago

Laurent Mathevet
New York University

March 22, 2017

Abstract

In Bayesian Persuasion (Kamenica and Gentzkow (2011)), the sender’s optimal value
is characterized by a concave envelope. Since concavification of a general function is
notoriously difficult, we propose a method to reduce the problem, using the underlying
economic structure of the indirect expected utility. The key observation is that one can
find, using the receiver’s preferences alone, a small set of posterior beliefs on which
some optimal information policy must be supported. This simplifies, sometimes dra-
matically, the search for optimal information.
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In the model of Bayesian persuasion (Kamenica and Gentzkow (2011)), a receiver must
make a decision a ∈ A in a world where the uncertain state ω ∈ Ω is distributed according
to (full-support) µ0 ∈ ∆Ω. Assume Ω and A are finite sets. Before making his decision,
the receiver obtains additional information about the state from a sender who chooses a
signal structure σ : Ω → ∆S , where S is a rich finite set of messages.1 In any state ω, the
receiver sees a message s ∈ S drawn according to σ(·|ω), forms a posterior belief µ ∈ ∆Ω

via Bayesian updating, and then acts. The receiver and the sender have preferences given by
u, v : A ×Ω→ R, respectively.

An (information) policy is an element of

R(µ0) =

{
p ∈ ∆∆Ω :

∫
∆Ω

µ(ω) dp(µ) = µ0(ω) for every ω ∈ Ω

}
.

Any signal induces an information policy by Bayes plausibility, and, conversely, any infor-
mation policy can be induced by some signal (Aumann and Maschler (1995) and Kamenica
and Gentzkow (2011)). Let A∗ : ∆Ω⇒ A be the agent’s best response correspondence,2 and
let V : ∆Ω→ R be the principal’s indirect value function, given by V(µ) = max

a∈A∗(µ)

∫
Ω

v(a, ·) dµ.

A policy p is optimal if ∫
∆Ω

V dp ≥
∫

∆Ω

V dq

for all q ∈ R(µ0). The concavification result in Kamenica and Gentzkow (2011) provides an
abstract characterization of the sender’s optimal value. For any prior µ0, an optimal informa-
tion policy exists and induces expected indirect utility

V(µ0) = inf{φ(µ0) : φ : ∆Ω→ R affine, φ ≥ V},

which is the concave envelope of V (i.e., the pointwise lowest concave function which ma-
jorizes V), evaluated at the prior.

The purpose of this short paper is to simplify the search for optimal information policies
in Bayesian persuasion. If the sender cannot compute the concave envelope or derive qual-
itative properties of it, then the concavification result cannot be implemented. In general,
computing the concave envelope of a function is difficult (Tardella (2008)). In Lipnowski
and Mathevet (2017), we develop a method to simplify the computation of an optimal policy
in environments with psychological preferences and aligned interests. In this paper, we adapt

1In light of Kamenica and Gentzkow (2011, Proposition 1), assume |S | ≥ min{|A|, |Ω|}.
2So let A∗(µ) = argmaxa∈A

∫
Ω

u(a, ·) dµ be the receiver’s set of optimal actions at posterior µ.
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our method to standard Bayesian persuasion—where the receiver and the sender are expected
utility maximizers with possibly conflicting interests. Section 1 lays out the method. Section
2 illustrates how our method can be applied to compute a policy: first for a large class of
examples with a common structure, and second for a worked parametric example. Section 3
concludes. All proofs are in the appendix.

1 Posterior Covers

Although the sender might not benefit from giving information everywhere, he is at worst
indifferent to it “in between” beliefs at which the receiver’s incentives are fixed, in virtue
of linearity of expected utility in µ. In such a region, both the sender and the receiver like
mean-preserving spreads in beliefs. In other words, from the primitives 〈A, u〉 (in fact, from
A∗ alone), we can deduce that the indirect utility V must be locally (weakly) convex on
various regions of ∆Ω. Given a “posterior cover”—a collection of such regions—we may
restrict our search for an optimal policy to those leaving the receiver’s beliefs elsewhere.
This insight reduces the problem to a finite program. When the number of actions is small,
it becomes simple to compute an optimal policy and derive the concave envelope.

Definition 1. Given f : ∆Ω→ R, an f -(posterior) cover is a finite family C of closed convex

subsets of ∆Ω such that f |C is convex for every C ∈ C.

A posterior cover is a collection of sets of posterior beliefs, over each of which a given
function is convex. Given a posterior cover C, let

out(C) = {µ ∈ ∆Ω : µ ∈ ext(C) whenever µ ∈ C ∈ C}

be its set of outer points. That is, outer points are those posterior beliefs that are extreme
in any member of C to which they belong. In particular, any point outside

⋃
C is an outer

point, as is any deterministic belief.

Theorem 1. !

1. If C is any V-cover, then there exists an optimal policy p ∈ ∆[out(C)] such that supp(p)
is affinely independent.

2. The collection C∗ := {Ca}a∈A is a V-cover, where Ca := {µ ∈ ∆Ω : a ∈ A∗(µ)} for a ∈ A.

Moreover, out(C∗) is finite.
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For any Bayesian persuasion problem, the theorem names a specific posterior cover C∗

and identifies a finite set of beliefs out(C∗) that can support an optimal policy. Using further
linear structure, the simplified problem becomes one of finite programming, in which the
sender must find the best of finitely many combinations of beliefs in out(C∗) that satisfy
Bayes plausibility.3

Observe an important consequence of the theorem. To identify a small set of posterior
beliefs that support a sender-optimal policy, we may temporarily ignore the sender’s pref-
erences. Indeed, the second part of the theorem describes a V-cover C∗ in terms of 〈A, u〉
only—in fact, in terms of A∗ only—which is possible because at a given optimal action by
the receiver, both he and the sender weakly like more information. Therefore, although the
sender and the receiver have different preferences, their preferences are weakly aligned in
this sense inside every piece of that posterior cover. As a result, an optimal policy can be
characterized, and hence V concavified, while computing V only on the outer points of C∗.
To this end, the following result helps compute the outer points of C∗:

Proposition 1. out(C∗) = {µ∗ ∈ ∆Θ : B(µ∗) = {µ∗}} , where

B(µ∗) := {µ ∈ ∆Ω : supp(µ) ⊆ supp(µ∗) and A∗(µ) ⊇ A∗(µ∗)} .

This proposition says that the outer points are those beliefs µ∗ whose support cannot be
reduced while enlarging the set of agent’s optimal actions. That is, they are the most extreme
beliefs that support a given set of actions as optimal.

Observe that the theorem separates out the two steps of (i) finding an optimal policy from
a V-cover and (ii) finding a particular V-cover with a small set of outer points. The reason is
that, in particular applications, it may be possible to improve upon the second part and find
an even better V-cover than C∗. We see this avenue of work—deriving V-covers with small
sets of outer points in classes of Bayesian persuasion problems—as a promising one.

2 Examples

Example 1. A principal will publicly choose an outcome x ∈ X as a function of the state
ω ∈ Ω. An agent will observe the principal’s decision, and make a binary participation
decision z ∈ {0, 1}. The principal’s objective is v : X × {0, 1} × Ω → R; in particular, the
agent’s participation may be important to her. The agent does not care directly about the
principal’s decision, but his participation incentives may depend on what is revealed about

3Such a collection of beliefs, being affinely independent, is associated with a unique Bayes plausible infor-
mation policy.
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the state: his value from participation is given by û : Ω→ R with his non-participation value
normalized to zero. On one hand, the principal wants to adapt her decision x to the state
ω. On the other, x reveals information about the state that can affect the agent’s incentive to
participate. This problem is equivalent to a Bayesian persuasion problem with A = X×{0, 1}
and u((x, z), ω) = zû(ω). Let Ω− := {ω ∈ Ω : û(ω) < 0} and Ω+ := {ω ∈ Ω : û(ω) > 0}. For
any ω− ∈ Ω− and ω+ ∈ Ω+, let

µω−,ω+
:=

(
û(ω+)

û(ω+)−û(ω−) ,
−û(ω−)

û(ω+)−û(ω−)

)
be the unique belief supported on {ω−, ω+} at which the receiver is indifferent between par-
ticipating and not participating. In this environment, it follows directly from Proposition 1
that

out(C∗) = {δω : ω ∈ Ω} ∪ {µω−,ω+
: ω− ∈ Ω−, ω+ ∈ Ω+},

where δω is the point mass on state ω.
By Theorem 1, there exists an optimal policy p ∈ ∆[out(C∗)], meaning that the principal

either (i) almost reveals the state while keeping the receiver indifferent over his participation
decision (when µ is such that |supp(µ)| = 2), or (ii) fully reveals the state (when µ is such
that |supp(µ)| = 1).

In this problem, there are no more than |Ω| + 1
4 |Ω|

2 outer points, no matter how large X

is, which is a substantial reduction when X is large relative to Ω.4

Consider further the special case of Ω = {ω−, ω+} with û(ω−) < 0 < û(ω+). Rather than
computing V(µ) = max

a∈A∗(µ)

∫
Ω

v(a, ·) dµ at every distinct µ ∈ ∆Ω,5 and then seeking to concavify

this function, we can simply restrict attention to three beliefs:

V(δω−) = max
x∈X

v((x, 0), ω−)

V(δω+
) = max

x∈X
v((x, 1), ω+)

V(µω−,ω+
) = max

a∈X×{0,1}

{
û(ω+)

û(ω+)−û(ω−)v(a, ω−) +
−û(ω−)

û(ω+)−û(ω−)v(a, ω+)
}
.

With these three numbers in hand, we can compute an optimal information policy by com-
paring but two candidates: full information and the policy that maximizes the probability of
posterior µω−,ω+

among all information policies.6

Example 2. Consider a consumer who decides how to spend a sum of money. He can invest

4Although we required |A| < ∞ in the model, the result is true for any compact X and u.s.c. v.
5For every µ, this is an optimization problem over X × {0}, X × {1}, or X × {0, 1}.
6This latter policy is ‘no information’ if the prior is µω−,ω+

, and supported on {µω−,ω+
, δω} if the prior is

between µω−,ω+
and δω for ω ∈ Ω.
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it in one of two risky assets (a1 or a2) or keep it available to satisfy liquidity needs (a`). Let
the relevant state come from Ω = {1, 2, `}, where asset ai has the highest rate of return in state
i ∈ {1, 2}, and the agent has an urgent need for liquidity in state `. Define the consumer’s
utility as:

u a1 a2 a3

1 α −β 0
2 −γ δ 0
` 0 0 1

where α, β, γ, δ > 0.
From the theorem, C∗ = {C1,C2,C`} is a V-cover, where

Ci =
{
µ ∈ ∆Ω : Eω∼µ[u(ai, ω)] ≥ Eω∼µ[u(a j, ω)] for all j

}
.

That is, parametrizing µ ∈ ∆Ω by µ1 := µ{1} and µ2 := µ{2}:

C1 = {(µ1, µ2) : (α + β)µ1 ≥ (δ + γ)µ2, (1 + α)µ1 ≥ 1 + (γ − 1)µ2}

C2 = {(µ1, µ2) : (δ + γ)µ2 ≥ (α + β)µ1, (1 + δ)µ2 ≥ 1 + (β − 1)µ1}

C` = {(µ1, µ2) : 1 + (γ − 1)µ2 ≥ (1 + α)µ1, 1 + (β − 1)µ1 ≥ (1 + δ)µ2} .

Letting O :=
{
(0, 0), (1, 0), (0, 1),

(
0, 1

1+δ

)
,
(

1
1+α

, 0
)}
, our outer points are

out(C∗) =

O ∪
{(

γ+δ

α+β+γ+δ
, α+β

α+β+γ+δ

)
,
(

γ+δ

αδ−βγ+α+β+γ+δ
, α+β

αδ−βγ+α+β+γ+δ

)}
: αδ ≥ βγ

O ∪
{(

β

α+β
, α
α+β

)
,
(

δ
γ+δ
, γ

γ+δ

)}
: αδ ≤ βγ.

The specific form of the outer points brings out the tradeoff captured by αδ − βγ. The
qualitative form of the posterior cover C∗ depends on whether the agent wants to invest in
one of the two risky assets when he is indifferent between them and certain that he has no
liquidity needs, which is equivalent to αδ ≥ βγ.

Figure 1 depicts the posterior cover for two parameter specifications (with αδ−βγ having
different signs). Afterward, we study how optimal disclosure varies between the two given
specific receiver preferences.

(i) Figure 1a plots the posterior cover for β = γ = 1 and α = δ = 3
2 . The outer points

are µ(0) = (0, 0), µ(1) = (1, 0), µ(2) = (0, 1), µ(3) = (0, 2
5 ), µ(4) = (2

5 , 0), µ(5) = (1
2 ,

1
2 ),

µ(6) = (2
5 ,

2
5 ). With this numerical specification and µ0 = ( 1

5 ,
1

10 ), the designer must
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Figure 1: C∗-Cover

compare eight information policies that are characterized by their support:

supp(p1) = {µ(0), µ(4), µ(5)}, supp(p5) = {µ(0), µ(1), µ(5)},

supp(p2) = {µ(0), µ(4), µ(6)}, supp(p6) = {µ(0), µ(1), µ(6)},

supp(p3) = {µ(0), µ(4), µ(2)}, supp(p7) = {µ(0), µ(1), µ(2)},

supp(p4) = {µ(0), µ(4), µ(3)}, supp(p8) = {µ(0), µ(1), µ(3)}.

Whatever the sender’s preferences, one of these eight information policies will be
optimal.

(ii) Figure 1b plots the posterior cover for β = γ = 1 and α = δ = 1
4 . Let µ(0) through µ(2)

be the same as before, but µ(3) = (0, 4
5 ), µ(4) = ( 4

5 , 0), µ(5) = ( 4
5 ,

1
5 ), µ(6) = ( 1

5 ,
4
5 ). Given

a prior, the sender will choose among finitely many policies supported on these outer
points, as in (i).

To illustrate, let v(a, θ) = 1a=a1 , and keep µ0 = (1
5 ,

1
10 ). For the specification in Figure 1a,

information policy 1
2

[
µ(0)

]
+ 1

4

[
µ(4)

]
+ 1

4

[
µ(6)

]
is optimal and gives the sender a value of 1

2 .
For the specification in Figure 1b, information policy 13

20

[
µ(0)

]
+ 1

4

[
µ(4)

]
+ 1

10

[
µ(2)

]
is optimal

and gives the sender a value of 1
4 . We can make sense of this change in optimal disclosure
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through the sign of αδ − βγ. In both situations, the sender at times concedes that the agent
needs liquidity. The rest of the time, she can keep asset 1 weakly optimal in the first situation.
This possibility disappears in the second situation, because the agent prefers a` when he is
indifferent between the two risky assets. In this case, the sender may as well reveal to the
agent when asset 2 is optimal.

3 Conclusion

The method of posterior cover focuses attention on maximally informative policies, subject
to preserving agent incentives. It simplifies Bayesian persuasion by identifying a small set of
posterior beliefs (the outer points) that support optimal policies for all priors and all sender
preferences. The problem is then one of finite programming, as shown in the examples. This
is especially helpful if one wants to study how optimal information varies with the prior or
the sender’s preferences.

By looking at the outer points, one can sometimes learn about the form of optimal per-
suasion even before naming an optimal policy. For example, in a binary-state world, if
the outer points are {0, µ0, 1}, as may happen in the first example, then the method delivers
an interpretable result: either full information or no information is optimal, whatever the
sender’s preferences are. If the outer points change with respect to some characteristic of
the receiver’s preferences, as in the second example, then we learn that said characteristic
qualitatively shapes the types of information a sender may employ.
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4 Appendix

Below is the proof of Theorem 1.

Proof. Fix a V-cover C, and let B := ∆[out(C)] and R := R(µ0), both compact convex
subsets of ∆∆Ω. By Krein-Milman, and as

EV : ∆∆Ω → R

p 7→

∫
∆Ω

V dp

is affine and continuous, EV |R∩B is maximized somewhere on ext(R ∩ B). But EV |R is max-
imized on R ∩ B by the “optimal support” part of Lipnowski and Mathevet (2017, Theorem
1).7 Moreover, B is an extreme subset of ∆∆Ω, so that R ∩ B is an extreme subset of R, and
therefore ext[R ∩ B] = B ∩ ext(R). Accordingly, EV |R is maximized on B ∩ ext(R).

Now, consider arbitrary p ∈ ext(R), with the goal of showing that supp(p) is affinely
independent. With ∆Ω finite-dimensional, p ∈ co[supp(p)] = co[supp(p)]. Carathéodory’s
Theorem then delivers an affinely independent set S ⊆ supp(p) such that µ0 ∈ co(S ).

Now, there is a correspondence N : S ⇒ ∆Ω such that, for each ν ∈ S , the set N(ν)
is a closed convex neighborhood of ν with S ∩ N(ν) = {ν}. Making (N(ν))ν∈S smaller if
necessary, we may assume that every selector η of N has (η(ν))ν∈S affinely independent and
µ0 ∈ co

[
{η(ν)}ν∈S

]
.

It follows from S ⊆ supp(p) that p[N(ν)] > 0 for every ν ∈ S . Define, then, η : S → ∆Ω

which maps ν ∈ S to the mean of µ ∼ p conditional on µ ∈ N(ν). More formally, define

η̂ : S → ∆∆Ω

ν 7→ p[N(ν)∩(·)]
p[N(ν)] ,

and let η(ν) be the barycentre of η̂(ν) for ν ∈ S .
As N is compact-convex-valued, η is then a selector of N. There is therefore some γ ∈ ∆S

such that
∫

S
η dγ = µ0 and supp(γ) = S . Now, let

q :=
∫

∆∆Ω

η̂ dγ ∈ R and ε := 1
2 ∧min

ν∈S

γ(ν)
p[N(ν)] > 0.

By construction, p−εq
1−ε ∈ R and p ∈ co

{
q, p−εq

1−ε

}
. Since p is extreme, we know q = p. As this

is true even in the limit (holding S fixed) as N(ν) → {ν}, it must be that supp(p) = S . But
then p has affinely independent support, as required. This proves the first part.

7Replacing “U” with “V” and “Θ” with “Ω”, the proof applies verbatim.
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Toward the second part, note that Ca is closed and convex for every a ∈ A, expected
utility being linear and continuous in beliefs. Next, Ca is the intersection of the simplex ∆Ω

and a collection of half-spaces {µ ∈ RΩ :
∑
ω∈Ω µω[u(a, ω)−u(a′, ω)] ≥ 0}a′∈A. Therefore, Ca

has finitely many extreme points. This tells us that out(C∗) is finite, since:

out(C∗) = out(C∗) ∩
⋃
C∗ (as a finite optimization problem has a solution)

=
{
µ ∈

⋃
C∗ : µ ∈ ext(C) for any µ ∈ C ∈ C

}
⊆

⋃
C∈C∗
{µ ∈ C : µ ∈ ext(C)} =

⋃
a∈A

ext(Ca).

Now, fix an arbitrary a∗ ∈ A and affine f : [0, 1]→ Ca∗; we will show that V ◦ f is weakly
convex. Define g : A× [0, 1]→ R via g(a, x) :=

∫
Ω

[u(a∗, ·)− u(a, ·)] d[ f (x)]. Note that g(a, ·)
is affine for every a ∈ A. For any x ∈ [0, 1], we know g(a, x) ≥ 0 because f (x) ∈ Ca∗ . For
any a ∈ A, as g(a, ·) is affine, it follows that g(a, ·)−1(0) ∈ {∅, [0, 1], {0}, {1}}. Therefore, there
exist disjoint subsets Â, A0, A1 ⊆ A such that

A∗( f (x)) = {a ∈ A : g(a, x) = 0} =

Â ∪ Ax if x ∈ {0, 1},

Â if x ∈ (0, 1).

First, define V̂ : [0, 1]→ R via V̂(x) := maxa∈Â

∫
Ω

v(a, ·) d[ f (x)]; it is convex, as a maximum
of affine functions. Next, define V̌ : [0, 1]→ R∪ {−∞} via V̌(x) := maxa∈Ax

∫
Ω

v(a, ·) d[ f (x)]
for x ∈ {0, 1}, and V̌ |(0,1) = −∞; it is obviously convex. Therefore, V ◦ f = max{V̂, V̌} is
convex. It follows that V | f ([0,1]) is convex. As f was arbitrary, VCa∗ is convex. �

Finally, Proposition 1 follows from Lipnowski and Mathevet (2017, Lemma 4).
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