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We revisit the canonical model of repeated games with two patient players, observable actions, 
and one-sided incomplete information, and make the substantive assumption that the informed 
player’s preference is state independent. We show the informed player can attain a payoff in 
equilibrium if and only if she can attain it in the simple class of equilibria first studied by Aumann, 
Maschler, and Stearns (1968), in which the initial stages are used only for revealing information, 
and no further information is revealed after the initial stages. This sufficiency result does not 
extend to the uninformed player’s equilibrium payoff set.

How should an informed party behave when repeatedly interacting with others who are not informed? Because information 
may be revealed implicitly by a player’s actions and used against the player, an informed player may sometimes wish to refrain 
from taking certain actions to avoid leakage of information. Alternatively, an informed player may wish to take certain actions to 
signal information. A rich literature, beginning with Aumann and Maschler (1966), has studied this question using the framework 
of repeated games with incomplete information.1 In Aumann and Maschler’s (1966) model, two patient players play a repeated 
zero-sum game in which only one player is informed about the state of the world. Our paper takes the non-zero-sum version of 
this framework (developed by Aumann et al., 1968), and adds the assumption that the informed player’s payoffs are known.2 Our 
substantive assumption is familiar from communication games that our model nests (e.g., Chakraborty and Harbaugh, 2010; Lipnowski 
and Ravid, 2020), and appropriate in many situations: for example, political parties want to win elections, dynasties want to remain 
in power, and companies want to continue to sell their goods to consumers.

Our main result, Proposition 1, shows that when the informed player’s payoffs are known, any equilibrium payoff for the informed 
player can be attained in an equilibrium in which the initial stages are used only for revealing information, and no further informa-
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whenever we can interpret payoffs as representing how players would feel if they were fully informed of the game’s outcome, including the state, rather than how 
players feel during the game. This interpretation is reasonable in many scenarios, such as in principal-agent relationships (which often feature a principal who cares 
about the agent’s information, but can learn this information only through the agent’s actions), and environments in which players care about latent variables (e.g., 
Available online 13 August 2024
0022-0531/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

long-run health outcomes).
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tion is revealed after the initial stages. Thus, we show that gradually leaking or signaling information has no effect on the informed 
player’s equilibrium payoffs whenever her motives are transparent. Our main result simplifies the computation of the informed play-

er’s equilibrium payoffs compared to the general payoff case, which sometimes requires gradual communication of information.3 In 
particular, our Corollary 1 enables one to obtain the informed player’s equilibrium payoffs using the technique of quasiconvexifica-

tion. We also demonstrate that even when the informed player’s motives are transparent, gradual communication of information is 
sometimes needed to obtain equilibrium payoffs for the uninformed player.

We focus on environments in which players are patient and we maintain Aumann and Maschler’s (1966) approach of modeling 
patient players directly; i.e., we assume that players care only about their long-run average payoffs.4 An alternative approach for 
modeling such situations is to consider the patient limit of environments with impatient players—that is, players who care about 
their expected discounted payoffs but discount future payoffs by very little. In the appendix, we show conditions under which these 
patient limits include the set of payoffs identified in our paper.5 Therefore, the set of equilibrium payoffs with patient players we 
characterize is also relevant in understanding equilibrium payoffs in discounted games.

The proof of our main result exploits the connection between games of pure communication and repeated games of incomplete 
information. Forges (2020) provides a survey that details the connections between these two classes of games. In particular, we 
appeal to results from Lipnowski and Ravid (2020) on cheap talk games in which the sender’s payoffs are known to the repeated 
games studied by Aumann et al. (1968) and Hart (1985) while assuming that the informed player’s payoffs are known.

1. Model

We study the two-player repeated game of one-sided incomplete information with undiscounted utility and observable actions 
from Aumann et al. (1968) and Hart (1985), and specialize the informed player’s preference to be state independent. Formally, the 
game has two players: one informed (player 1) and one uninformed (player 2). The game begins with a realization of a payoff-relevant 
random state 𝜃 from a finite set Θ (with at least two elements) according to a full-support distribution 𝜇0 ∈ ΔΘ.6 Then, player 1
observes the realization of 𝜃, and the players subsequently play the stage game infinitely many times. In each period 𝑡 ∈ ℕ, each 
player 𝑗 ∈ {1, 2} chooses an action from a finite set 𝐴𝑗 (with at least two elements) simultaneously, and stage payoffs are given by 
𝑢1 ∶ 𝐴 → ℝ and 𝑢2 ∶ 𝐴 × Θ → ℝ for players 1 and 2, respectively, where 𝐴 ∶= 𝐴1 × 𝐴2. At the end of each period 𝑡 ∈ ℕ, players 
observe the period’s chosen action profile, 𝑎𝑡 = (𝑎𝑡

1, 𝑎
𝑡
2) ∈ 𝐴, but not the resulting payoffs. The assumption that the players do not 

observe payoffs means that player 2 can learn about the state only from player 1’s actions. We assume players have limit-of-means 
preferences over sequences of payoffs as formalized in the definition of equilibrium below.

Let 𝜎1 ∶ ×Θ →Δ𝐴1 and 𝜎2 ∶ →Δ𝐴2 denote player 1 and 2’s behavior strategies, respectively, where  ∶=
⋃∞

𝑡=0 𝐴𝑡 is the set 
of public histories. Let 𝔼𝜎,𝜇 denote the expectation operator with respect to the unique probability measure on Ω ∶= 𝐴∞ ×Θ induced 
by a strategy profile 𝜎 = (𝜎1, 𝜎2) and a belief 𝜇 ∈ ΔΘ.7 Define expectations of players 1 and 2’s payoffs up to and including stage 
𝑡 ∈ℕ, respectively, as

𝑣𝑡
1 (𝜎) ∶= 𝔼𝜎,𝜇0

[
1
𝑡

𝑡∑
𝜏=1

𝑢1 (𝑎𝜏 )

]
, 𝑣𝑡

2 (𝜎) ∶= 𝔼𝜎,𝜇0

[
1
𝑡

𝑡∑
𝜏=1

𝑢2 (𝑎𝜏 , 𝜃)

]
. (1.1)

Following Aumann and Maschler (1968),8 a strategy profile 𝜎 is an equilibrium if the following two conditions hold:

lim inf
𝑡→∞

𝑣𝑡
1 (𝜎) ≥ lim sup

𝑡→∞
sup
𝜎′1

𝑣𝑡
1
(
𝜎′
1, 𝜎2

)
, (1.2)

lim inf
𝑡→∞

𝑣𝑡
2 (𝜎) ≥ lim sup

𝑡→∞
sup
𝜎′2

𝑣𝑡
2
(
𝜎1, 𝜎

′
2
)
. (1.3)

The payoffs for the players associated with an equilibrium 𝜎 are their respective limit payoffs9:

3 See, for example, Forges (1984; 1994).
4 See section 3.2.2 in Mailath and Samuleson (2006) for a discussion of various approaches of modeling patient players’ preferences.
5 Several other papers have obtained related results, but under different assumptions. For example, in repeated games with complete information, the set of 

equilibrium payoffs in the game with patient players and the patient limit of games with impatient players essentially coincide (Rubinstein, 1979; Fudenberg and 
Maskin, 1986; Aumann and Shapley, 1994). Cripps and Thomas (2003) introduce impatient players to the environment of Aumann et al. (1968) while assuming 
that the uninformed player’s payoffs are known (i.e., the “known-own payoff” case) and show that, when the informed player is arbitrarily patient relative to the 
uniformed player, the characterization of the informed player’s payoffs are essentially the same as in the game with patient players. On the other hand, Cripps and 
Thomas (2003) and Pȩski (2008; 2014) also consider the equal discounting case (with known-own payoffs) and show that the set of equilibrium payoff vectors in the 
game with patient players are typically a strict subset of the patient limit of the game with impatient players with equal discount rates.

6 We adopt the following notational conventions throughout the paper. Given a finite set 𝑋, let Δ𝑋 denote the set of all probability measures over 𝑋. Given a 
probability measure 𝜇 ∈Δ𝑋, let supp(𝜇) denote its support. Given a set 𝑋 in a real vector space, let co(𝑋) denote its convex hull. Given a real-valued function 𝑓 , let 
[𝑓 ]+ denote max{𝑓 (⋅), 0} and when the domain of 𝑓 is convex, let vex𝑓 denote the convexification of 𝑓 (i.e., pointwise largest convex function that does not exceed 
𝑓 ). Given a correspondence 𝑉 ∶ 𝑋 ⇉ 𝑌 , let gr(𝑉 ) denote the graph of 𝑉 . Given a number 𝑥 ∈ℝ, let ⌈𝑥⌉ denote the smallest integer that is greater than or equal to 𝑥.

7 For each 𝑡 ∈ ℕ, let H 𝑡 be the finite algebra generated by the discrete algebra on 𝐴𝑡, and let H ∞ denote the product 𝜎-algebra on 𝐴∞ . Then, the probability 
measure induced by (𝜎, 𝜇) is a probability measure on the measurable space (Ω, H ∞ ⊗ 2Θ) that is uniquely defined by the Kolmogorov extension theorem.

8 Aumann et al. (1968) and Hart (1985) refer to 𝜎 that satisfies (1.2) and (1.3) as a uniform equilibrium. See section 2 in Hart (1985) for other payoff-equivalent 
definitions of equilibrium.
2

9 The limits exist given (1.2) and (1.3).
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𝑣1 (𝜎) ∶= lim
𝑡→∞

𝑣𝑡
1 (𝜎) and 𝑣2 (𝜎) ∶= lim

𝑡→∞
𝑣𝑡
2 (𝜎) . (1.4)

A vector 𝑠 = (𝑠1, 𝑠2) ∈ℝ2 is an equilibrium payoff vector if an equilibrium 𝜎 exists such that 𝑠 = (𝑣1(𝜎), 𝑣2(𝜎)). For 𝑗 ∈ {1, 2}, 𝑠𝑗 ∈ℝ is 
an equilibrium 𝑃 𝑗-payoff if an equilibrium 𝜎 exists for which 𝑠𝑗 = 𝑣𝑗 (𝜎).

As in the models of Aumann et al. (1968) and Hart (1985), our model does not include a public randomization device. Such a 
coordination device is unnecessary because players can achieve the same equilibrium payoffs using jointly controlled lotteries.10 Still, 
some modelers may prefer to include a public coordination device. We discuss in greater detail how our definitions and results can 
be adjusted to the environment in which players have access to a public randomization device in section 3.

2. Results

2.1. Informed player’s equilibrium payoffs

Our main result is that any equilibrium payoff of player 1 can be obtained with a simple strategy profile in which the initial stages 
are used only for revealing information, and no further information is revealed after the initial stages. We also provide a condition 
that characterizes a payoff being an equilibrium 𝑃1-payoff in terms of the belief distribution that generates it.

Toward stating our main result, call an equilibrium 𝜎 an AMS equilibrium if some 𝓁 ∈ ℕ exists such that (i) players ignore player 
2’s behavior in the first 𝓁 stages, and (ii) 𝜎1 does not condition on 𝜃 for any on-path history after stage 𝓁.11 Observe, in particular, 
that the first condition prevents players from coordinating their actions using jointly controlled lotteries in the initial 𝓁 stages. Thus, 
in an AMS equilibrium, players use the initial finite (𝓁) number of stages solely for communication and not for coordination. We 
call an equilibrium payoff vector associated with an AMS equilibrium an AMS-equilibrium payoff vector. For 𝑗 ∈ {1, 2}, 𝑠𝑗 ∈ ℝ is an 
AMS-equilibrium 𝑃 𝑗-payoff if some AMS equilibrium 𝜎 exists such that 𝑠𝑗 = 𝑣𝑗 (𝜎).

Let us now introduce a correspondence 𝐹 ∗(𝜇) that yields the set of payoffs that are feasible and individually rational given 
any belief 𝜇 ∈ ΔΘ. This correspondence plays an important role as in the case of folk theorems for repeated games with complete 
information. Let 𝑢 be a bound on the players’ possible payoff magnitudes, define  ∶= [−𝑢, 𝑢] ⊆ ℝ, and take 𝐹 ∶ ΔΘ ⇉ 2 to be 
the correspondence that gives the set of feasible expected payoffs in the one-stage game from using a correlated state-independent 
strategy given any prior belief.12 Let 𝑢1 ∈ℝ and 𝑢2 ∶ ΔΘ →ℝ be the minmax values for players 1 and 2, respectively, in the one-stage 
game in which neither player observes the realization of state with a common prior belief.13 We define 𝐹 ∗ ∶ ΔΘ ⇉2 as

𝜇 ↦
{(

𝑠1, 𝑠2
)
∈ 𝐹 (𝜇) ∶ 𝑠1 ≥ 𝑢1, 𝑠2 ≥ vex𝑢2 (𝜇)

}
,

and 𝐹 ∗
1 ∶ ΔΘ ⇉ as the projection of 𝐹 ∗ to player 1’s payoffs. Call a distribution over posterior beliefs, 𝑝 ∈ ΔΔΘ, that averages to 

the prior 𝜇0 an information policy and let (𝜇0) = {𝑝 ∈ΔΔΘ ∶ ∫ΔΘ 𝜇d𝑝(𝜇) = 𝜇0} denote the set of all information policies given a prior 
𝜇0. We now formally state our main result below.

Proposition 1. Given 𝑠1 ∈, the following are equivalent:

(i) Payoff 𝑠1 is an equilibrium 𝑃1-payoff.

(ii) Payoff 𝑠1 is an AMS-equilibrium 𝑃1-payoff.

(iii) Some information policy 𝑝 ∈ (𝜇0) with finite support exists such that

𝑝
({

𝜇 ∈ΔΘ ∶ 𝑠1 ∈ 𝐹 ∗
1 (𝜇)

})
= 1. (2.1)

(iv) Some information policy 𝑝 ∈ (𝜇0) exists such that (2.1) holds.

In the general payoff case, Aumann et al. (1968) provide examples of equilibrium payoff vectors that are not AMS-equilibrium 
payoff vectors. Hart (1985) subsequently provides a characterization of all equilibrium payoffs via strategy profiles that allow players 
to engage in more sophisticated communication and coordination (e.g., alternating between stages of communication and stages of 
coordination of actions via jointly controlled lotteries, possibly ad infinitum). In particular, Proposition 1implies that when player 1’s 
preferences are state independent, the additional sophistication allowed under Hart (1985) is unnecessary from player 1’s perspective.

10 See, for example, Forges (1994).
11 Formally, an equilibrium 𝜎 is an AMS equilibrium if, for any 𝑡 ∈ℕ with 𝑡 ≥ 𝓁, any pair of public histories ℎ, ℎ′ ∈ 𝐴𝑡 , and any pair of states 𝜃, 𝜃′ ∈ Θ, we have (i) if 

ℎ and ℎ′ differ only in the first 𝓁 periods of player 2’s play, then 𝜎1(ℎ, 𝜃) = 𝜎1(ℎ′, 𝜃) and 𝜎2(ℎ) = 𝜎2(ℎ′); and (ii) if ℎ is reached with positive probability given 𝜎, then 
𝜎1(ℎ, 𝜃) = 𝜎1(ℎ, 𝜃′). Aumann et al. (1968) characterize the set of AMS equilibrium payoffs.
12 That is, 𝐹 maps 𝜇 to the set co({(𝑢1(𝑎), ∫Θ 𝑢2(𝑎, ⋅)d𝜇) ∶ 𝑎 ∈ 𝐴}).
13 Let 𝜈 ⊗ 𝜈′ denote the product measure given any measures 𝜈 and 𝜈′ . Then,

𝑢1 ∶= min
𝛼2∈Δ𝐴2

max
𝛼1∈Δ𝐴1 ∫

𝐴

𝑢1(⋅)d(𝛼1 ⊗ 𝛼2), 𝑢2(𝜇) ∶= min
𝛼1∈Δ𝐴1

max
𝛼2∈Δ𝐴2 ∫

𝐴×Θ

𝑢2(⋅)d(𝛼1 ⊗ 𝛼2 ⊗ 𝜇).
3
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Our proof begins with Hart’s (1985) characterization of equilibrium payoff vectors via bimartingales, and we show player 1’s 
payoff induced by such a bimartingale satisfies condition (2.1) for some information policy 𝑝 ∈ (𝜇0) giving us (iv). Because Θ is 
finite, Carathéodory’s theorem implies 𝑝 may be chosen to ensure that its support is finite, which gives us (iii). We then argue that 
(iii) implies player 1’s payoff must be an AMS-equilibrium 𝑃1-payoff by recalling a characterization of AMS equilibrium as pointed 
out by Hart (1985). The proof is completed by noting that any AMS-equilibrium 𝑃1-payoff is an equilibrium 𝑃1-payoff by definition.

Formally, the starting point of our proof is a lemma that follows immediately from the Main Theorem in Hart (1985). To state it, 
define a bimartingale as a ΔΘ ×-valued martingale, ((𝜇𝑡, 𝑠𝑡))∞

𝑡=1, on some filtered probability space such that, for all 𝑡 ∈ ℕ, either 
𝜇𝑡+1 = 𝜇𝑡 almost surely or 𝑠𝑡+1 = 𝑠𝑡 almost surely. We say a bimartingale has initial value (𝜇, 𝑠) if (𝜇1, 𝑠1) = (𝜇, 𝑠) almost surely. Given a 
measurable subset 𝑍 of ΔΘ ×, we say a bimartingale has terminal values in 𝑍 if the almost-sure limit of the martingale is contained 
in 𝑍 almost surely.

Lemma 1. If 𝑠1 ∈ is an equilibrium 𝑃1-payoff, then some bimartingale exists with initial value (𝜇0, 𝑠1) and terminal values in gr(𝐹 ∗
1 ).

The next lemma, which follows from a definition of AMS equilibrium as pointed out by Hart (1985),14 gives a sufficient condition 
for a payoff 𝑠1 ∈ to be AMS-equilibrium 𝑃1-payoff.

Lemma 2. Let 𝑠1 ∈. Suppose some 𝑝 ∈ (𝜇0) with finite support exists such that (2.1) holds. Then, 𝑠1 is an AMS-equilibrium 𝑃1-payoff.

Before proceeding with our next lemma, we record some useful facts proven in Lipnowski and Ravid (2020).

Fact 1. Let 𝑉 ∶ ΔΘ ⇉ℝ be a Kakutani correspondence and

𝑆1 ∶=
⋃

𝑝∈(𝜇0)
⋂

𝜇∈supp(𝑝)
𝑉 (𝜇) .

Take any 𝑠1 ≥max𝑉 (𝜇0) and 𝑠′1 ≤min𝑉 (𝜇0). Then,

(i) 𝑆1 is a nonempty compact interval.

(ii) 𝑠1 ∈ 𝑆1 if and only if 𝜇0 ∈ co({𝜇 ∈ΔΘ ∶ max𝑉 (𝜇) ≥ 𝑠1}).
(iii) 𝑠′1 ∈ 𝑆1 if and only if 𝜇0 ∈ co({𝜇 ∈ΔΘ ∶ min𝑉 (𝜇) ≤ 𝑠′1}).
(iv) max 𝑆1 = 𝑣(𝜇0), where 𝑣 ∶ ΔΘ →ℝ is the pointwise lowest quasiconcave function above max𝑉 (⋅).
(v) min 𝑆1 = 𝑣(𝜇0), where 𝑣 ∶ ΔΘ →ℝ is the pointwise highest quasiconvex function below min𝑉 (⋅).

Proof. Parts (i) and (ii) follow from analysis in Lipnowski and Ravid (2020), specifically, the proofs of Corollary 3 and Theorem 
1, respectively. Part (iv) follows from Theorem 2 and Corollary 4 in Lipnowski and Ravid (2020). Parts (iii) and (v) follow from 
respectively applying parts (ii) and (iv) to the correspondence −𝑉 . □

We now state and prove Lemma 3 and Lemma 4 that link Lemma 1 to Lemma 2. The proof appeals to Aumann and Hart’s (1986)

characterization of the set of initial values of bimartingales using a separation concept—in particular, that the set of all initial values 
of bimartingale with terminal values contained in some closed set 𝑍 ⊆ ΔΘ × is given by the set of points that cannot be separated 
from 𝑍 by any biconvex function15 that is continuous on 𝑍 .16

Lemma 3. Suppose 𝑉 ∶ ΔΘ ⇉ℝ is a Kakutani correspondence.17 If some bimartingale exists with initial value (𝜇0, 𝑠1) and terminal values 
in gr(𝑉 ), then some 𝑝 ∈ (𝜇0) exists such that

𝑝
({

𝜇 ∈ΔΘ ∶ 𝑠1 ∈ 𝑉 (𝜇)
})

= 1. (2.2)

Proof. We prove the contrapositive statement following an argument in the proof of Proposition 4 in Lipnowski and Ravid 
(2020)—which we include here for the sake of self-contained presentation. Let 𝑆1 denote the set of informed player’s payoffs such 
that (2.2) holds for some 𝑝 ∈ (𝜇0), and suppose 𝑠1 ∈ ⧵ 𝑆1. Because 𝑉 is a Kakutani correspondence, Fact 1 says 𝑆1 is a compact 
interval [𝑠1, 𝑠1], and so either 𝑠1 > 𝑠1 or 𝑠1 < 𝑠1. Focusing on the first case (the argument for the second case being analogous), fix a 
payoff 𝑠′1 ∈ (𝑠1, 𝑠1). Fact 1 implies 𝜇0 is not in the set 𝐵 ∶= co({𝜇 ∈ΔΘ ∶ max𝑉 (𝜇) ≥ 𝑠′1}). Hence, the Hahn-Banach theorem delivers 

14 See the second paragraph of section 6 in Hart (1985).
15 Given convex spaces 𝑋 and 𝑌 , a subset of the product space 𝑋 × 𝑌 is biconvex if all its 𝑥- and 𝑦-sections are convex. A real-valued function on a biconvex subset 

of 𝑋 × 𝑌 is biconvex (resp. bi-affine) if it is convex (resp. affine) in each variable 𝑥 and 𝑦 separately.
16 One can view Aumann and Hart’s (1986) characterization as a biconvex analogue of standard convex separation results. In particular, that the set of initial values 

of martingales with terminal values contained in 𝑍 is given by co(𝑍), which is also the set of points that cannot be separated from 𝑍 by any convex function that is 
continuous on 𝑍 .
4

17 A Kakutani correspondence is a nonempty-, convex-, compact-valued and upper hemicontinuous correspondence.
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an affine continuous 𝜑 ∶ ΔΘ → ℝ that separates 𝜇0 from 𝐵; i.e., 𝜑(𝜇0) > max 𝜑(𝐵). Now define a function 𝑏 ∶ ΔΘ × → ℝ+ via 
𝑏(𝜇, 𝑥) ∶= [𝜑(𝜇) −max𝜑(𝐵)]+[𝑥 − 𝑥′]+. Observe that 𝑏 is a continuous and biconvex function that separates (𝜇0, 𝑠1) from gr(𝑉 ); i.e., 
𝑏(𝜇0, 𝑠1) > 0 by the choice of 𝑠′1, and 𝑏|gr(𝑉 ) = 0 because either 𝜇 ∉ 𝐵 in which case 𝑠1 < 𝑠′1 or because 𝜇 ∈ 𝐵 so that 𝜑(𝜇) ≤max𝜑(𝐵). 
Therefore, by Theorem 4.7 in Aumann and Hart (1986), there does not exist a bimartingale with initial value (𝜇0 , 𝑠1) and terminal 
values in gr(𝑉 ). □

The next lemma shows we may substitute 𝐹 ∗
1 as 𝑉 in the lemma above.

Lemma 4. The correspondence 𝐹 ∗
1 is a Kakutani correspondence.

Proof. Let 𝐹 ∶ ΔΘ ⇉2 denote the correspondence 𝜇 ↦ {(𝑢1(𝑎), ∫Θ 𝑢2(𝑎, ⋅)d𝜇) ∶ 𝑎 ∈ 𝐴}. Observe that 𝐹 is compact-valued (because 
a finite set is compact), and because its graph is closed (being a union of the graphs of finitely many continuous functions), 𝐹
is upper hemicontinuous. As a convex hull of the real-valued correspondence 𝐹 , the correspondence 𝐹 is convex- and compact-

valued and upper hemicontinuous. Define 𝐹 ∶ ΔΘ ⇉ 2 as the individual rationality correspondence 𝜇 ↦ {(𝑠1, 𝑠2) ∈ 2 ∶ 𝑠1 ≥
𝑢1, 𝑠2 ≥ vex𝑢2(𝜇)}. Observe that 𝐹 is convex- and compact-valued (taking values in the bounded set 2). Moreover, 𝐹 is upper 
hemicontinuous because vex 𝑢2 is lower semicontinuous. Because 𝐹 is convex-valued with a closed graph, whereas 𝐹 is convex-

valued with a compact graph, their intersection is convex-valued with a compact graph. Hence, 𝐹 ∗ is convex-, compact-valued, and 
upper hemicontinuous. For any 𝜇 ∈ΔΘ, the set 𝐹 ∗(𝜇) contains the payoff vector associated with player 1 playing the minmax mixed 
strategy for 𝑢1 and player 2 playing a minmax mixed strategy for ∫Θ 𝑢2(⋅, 𝜃)d𝜇(𝜃), and so 𝐹 ∗ is nonempty-valued. Therefore, 𝐹 ∗ is 
a Kakutani correspondence. Because 𝐹 ∗

1 is a projection of 𝐹 ∗ to the first coordinate, which is a continuous transformation, 𝐹 ∗
1 is a 

Kakutani correspondence. □

Note that the proof of Lemma 4 shows that establishing the existence of an equilibrium (i.e., 𝐹 ∗
1 is non-empty valued) with state-

independent informed-player preferences is trivial, unlike in the case with general payoffs.18 We are now ready to prove our main 
result, Proposition 1.

Proof of Proposition 1. Lemma 2 says (iii) implies (ii); and (ii) directly implies (i). Now suppose (iv) holds; let us see it implies (iii). 
Given (iv), the prior is in the closed convex hull of {𝐹 ∗

1 ∋ 𝑠1} ∶= {𝜇 ∈ΔΘ ∶ 𝑠1 ∈ 𝐹 ∗
1 (𝜇)}. Note, also, that {𝐹 ∗

1 ∋ 𝑠1} is compact, because 
𝐹 ∗
1 has a compact graph (by Lemma 4). Therefore, the closed convex hull of {𝐹 ∗

1 ∋ 𝑠1} equals the convex hull of {𝐹 ∗
1 ∋ 𝑠1}—this is 

a well-known consequence of Carathéodory’s theorem (see, for example, Theorem 17.2 in Rockafellar, 1997). Part (iii) then follows 
from the definition of the convex hull. Finally, to see (i) implies (iv), let 𝑠1 ∈ be an equilibrium 𝑃1-payoff. Lemma 1 delivers a 
bimartingale with initial value (𝜇0, 𝑠1) and terminal values in gr(𝐹 ∗

1 ). Then, by Lemma 3 and 4, some 𝑝 ∈ (𝜇0) exists that satisfies 
(2.1)—that is, (iv) holds too. □

To conclude the subsection, we note a consequence of the sufficiency of AMS equilibria: the set of equilibrium 𝑃1-payoffs can be 
computed directly by quasiconvexifying the correspondence 𝐹 ∗

1 .

Corollary 1. The set of equilibrium 𝑃1-payoffs is [𝑓 (𝜇0), 𝑓 (𝜇0)], where 𝑓 is the pointwise largest quasiconvex function below min𝐹 ∗
1 (⋅), 

and 𝑓 is the pointwise largest quasiconcave function above max𝐹 ∗
1 (⋅).

Proof. Proposition 1 establishes that 𝑠1 is an equilibrium 𝑃1-payoff if and only if some 𝑝 ∈ (𝜇0) exists that satisfies (2.1). The result 
then follows from Lemma 4 and Fact 1. □

The following example demonstrates how our characterization of equilibrium 𝑃1-payoffs and Corollary 1 constitute a substantial 
gain in tractability in computing the set of informed player’s equilibrium payoffs.

Example 1. Consider a seller of two essential oils, eucalyptus and rosehip, interacting with a repeat buyer concerned about longevity. 
Although aromatherapy using the appropriate oil will prolong the life of the buyer,19 he does not know which oil is effective. The 
seller, who knows which of the two oils is beneficial for the buyer, will recommend one of the two oils in each period. The seller 
does not incur any cost in making recommendations (nor does the recommendation directly affect the buyer’s payoffs). Suppose the 
seller’s profit from selling either oil is positive but selling rosehip is more profitable than eucalyptus oil. To capture such a situation, 
label the seller as player 1 and the buyer as player 2. Let 𝜃 = 1 (resp. = 0) denote the state in which rosehip (resp. eucalyptus) is 
effective for the buyer. Assume that each oil is initially believed to be equally likely to increase longevity. Let 1, 2, 0 denote the 
buyer respectively purchasing eucalyptus oil, rosehip oil, or not buying either, and 𝑒, 𝑟 denote the seller respectively recommending 
eucalyptus oil or rosehip oil. The seller’s payoff is simply 𝑎2 ∈ {0, 1, 2}. The buyer, on the other hand, would like to purchase the oil 

18 Simon et al. (1995) provides a proof of the existence of an equilibrium in the general payoff case.
5

19 This paper does not provide medical advice. The reader should consult a naturopath (or a doctor).
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Fig. 2.1. Aromatherapy. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

that increases longevity with sufficiently high probability and otherwise not purchase anything at all; in particular, the buyer buys 
rosehip (resp. eucalyptus) oil only if he believes with probability above 34 that 𝜃 = 1 (resp. 𝜃 = 0) meaning that the oil that in fact 
increases longevity is rosehip (resp. eucalyptus). Fig. 2.1 shows the payoffs associated with each action under each state (note seller’s 
action 𝑎1 ∈ {𝑒, 𝑟} does not affect payoffs), the buyer’s best response as a function of his belief that the effective oil is rosehip, 𝜇(1), 
and the seller’s value correspondence, 𝐹 ∗

1 , and functions 𝑓 (in blue) and 𝑓 (in red) as defined in Corollary 1.

Corollary 1 immediately gives that the set of equilibrium payoffs for the buyer is the interval [0, 1].20 □

2.2. Equilibrium payoff vectors and the uninformed player’s equilibrium payoffs

We emphasize that Proposition 1 applies to the informed player’s equilibrium payoffs and not the equilibrium payoff vectors or 
the uninformed player’s equilibrium payoffs. To demonstrate, we adapt examples with state-independent sender preferences from the 
cheap-talk literature.21

The first example, adapted from Aumann and Hart (2003), demonstrates some equilibrium payoff vector exists that is not an AMS-

equilibrium payoff vector. Nevertheless, the set of equilibrium 𝑃 𝑗-payoffs in this example coincides with the set of AMS-equilibrium 
𝑃 𝑗-payoffs for each player 𝑗 ∈ {1, 2}. The second example is adapted from Lipnowski and Ravid (2020). We show this example admits 
an equilibrium 𝑃2-payoff that is not attainable in any AMS equilibrium. The third and the last examples show that equilibrium payoff 
vectors and equilibrium 𝑃2-payoffs exist that cannot be attained if the number of communication stages is bounded. Taken together, 
the examples demonstrate that, whereas assuming player 1’s preferences are state independent simplifies the characterization of 
equilibrium 𝑃1-payoffs, the same simplification does not apply to the set of attainable equilibrium payoff vectors or the set of 
equilibrium 𝑃2-payoffs.

Example 2 (Example 2.6 in Aumann and Hart, 2003). There are two equally likely states, Θ ∶= {0, 1}, and player 2 has five actions, 
𝐴2 ∶= {𝐿𝐿, 𝐿, 𝐶, 𝑅, 𝑅𝑅}. Fig. 2.2 shows the payoffs associated with each action under each state, player 2’s best response as a 
function of his belief that the state is 1, 𝜇(1), and player 1’s value correspondence, 𝐹 ∗

1 . □

20 More generally, given binary state Θ ∶= {0, 1}, Corollary 1 implies the set of equilibrium 𝑃1-payoffs is the interval [𝑓 (𝜇0), 𝑓 (𝜇0)], where

𝑓 (𝜇0) = max
{

min
𝜇∶𝜇(1)∈[0,𝜇0(1)]

min𝐹 ∗
1 (𝜇), min

𝜇∶𝜇(1)∈[𝜇0(1),1]
min𝐹 ∗

1 (𝜇)
}

, 𝑓 (𝜇0) = min
{

max
𝜇∶𝜇(1)∈[0,𝜇0(1)]

max𝐹 ∗
1 (𝜇), max

𝜇∶𝜇(1)∈[𝜇0 (1),1]
max𝐹 ∗

1 (𝜇)
}

.

Thus, the ability to restrict attention to AMS equilibria constitutes a substantial tractability gain in computing the range of equilibrium 𝑃1-payoffs.
21 Unlike in cheap-talk games, our environment has no explicit communication technology. We therefore adapt the original examples by allowing the informed 
6

player to have at least two actions that lead to the same stage payoffs.
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Fig. 2.2. Example 2.6 in Aumann and Hart (2003).

By Proposition 1, any 𝑠1 ∈ [0, 3] is an equilibrium 𝑃1-payoff if it satisfies (2.1) for some information policy. Since 𝐹 ∗
1 is symmetric 

around the prior, it follows that any 𝑠1 ∈ [0, 3] can be obtained by a binary-support information policy that satisfies (2.1). Thus, any 
𝑠1 ∈ [0, 3] is an equilibrium 𝑃1-payoff.22

Example 3. We now claim that (2, 8) is an equilibrium payoff vector of this game that is not an AMS-equilibrium payoff vector. As 
explained in Aumann and Hart (2003), (2, 8) can be attained in an equilibrium in which players first perform a jointly controlled 
lottery with equal probabilities,23 and depending on the outcome of the jointly controlled lottery, player 1 either fully reveals the 
state yielding a payoff of (1, 10),24 or partially reveals the state such that player 2’s posterior belief, 𝜇(1), is either 14 or 34 yielding 
a payoff of (3, 6).25 To see why (2, 8) cannot be an AMS-equilibrium payoff vector, note first that, because players do not ignore 
player 2’s action in responding to the lottery, jointly controlled lotteries can only occur after the initial communication stage in any 
AMS-equilibrium. To induce a payoff of 2 for player 1 in an AMS equilibrium, the posterior belief for player 2 must therefore always 
be one of 15 , 38 , 58 , or 45 . However, with such beliefs, player 2’s expected payoffs are strictly below 8. Hence, it follows that (2, 8)
cannot be an AMS-equilibrium payoff vector. □

In the previous example, observe that the set of equilibrium 𝑃2-payoffs and the set of AMS-equilibrium 𝑃2-payoffs coincide.26

The following example shows that this observation does not hold generally.

Example 4 (Appendix C.3 in Lipnowski and Ravid, 2020). There are two possible states, Θ ∶= {0, 1}, and the prior belief is that the 
state is 1 with probability 18 . Player 2 has four actions, 𝐴2 ∶= {𝓁, 𝑏, 𝑡, 𝑟}. Fig. 2.3 shows the payoffs associated with each action under 
each state, player 2’s best response as a function of his belief that the state is 1, 𝜇(1), and player 1’s value correspondence, 𝐹 ∗

1 . By 
Proposition 1 (because 𝐹 ∗

1 (𝜇) = {1} for any 𝜇(1) ≤ 1
8 ) or by Corollary 1 (because [𝑓 (𝜇0), 𝑓 (𝜇0)] = {1}), player 1’s payoff must be 1

in any AMS equilibrium (and, hence, this is also the unique equilibrium 𝑃1-payoff). Moreover, in any AMS equilibrium, player 2’s 

22 The result is also immediate from Corollary 1 because [𝑓 (𝜇0), 𝑓 (𝜇0)] = [0, 3] in the example.

23 For example, player 1 chooses first-stage action uniformly and player 2 chooses first-stage action uniformly among {𝐿𝐿, 𝑅𝑅}. Then, player 1 fully reveals if and 
only if 𝑎11 = 1 or 𝑎12 = 𝐿𝐿, and partially reveals (in the manner specified below) if 𝑎11 = 0 and 𝑎12 = 𝑅𝑅. Notice how the jointly controlled lottery is playing the role of 
a public randomization device.
24 For example, player 1 chooses 𝑎21 = 𝜃 if and only if the state is 𝜃 ∈Θ.
25 For example, player 1 chooses 𝑎21 = 1 with probability 1

4
if the state is 1 and with probability 3

4
if the state is 0.

26 To see this, observe that, in any equilibrium, player 2’s payoff must lie in [5, 10]. As already mentioned, any 𝑠1 ∈ [0, 3] can be achieved by inducing a symmetric 
7

posterior belief around 1
2
. Finally, observe that such a distribution over posterior beliefs can induce any expected payoff for player 2 in [5, 10].
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Fig. 2.3. Example in Appendix C.3 in Lipnowski and Ravid (2020).

maximum payoff is − 1
24 , corresponding to a distribution over beliefs 𝜇(1) = 0 with probability 56 and 𝜇(1) = 3

4 with probability 16 .27

However, as explained in Lipnowski and Ravid (2020), players may perform a jointly controlled lottery (with equal probabilities) 
following realization of posterior belief 34 (vertical arrows in the figure), and player 1 could further communicate (upper horizontal 
arrows in the figure) so that player 2’s payoff will be supported by the solid dots as shown in the figure, which must yield a strictly 
higher payoff than − 1

24 . Such splits (called diconvexifications) are allowed under Hart’s (1985) characterization, and it follows that 
the resulting payoff for player 2 is an equilibrium 𝑃2-payoff. Thus, some equilibrium 𝑃2-payoff exists that is not an AMS-equilibrium 
𝑃2-payoff. □

In the case when the uninformed player’s preference is state independent, Shalev (1994) shows that every equilibrium payoff vector 
is attainable in some AMS equilibrium in which the informed player fully reveals the state to the uninformed player. In contrast, when 
it is the informed player’s preference that is state independent, not all equilibrium 𝑃1-payoffs can be attained in a fully revealing AMS 
equilibrium. For instance, Example 2 shows that attainable payoffs for the informed player (e.g., 𝑠1 = 5) exist that are unattainable 
in a fully revealing AMS equilibrium. Example 4 is even more extreme in that it does not admit any fully revealing AMS equilibrium. 
Consequently, none of the informed player’s equilibrium payoffs can be attained in a fully revealing AMS equilibrium.

The payoffs considered in the previous examples, while not achievable as an AMS-equilibrium payoff vector or equilibrium 𝑃2-

payoff, are nevertheless achievable through finite alternations of stages of communication followed by stages of coordination. The 
next example demonstrates that, even when the informed player’s payoffs are known, some equilibrium 𝑃2-payoff exists that cannot 
be obtained if the alternations are bounded. The example is inspired by Forges’ (1984) “four frogs” game that generates the geometric 
structure from Example 2.5 in Aumann and Hart (1986). An implication of the example is that payoff vectors from equilibria in which 
players stop communicating information after a finite number of stages do not characterize the set of equilibrium payoff vectors (even) 
when the informed player’s payoffs are known.

Example 5 (“Four Frogs” with known informed player’s payoffs). There are two equally likely states, Θ ∶= {0, 1}, and player 2 has six 
actions, 𝐴2 ∶= {𝓁𝓁, 𝓁, 𝑏, 𝑡, 𝑟, 𝑟𝑟}. Fig. 2.4 shows the payoffs associated with each action under each state, player 2’s best response as 
a function of his belief that the state is 1, 𝜇(1), and player 1’s value correspondence, 𝐹 ∗

1 .

By Proposition 1 (or Corollary 1), it is immediate from the figure that the interval [ 13 , 23 ] is the set of equilibrium 𝑃1-payoffs. 
Observe further that in any AMS equilibrium in which player 1 obtains a payoff of 𝑠1 ∈ ( 13 , 23 ), player 2’s payoff must be zero since 
any information policy that satisfies condition (2.1) must have support in [ 13 , 23 ]. However, an equilibrium exists with equilibrium 
8

27 For example, player 1 chooses 𝑎11 = 1 with probability 1 if the state is 1 and with probability 1
21

if the state is 0.
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Fig. 2.4. “Four Frogs” with known informed player’s payoffs.

𝑃1-payoff of 23 in which player 2’s payoff is 1 > 0.28 Moreover, one can show 𝑠2 = 1 is the maximum payoff that player 2 can attain 
in any AMS equilibrium.

We will now argue that player 2 can in fact obtain a payoff of 2 in an equilibrium and that this payoff can be attained only with 
infinite stages of communication. Define 𝐿 ⊆ ΔΘ ×[0, 1] to be the set consisting of the “lily pads” on which the frogs can “land”; i.e., a 
collection of points in ΔΘ × [0, 1] corresponding to {(0, 23 ), (

1
3 , 0), ( 23 , 1), (1, 13 )} in the second figure. We claim that an equilibrium that 

yields player 1 a payoff of 𝑠1 gives the highest payoff for player 2 if and only if a bimartingale exists with initial value (𝜇0 , 𝑠1) with 
terminal values in 𝐿. As is well known (Forges, 1984; Aumann and Hart, 1986), no bimartingale with finite stages of communication 
can be supported on 𝐿. It follows that no finite number of stages of communication is sufficient to yield the player 2 preferred 
equilibrium payoff.

Toward proving the claim, define a bi-affine function 𝑢2 ∶ gr(𝐹 ∗
1 ) →ℝ that is continuous on gr(𝐹 ∗

1 ) as 𝑢2(𝜇, 𝑠1) ∶= 2 − 6[2𝜇(1) −
1](2𝑠1 − 1). Let 𝑢∗2 ∶ ΔΘ → ℝ be such that 𝑢∗2(𝜇) denotes player 2’s payoff from best responding to belief 𝜇 ∈ ΔΘ so that 𝑢∗2(𝜇) =
[|12𝜇(1) − 6| − 2]+. Notice that 𝑢2(𝜇, 𝑠1) = 𝑢∗2(𝜇) for any (𝜇, 𝑠1) ∈ 𝐿 and 𝑢2(𝜇, 𝑠1) > 𝑢∗2(𝜇) for any (𝜇, 𝑠1) ∈ gr(𝐹 ∗

1 )∖𝐿.29 Consider any 
bimartingale ((𝜇𝑡, 𝑠𝑡))∞

𝑡=1 with initial value (𝜇0, 𝑠1). Then,

𝔼
[
𝑢∗2 (𝜇

∞)
] ≤ 𝔼

[
𝑢2

(
𝜇∞, 𝑠∞1

)]
= lim

𝑡→∞
𝔼
[
𝑢2

(
𝜇𝑡, 𝑠𝑡

)]
= 𝑢2

(
𝜇0, 𝑠1

)
= 2,

where 𝜇∞ ∶= lim𝑡→∞ 𝜇𝑡 and 𝑠∞1 ∶= lim𝑡→∞ 𝑠𝑡
1. The first and second equalities in the above chain follow from 𝑢2 being continuous and 

bi-affine, respectively. Observe further that the inequality holds with equality if and only if (𝜇∞, 𝑠∞1 ) ∈ 𝐿 almost surely. □

3. Discussion

In this section, we briefly discuss the implications of introducing a public randomization device to our model, the length of the 
communication phase necessary in an AMS equilibrium, and an application of our main result to patient limits of games with impatient 
players.

Public randomization device As explained above, our game does not include a public randomization device. However, some modelers 
may wish to include such devices in their games. We now explain what happens if we modify our game to include a public ran-

domization device. Clearly, for every equilibrium in the original game, there is a corresponding equilibrium of the modified game. 
Therefore, we can define an AMS equilibrium in the modified game to be any equilibrium that is attainable as an AMS equilibrium 
in the original game. Formally, this definition reduces to requiring the equilibrium to satisfy conditions (i) and (ii) from the original 

28 Induced by an information policy with support {0, 2
3
}.

29 To see the latter, observe first that every (𝜇, 𝑠1) such that (𝜇(1), 𝑠1) ∈ [ 1 , 2 ]2 has 𝑢2(𝜇, 𝑠1) ≥ 2 −6 ⋅ 1 ⋅ 1 = 4
> 0 = 𝑢∗(𝜇). Consequently, every other (𝜇, 𝑠1) ∈ gr(𝐹 ∗)∖𝐿
9

3 3 3 3 3 2 1
is in the interior of a line segment on which 𝑢2 is affine and above but not identically equal to the convex function (�̃�, ̃𝑠1) ↦ 𝑢∗2(�̃�)—and therefore has 𝑢2(𝜇, 𝑠1) > 𝑢∗2(𝜇).
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definition, as well as a requirement that no player ever conditions their actions on the public randomization device. Using this def-

inition, Proposition 1 extends to the modified game; i.e., in the modified game, every equilibrium 𝑃1-payoff is an AMS-equilibrium 
𝑃1-payoff. The reason is that every equilibrium payoff vector attainable with the use of such a public randomization device is also 
attainable without it; instead of relying on public randomization, players can use jointly controlled lotteries. In other words, adding 
a public randomization device does not expand the set of equilibrium payoffs.

Length of communication phase Recall that the definition of an AMS equilibrium does not specify a bound on the number of stages, 𝓁, 
that is used for communication; i.e., 𝓁 can be any finite number of periods. The reason is purely combinatorial. The required length 
of the communication phase depends on the number of actions the informed player can use as signals vis-à-vis the support of the 
information policy associated with an AMS equilibrium. In particular, if a target information policy 𝑝 ∈ (𝜇0) needs to be supported 
on 𝑛 beliefs, then 𝓁 has to be at least ⌈log|𝐴1|(𝑛)⌉ (and any such 𝓁 can implement an information policy with 𝑛 elements in its support). 
It therefore follows that the communication phase in the AMS equilibrium can be one period long (i.e., 𝓁 = 1) if |𝐴1| ≥ |Θ|.
Patient limits of games with impatient players Our analysis above focuses on patient players, and we adopt Aumann and Maschler’s 
(1966) approach of players caring only about their long-run average payoffs. An alternative approach is to consider the patient 
limit of environments with impatient players; that is, players who care about their expected discounted payoffs but discount future 
payoffs by very little. In the appendix, we provide conditions under which these patient limits include the set of payoffs identified in 
Proposition 1.
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Appendix A. Patient limit of games with impatient players

We now modify the game from the main body of the paper by assuming that players discount future payoffs while maintaining 
all other features. Specifically, for any 𝛿 ∈ (0, 1), we say that a strategy profile 𝜎 is a 𝛿-equilibrium if 𝜎 is a sequential equilibrium of 
the infinitely repeated game in which players 1 and 2’s expected payoffs are evaluated, respectively, as

�̃�1 (𝜎, 𝛿) ∶= 𝔼𝜎,𝜇0

[
(1 − 𝛿)

∞∑
𝑡=1

𝛿𝑡𝑢1
(
𝑎𝑡
)]

, �̃�2 (𝜎, 𝛿) ∶= 𝔼𝜎,𝜇0

[
(1 − 𝛿)

∞∑
𝑡=1

𝛿𝑡𝑢2
(
𝑎𝑡, 𝜃

)]
.

A vector 𝑠 = (𝑠1, 𝑠2) ∈ ℝ2 is a 𝛿-equilibrium payoff vector if a 𝛿-equilibrium 𝜎 exists such that 𝑠 = (�̃�1(𝜎, 𝛿), �̃�2(𝜎, 𝛿)). For 𝑗 ∈ {1, 2}, 
𝑠𝑗 ∈ℝ is a 𝛿-equilibrium 𝑃 𝑗-payoff if a 𝛿-equilibrium 𝜎 exists for which 𝑠𝑗 = �̃�𝑗 (𝜎, 𝛿).

The following claim provides conditions under which any equilibrium 𝑃1-payoff (in the game with patient players) can be ap-

proximated by a patient limit (i.e., 𝛿 → 1) of 𝛿-equilibrium 𝑃 1-payoffs (in the game with impatient players).

Claim A.1. Suppose 𝑢2(⋅) is convex and 𝐹 ∗(𝜇) has nonempty interior for all 𝜇 ∈ΔΘ. Then:

(i) The set of equilibrium 𝑃1-payoffs (in the game with patient players) for prior 𝜇0 is a nondegenerate interval [𝑠1, 𝑠1].
(ii) Any 𝑠1 ∈ (𝑠1, 𝑠1) admits 𝛿 ∈ [0, 1) such that 𝑠1 is a 𝛿-equilibrium 𝑃1-payoff for all 𝛿 ∈ [𝛿, 1).

Toward proving the claim above, define 𝐹 ∗∗ ∶ ΔΘ ⇉2 as

𝜇 ↦
{(

𝑠1, 𝑠2
)
∈ 𝐹 (𝜇) ∶ 𝑠1 ≥ 𝑢1, 𝑠2 ≥ 𝑢2 (𝜇)

}
.

We first show that any payoff vector in the interior of 𝐹 ∗∗ can be attained as a non-revealing 𝛿-equilibrium of a game with prior 𝜇
10

for sufficiently high 𝛿.
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Lemma A.1. Suppose 𝜇 ∈ ΔΘ and 𝑠𝜇 ∈2 is an interior point in 𝐹 ∗∗(𝜇). Then, some 𝜖 > 0 and 𝛿 ∈ (0, 1) exist such that every 𝑠 ∈2

with ‖𝑠 − 𝑠𝜇‖∞ ≤ 𝜖 and every 𝛿 ∈ [𝛿, 1) admit some non-revealing 𝛿-equilibrium 𝜎(𝜇, 𝑠, 𝛿) of game with prior 𝜇 and discount factor 𝛿 with 
𝛿-equilibrium payoff vector 𝑠.

Proof. In what follows, say (given fixed 𝜇) that 𝛿 ∈ (0, 1) is patient enough for 𝑠 ∈2 if every 𝛿 ∈ [𝛿, 1) admit some non-revealing 
𝛿-equilibrium 𝜎(𝜇, 𝑠, 𝛿) of game with prior 𝜇 and discount factor 𝛿 with payoff vector 𝑠. We aim to show some 𝜖 > 0 and 𝛿 ∈ (0, 1)
exist such that 𝛿 is patient enough for every 𝑠 ∈2 with ‖𝑠 − 𝑠𝜇‖∞ ≤ 𝜖.

Observe first that there is a one-to-one correspondence between non-revealing equilibria of the incomplete information game 
with prior 𝜇 and equilibria of the complete information game in which player 2’s payoffs are given by 𝔼𝜇[𝑢2(⋅, 𝜃)]. We now explain 
how to prove the result by appealing to the mixed-minmax perfect monitoring theorem for the complete information game. Let 
int 𝐹 ∗∗(𝜇) denote the interior of the set 𝐹 ∗∗(𝜇) ⊂ ℝ2. For any 𝑠 ∈ int 𝐹 ∗∗(𝜇), Proposition 3.8.1 in Mailath and Samuleson (2006)

delivers 𝛿(𝑠) ∈ (0, 1) such that every 𝛿 ∈ (𝛿(𝑠), 1) has a subgame perfect equilibrium (without a public randomization device) of the 
repeated game with discount factor 𝛿 giving payoffs 𝑠—or equivalently, that 𝛿(𝑠) is patient enough for 𝑠. It remains to argue that we 
may pick the same 𝛿 for every 𝑠 ∈2 with ‖𝑠 − 𝑠𝜇‖∞ ≤ 𝜖 for some 𝜖 > 0. To make this argument, we rely on the proof of Proposition 
3.8.1 in Mailath and Samuleson (2006), which identifies a 𝛿(𝑠) that is in fact patient enough for all �̃� ∈2 such that �̃� ≥ 𝑠.30 To see 
how to use Mailath and Samuleson’s (2006) proof to make our argument, note that because 𝑠𝜇 ∈ int 𝐹 ∗∗(𝜇), we can always find an 
𝜖 > 0 such that 𝑠∗ = (𝑠𝜇

1 − 𝜖, 𝑠𝜇

2 − 𝜖) ∈ int 𝐹 ∗∗(𝜇). Therefore, we can apply the proof of Proposition 3.8.1 in Mailath and Samuleson 
(2006) to 𝑠∗ ∈ int 𝐹 ∗∗(𝜇) to obtain a 𝛿(𝑠∗) that is patient enough for 𝑠∗. Because 𝑠 ≥ 𝑠∗ for all 𝑠 ∈2 such that ‖𝑠 − 𝑠𝜇‖∞ ≤ 𝜖, we 
conclude that the 𝛿(𝑠∗) has the desired properties for all such vectors 𝑠. □

Proof of Claim A.1. (i) That the set of equilibrium 𝑃1-payoff is a compact interval follows from Corollary 1. To see this interval is 
nondegenerate, note that it contains 𝐹 ∗

1 (𝜇0), which has nonempty interior because 𝐹 ∗(𝜇0) does by hypothesis.

(ii) Take any 𝑠1 ∈ (𝑠1, 𝑠1). Below, we argue some finite-support 𝑝 ∈ (𝜇0) exists such that every 𝜇 in the support of 𝑝, denoted 𝐷, 
has 𝑠1 ∈ int 𝐹 ∗

1 (𝜇). Before doing so, let us explain how the existence of such a 𝑝 enables the construction of a 𝛿-equilibrium yielding a 
𝑃1-payoff of 𝑠1 for all sufficiently high discount factors 𝛿. Note first that, for each 𝜇 ∈ 𝐷, we have 𝑠1 ∈ int 𝐹 ∗

1 (𝜇) and 𝐹 ∗(𝜇) is convex. 
Therefore, each 𝜇 ∈ 𝐷 admits some 𝑠𝜇

2 such that 𝑠𝜇 = (𝑠1, 𝑠
𝜇

2 ) ∈ int 𝐹 ∗(𝜇). But then, Lemma A.1 delivers some 𝜖𝜇 > 0 and 𝛿𝜇 ∈ (0, 1)
such that every payoff vector 𝑠 with ‖𝑠 − 𝑠𝜇‖∞ ≤ 𝜖𝜇 admits a non-revealing equilibrium of the game with prior 𝜇 and any discount 
factor 𝛿 ≥ 𝛿𝜇 that yields payoff vector 𝑠. For each 𝑠′1 ∈ [𝑠1 − 𝜖𝜇, 𝑠1 + 𝜖𝜇] and 𝛿 ∈ [𝛿𝜇, 1), let 𝜎(𝑠′1, 𝜇, 𝛿) denote said non-revealing 
𝛿-equilibrium generating payoff vector (𝑠′1, 𝑠

𝜇

2 ). Now, let 𝓁 = ⌈log|𝐴1| |𝐷|⌉, and let 𝛿 ∈ (0, 1) be such that 𝛿 ≥ 𝛿𝜇 for every 𝜇 ∈ 𝐷 and|||𝛿−𝓁 [𝑠1 − (
1 − 𝛿𝓁

)
𝑢1 (𝑎)

]
− 𝑠1

||| < 𝜖𝜇 ∀𝑎 ∈ 𝐴, ∀𝜇 ∈ 𝐷.

Such a 𝛿 exists because 𝐷 and 𝐴 are both finite and the left-hand side of the above inequality converges to zero as 𝛿 → 1. Because 
the 𝜖𝜇 -neighborhood of 𝑠1 is convex, it follows that �̃�1((𝑎𝑡)𝑡) = 𝛿−𝓁[𝑠1 − (1 − 𝛿) 

∑𝓁
𝑡=1 𝛿𝑡−1𝑢1(𝑎𝑡)] lives in this neighborhood for any 

sequence of action profiles (𝑎𝑡)𝓁
𝑡=1 ∈ 𝐴𝓁 . We can therefore construct our 𝛿-equilibrium (for 𝛿 ≥ 𝛿) as follows. In the first 𝓁 periods, 

player 1 plays in a way (while ignoring player 2’s actions) that generates belief distribution 𝑝 for player 2; without loss, have her 
do so in such a way that all action sequences in 𝐴𝓁

1 have strictly positive probability. In each of the first 𝓁 periods, have player 2
choose any myopic best response to any consistent beliefs (which exists because 𝐴2 is finite). Now, let 𝜇((𝑎𝑡

1)𝑡) ∈ 𝐷 denote player 
2’s belief (derived from Bayesian updating) following (𝑎𝑡

1)𝑡 ∈ 𝐴𝓁
1 . Then, following any sequence of action profiles (𝑎𝑡)𝓁

𝑡=1 ∈ 𝐴𝓁 , the 
continuation strategy profile is given by 𝜎(�̃�1((𝑎𝑡)𝑡), 𝜇((𝑎𝑡

1)𝑡), 𝛿). This strategy profile is a 𝛿-equilibrium by construction. In particular, 
the continuation play after the first 𝓁 periods constitutes a non-revealing 𝛿-equilibrium, and the payoff to player 1 is tailored to make 
player 1 indifferent to the first 𝓁 periods’ play.

All that remains is to show some finite-support 𝑝 ∈ (𝜇0) exists such that every 𝜇 in the support of 𝑝 has 𝑠1 ∈ int 𝐹 ∗
1 (𝜇). To that 

end, let us first show that 𝐹 ∗ is a continuous and nonempty-, compact-valued correspondence. Since 𝐹 ∗ is a Kakutani correspondence, 
we need only show that 𝐹 ∗ is lower hemicontinuous. To that end, note that (because 𝑢2 is convex) the correspondence 𝐹 ∗ is obtained 
as intersection of 𝐹 (⋅) and 𝐹 (⋅) = {𝑠 ∈2 ∶ 𝑠1 ≥ 𝑢1, 𝑠2 ≥ 𝑢2(⋅)} = {𝑠 ∈2 ∶ 𝑠1 ≥ 𝑢1, 𝑠2 ≥ vex𝑢2(⋅)}. Because 𝐹 and 𝐹 are convex-

valued, and their intersection has a nonempty interior by hypothesis, lower hemicontinuity of 𝐹 ∗ follows if 𝐹 and 𝐹 are both lower 
hemicontinuous (Stokey et al., 1989, Exercise 3.12d). Since 𝐹 is the convex hull of the correspondence formed by a finite number of 
continuous functions, 𝐹 is also continuous (Aliprantis and Border, 2006, Theorem 17.37); in particular, 𝐹 is lower hemicontinuous. 
That 𝐹 is lower hemicontinuous follows from the fact that 𝑢2(⋅) is continuous. Therefore, 𝐹 ∗ is continuous and nonempty-, compact-

valued, and so Berge’s theorem gives that the functions min𝐹 ∗
1 , max𝐹 ∗

1 ∶ ΔΘ → are continuous. Because ΔΘ is compact and every 
𝜇 ∈ΔΘ has max𝐹 ∗

1 (𝜇) > min𝐹 ∗
1 (𝜇) (because 𝐹 ∗(𝜇) has nonempty interior) some 𝜖 > 0 then exists such that max𝐹 ∗

1 (𝜇) −min𝐹 ∗
1 (𝜇) ≥

2𝜖 for all 𝜇 ∈ ΔΘ. Making 𝜖 smaller if needed, we may further assume 𝑠1 ∈ [𝑠1 + 𝜖, 𝑠1 − 𝜖]. Now, the correspondence 𝐹 𝜖
1 ∶ ΔΘ ⇉

given by 𝐹 𝜖
1 (𝜇) ∶= [min𝐹 ∗

1 (𝜇) + 𝜖, max𝐹 ∗
1 (𝜇) − 𝜖] is a Kakutani correspondence by construction. Let 𝑆𝜖

1 denote the set of 𝑠′1 for which 
some 𝑝 ∈ (𝜇0) exists such that

30 Specifically, the candidate 𝛿-equilibrium payoff vector 𝑠 only appears twice in the proof. First, at the beginning of the proof when choosing 𝑠′ ∈ int 𝐹 ∗∗(𝜇) and 
𝑒 > 0 such that (i) an open ball of radius 4𝑒 entered around 𝑠′ is contained in int 𝐹 ∗∗(𝜇) and (ii) 𝑠𝑖 − 𝑠′

𝑖
≥ 2𝑒 for each 𝑖 ∈ {1, 2}. Clearly, if ̃𝑠 ≥ 𝑠, then the same 𝑠′ satisfies 

the two conditions. The second time 𝑠𝜇 appears is when checking that players would not deviate from on-path play. But if the players do not have the incentive to 
11

deviate under the on-path payoff of 𝑠, then they would not deviate under �̃� ≥ 𝑠 a fortiori.
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Fig. A.1. Example A.1.

𝑝
({

min𝐹 ∗
1 (𝜇) + 𝜖 ≤ 𝑠1 ≤max𝐹 ∗

1 (𝜇) − 𝜖
})

= 1.

Because Θ is finite, Theorem 17.2 in Rockafellar (1997) implies one can further take 𝑝 to have finite support. Applying Theorem 1 
(or 2) from Lipnowski and Ravid (2020) to the correspondences 𝐹 𝜖

1 and −𝐹 𝜖
1 , we obtain that the maximum and minimum of 𝑆𝜖

1 are 
𝑠1 − 𝜖 and 𝑠1 + 𝜖, respectively. We can also apply Corollary 3 from Lipnowski and Ravid (2020) to 𝐹 𝜖

1 to learn 𝑆𝜖
1 is convex. Therefore, 

𝑠1 ∈ 𝑆𝜖
1 , and so some 𝑝 with the desired properties exists. □

We provide a game that satisfies the conditions stated in Claim A.1 in the example below.

Example A.1. There are two states, Θ ∶= {0, 1}, and players 1 and 2 both have two actions 𝐴1 ∶= {𝑇 , 𝐵} and 𝐴2 ∶= {𝐿, 𝑅}, respec-

tively. Fig. A.1 shows the payoffs associated with each action profile, player 2’s expected payoffs associated with each action profile, 
player 2’s maxmin payoff 𝑢2(⋅), as well as 𝐹 ∗

1 . Observe that 𝑢2(⋅) is convex. One can also show that 𝐹 ∗(𝜇) has nonempty interior for 
all 𝜇 ∈ ΔΘ. By Lemma 2, every 𝑠1 ∈ [3, 4] is an AMS-equilibrium 𝑃1-payoff, and Proposition 1 gives us that any such 𝑠1 is also an 
equilibrium 𝑃1-payoff. Claim A.1 further gives that any 𝑠1 ∈ (3, 4) is a 𝛿-equilibrium 𝑃1-payoff for sufficiently large discount rate 
𝛿. □
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