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CHEAP TALK WITH TRANSPARENT MOTIVES
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We study a model of cheap talk with one substantive assumption: The sender’s pref-
erences are state independent. Our main observation is that such a sender gains cred-
ibility by degrading self-serving information. Using this observation, we examine the
sender’s benefits from communication, assess the value of commitment, and explicitly
solve for sender-optimal equilibria in three examples. A key result is a geometric char-
acterization of the value of cheap talk, described by the quasiconcave envelope of the
sender’s value function.
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1. INTRODUCTION

HOW MUCH CAN AN EXPERT BENEFIT from strategic communication with an uninformed
agent? A large literature, starting with Crawford and Sobel (1982) and Green and Stokey
(2007), has studied this question, focusing on the case in which the expert’s preferences
depend on the state. However, many experts have state-independent preferences: Sales-
people want to sell products with higher commissions; politicians want to get elected;
lawyers want favorable rulings; and so on. This paper analyzes the extent to which such
experts benefit from cheap talk.

We consider a general cheap-talk model with one substantive assumption: The sender
has state-independent preferences. Thus, we start with a receiver facing a decision prob-
lem with incomplete information. The relevant information is available to an informed
sender who cares only about the receiver’s action. Wanting to influence this action, the
sender communicates with the receiver using costless messages.

Other papers have studied cheap-talk communication between a sender and a receiver
when the former has state-independent preferences.1 The most relevant is Chakraborty
and Harbaugh (2010). Looking at a multidimensional specialization of our model, they
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showed the sender can always communicate some information credibly and influence the
receiver’s actions by trading off dimensions.2  Chakraborty and Harbaugh (2010) also ob-
served that a need for sender indifference creates a role for quasiconvexity and quasi-
concavity. In particular, their second theorem says that, in their environment, the sender
likes (dislikes) influencing the receiver in equilibrium whenever the sender’s utility is a
quasiconvex (quasiconcave) function of the receiver’s action.

Our main insight is that a sender with state-independent preferences gains credibility
by degrading self-serving information, that is, by making messages that serve as profitable
deviations less informative. To derive this insight, we take a belief-based approach, as is
common in the literature on communication.3 Thus, we summarize communication via
its induced information policy, a distribution over receiver posterior beliefs that averages
to the prior. Say that a payoff s is sender beneficial if it is larger than the sender’s no-
information payoff, and securable if the sender’s lowest ex post payoff from some infor-
mation policy is at least s. Theorem 1 shows a sender-beneficial payoff s can be obtained
in equilibrium if and only if s is securable. Thus, although the information policy securing
s need not itself arise in equilibrium, its existence is sufficient for the sender to obtain a
payoff of s in some equilibrium. Intuitively, the securing policy leads to posteriors that
provide too much sender-beneficial information to the receiver. By degrading said in-
formation posterior by posterior, one can construct an equilibrium information policy
attaining the secured value.

To illustrate our main result, consider a political think tank that advises a lawmaker.
The lawmaker is contemplating whether to pass one of two possible reforms, denoted by
1 and 2, or to maintain the status quo, denoted by 0. Evaluating each proposal’s merits
requires expertise, which the think tank possesses. Given the think tank’s political lean-
ings, it is known to prefer certain proposals to others. In particular, suppose the status
quo is the think tank’s least preferred option and the second reform is the think tank’s fa-
vorite option. Hence, let a ∈ {0!1!2} represent both the lawmaker’s choice and the think
tank’s payoff from that choice. To choose to implement a reform, the lawmaker must be
sufficiently confident that the reform is good. Suppose one reform is good and one is
bad, where the state, θ ∈ {θ1! θ2}, indicates the identity of the good reform. The lawmaker
implements reform a whenever he assigns θa a probability strictly above 3

4 . At 3
4 , the law-

maker is indifferent between said reform and the status quo, which the lawmaker chooses
when neither reform is sufficiently likely to be good. Both reforms are equally likely to be
good under the prior.

Suppose the think tank could reveal the state to the lawmaker; that is, the think tank
recommends that the lawmaker implement 1 when the state is θ1 and implement 2 when
the state is θ2. Because following these recommendations is incentive-compatible for the
lawmaker, the think tank’s ex post payoff would be 1 when sending implement 1 and 2
when sending implement 2. By contrast, under no information, the think tank’s payoff is 0.
Thus, revealing the state secures the think tank a payoff of 1, which is higher than its
payoff under the prior. Notice that 1 is then the highest payoff that the think tank can
secure, because no information policy always increases the probability that the lawmaker
assigns to θ2. One can therefore apply Theorem 1 to learn two things: (i) 1 is an upper
bound on the think tank’s equilibrium payoffs, and (ii) we can achieve this bound via a

2See Battaglini (2002) and Chakraborty and Harbaugh (2007) for applications of this idea in the case of
state-dependent sender preferences.

3For example, see Aumann and Maschler (1995), Aumann and Hart (2003), Kamenica and Gentzkow
(2011), Alonso and Câmara (2016), and Ely (2017).
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message-by-message garbling of said protocol. For (ii), consider what happens when the
think tank sends the implement 2 message according to

P{implement 2|θ = θ1} = 1
3
!

P{implement 2|θ = θ2} = 1!

and sends implement 1 with the complementary probabilities. As with perfect state reve-
lation, choosing proposal 1 is the lawmaker’s unique best response to implement 1. How-
ever, given implement 2, the lawmaker assigns a probability of 3

4 to θ2. Being indifferent,
the lawmaker mixes between keeping the status quo and implementing 2 with equal prob-
abilities. Such mixing results in indifference by the think tank, yielding an equilibrium.

In the general model, Theorem 1 allows us to geometrically characterize the sender’s
maximal benefit from cheap talk and compare this benefit with her benefit under commit-
ment.4  Kamenica and Gentzkow (2011) characterized the sender’s benefit under commit-
ment in terms of her value function, that is, the highest value the sender can obtain from
the receiver’s optimal behavior given his posterior beliefs. Specifically, they showed the
sender’s maximal commitment value is equal to the concave envelope of her value func-
tion. As we show in Theorem 2, replacing the concave envelope with the quasiconcave
envelope gives the sender’s maximal value under cheap talk. Thus, the value of commit-
ment is the difference between the concave and quasiconcave envelopes of the sender’s
value function.

Figure 1 visualizes the geometric comparison between cheap talk and commitment in
the aforementioned think-tank example. Because the state is binary, the lawmaker’s belief
can be summarized by the probability it assigns to the second reform being good (θ = θ2).
Putting this probability on the horizontal axis, the figure plots the highest value the think
tank can obtain from uninformative communication, cheap talk, and commitment. That
is, the figure plots the think tank’s value function (left), along with its quasiconcave (cen-
ter) and concave (right) envelopes. The two envelopes describe how communication ben-
efits the think tank by allowing it to connect points on the value function’s graph. In con-
trast to communication with commitment, which enables the think tank to connect points

FIGURE 1.—The simple think-tank example. The dashed lines represent the highest value the think tank
can obtain from no information (left), cheap talk (center), and commitment (right).

4Our assumption of sender state-independent preferences is common in the literature on communication
with hard evidence (e.g., Glazer and Rubinstein (2004, 2006), Hart, Kremer, and Perry (2017), Rappoport
(2020)). Many such studies explore sufficient conditions for receiver- (rather than sender-) optimal equilibria
to replicate receiver (rather than sender) commitment.
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using any affine segment, only flat segments are allowed with cheap talk. The restriction to
flat segments comes from the think tank’s incentive constraints: Because the think tank’s
preferences are state independent, all equilibrium messages must yield the same payoff.
As such, the think tank can only connect points with the same payoff coordinate; that is,
only flat segments are feasible.

The geometric difference between cheap talk and commitment allows us to show that,
in finite settings, almost all priors fall into one of two categories: Either the sender can
get her first-best outcome with cheap talk, or she would strictly benefit from commitment.
One can see this categorization holds in the simple think-tank example for almost all be-
liefs by using Figure 1. The figure clearly shows that unless the second reform is never
good, the concave envelope lies above the quasiconcave envelope whenever the proba-
bility of the second reform being good is below 3

4 . Whenever the second reform is good
with probability 3

4 or above, the lawmaker is willing to implement the think tank’s favorite
reform under the prior, and so the two envelopes must coincide with the value function.

In Section 5, we use our results in three specific economic settings. In a richer version
of the above think-tank example, we show a think tank’s best equilibrium involves giving
the lawmaker noisy recommendations, where the noise is calibrated to make the law-
maker indifferent between the recommended reform and the status quo. We also study
a broker-investor relationship, in which an investor consults his broker about an asset,
and the broker earns a fee proportional to the investor’s trades. We identify a Pareto-
dominant equilibrium in which the broker tells the investor whether his holdings should
be above or below a fee-independent cutoff amount. Thus, the lower the broker’s fee,
the better off the investor, who pays less money for the same information. Lower fees
have an ambiguous effect on the broker because they reduce her income per trade but
increase equilibrium trade volume. We also conduct comparative statics in market volatil-
ity. Although higher volatility cannot hurt the broker, she strictly benefits from higher
volatility only if she can effectively communicate about it to the investor. The investor’s
attitude toward higher volatility is ambiguous because it changes both the investor’s prior
uncertainty and the usefulness of the broker’s information. Our third example is a sym-
metric version of the multiple-goods seller example of Chakraborty and Harbaugh (2010).
Specifically, we consider a seller who wants to maximize the probability of selling one of
her many products to a buyer. In this setting, we show the best the seller can do with
cheap talk is tell the buyer the identity of her best product. Moreover, we show being able
to benefit ex ante from providing the buyer with additional information about the best
product is a necessary and sufficient condition for the seller to benefit from commitment.

In Section 6.1, we revisit Chakraborty and Harbaugh (2010). We point out that, ab-
sent their specific parametric structure, Chakraborty and Harbaugh’s (2010) reasoning
shows the sender can influence the receiver’s estimate of any multidimensional statistic of
the state. Whenever this estimate coincides with the receiver’s best response, the sender
can also influence the receiver’s actions. Otherwise, Chakraborty and Harbaugh’s (2010)
reasoning delivers informative communication, which might not influence the receiver’s
actions, as long as three or more states exist.

To summarize, we contribute to the literature on cheap talk with state-independent
sender preferences in three ways. First, we identify the ability to reduce the informative-
ness of profitable messages as a key channel through which the sender gains credibility.
Using this channel, we obtain a complete characterization of the sender’s payoff set. Sec-
ond, we show quasiconcavity fully summarizes the sender’s ability to benefit from commu-
nication. Third, we apply our results to generate new insights in economic applications.
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2. CHEAP TALK WITH STATE-INDEPENDENT PREFERENCES

Our model is an abstract cheap-talk model with the substantive restriction that the
sender has state-independent preferences. Thus, we have two players: a sender (S, she)
and a receiver (R, he). The game begins with the realization of a random state, θ ∈ Θ,
which S observes. After observing the state, S sends R a message, m ∈ M . R then observes
m (but not θ) and decides which action, a ∈ A, to take. Whereas R’s payoffs depend on
θ, S’s payoffs do not.

We impose some technical restrictions on our model.5 Each of Θ, A, and M is a com-
pact metrizable space containing at least two elements, and M is sufficiently rich.6 The
state, θ, follows some full-support distribution µ0 ∈ $Θ, which is known to both players.
Both players’ utility functions are continuous, where we take uS : A → R to be S’s utility
and uR :A×Θ → R to be R’s.

We are interested in studying the game’s equilibria, by which we mean perfect Bayesian
equilibria. An equilibrium consists of three measurable maps: a strategy σ : Θ → $M for
S; a strategy ρ :M → $A for R; and a belief system β :M → $Θ for R; such that

1. β is obtained from µ0, given σ , using Bayes’s rule;7

2. ρ(m) is supported on arg maxa∈A
∫
Θ
uR(a! ·)dβ(·|m) for all m ∈M ; and

3. σ(θ) is supported on arg maxm∈M
∫
A
uS(·)dρ(·|m) for all θ ∈ Θ.

Any triple E = (σ!ρ!β) induces a joint distribution, PE , over realized states, messages,
and actions,8 which, in turn, induces (through β and ρ, respectively) distributions over
R’s equilibrium beliefs and chosen mixed action.

The following are a few concrete examples of our setting.

EXAMPLE 1: Consider the following richer version of the think-tank example from
the Introduction. Thus, S is a think tank that is advising a lawmaker (R) on whether
to pass one of n ∈ N reforms or to pass none; that is, the lawmaker chooses from
A = {0!1! ( ( ( !n}. A given reform i ∈ {1! ( ( ( !n} provides uncertain benefit θi ∈ [0!1] to
the lawmaker. From the lawmaker’s perspective, reforms are ex ante identical: Their ben-
efits are distributed according to an exchangeable prior µ0 over [0!1]n, and each entails an
implementation cost of c. Maintaining the status quo is costless but generates no benefits,
uR(0! θ) = 0. The think tank prefers higher-indexed reforms to lower-indexed ones, and
prefers some reform to no reform; that is, the think tank’s payoffs are given by a strictly
increasing function, uS :A → R, where we normalize uS(0)= 0.9 We analyze this example
in Section 5.1.

5Let us describe some notational conventions we adopt throughout the paper. For a compact metrizable
space Y , we let $Y denote the set of all Borel probability measures over Y , endowed with the weak* topology.
Given y ∈ Y , we let δy ∈ $Y denote a unit atom on y , δy{y} = 1. For γ ∈ $Y , we let suppγ denote the support
of γ. For a set X , a transition g :X → $Y , a point x̄ ∈X , and a Borel subset Ŷ ⊆ Y , we let g(Ŷ |x̄) := g(x̄)(Ŷ ).
For a set Z, a function h : X → Z, and a subset X̂ ⊆ X , we let h(X̂) := {h(x) : x ∈ X̂}. Finally, “co” refers to
the convex hull, and “co” refers to the closed convex hull.

6To simplify the statements of our results, we assume M ⊇A∪$A∪$Θ. S’s attainable payoffs would be the
same if we instead imposed either that |M| ≥ |A| or that Θ is finite and |M| ≥ |Θ|, by Proposition 2, Corollary 1,
and Carathéodory’s theorem.

7That is,
∫
Θ̂ σ(M̂|·)dµ0 =

∫
Θ

∫
M̂ β(Θ̂|·)dσ(·|θ)dµ0(θ) for every Borel Θ̂ ⊆Θ and M̂ ⊆M .

8Specifically, E = (σ!ρ!β) induces measure PE ∈ $(Θ × M × A), which assigns probability PE(Θ̂ × M̂ ×
Â) =

∫
Θ̂

∫
M̂ ρ(Â|·)dσ(·|θ)dµ0(θ) for every Borel Θ̂ ⊆Θ, M̂ ⊆M , Â⊆A.

9This example is related to, but formally distinct from, the respective models of Che, Dessein, and Kartik
(2013) and Chung and Harbaugh (2019). The former studies a project-selection model with state-dependent
preferences for both players, and the latter tests experimentally a binary-state project-selection model with a
stochastic receiver outside option.
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EXAMPLE 2: R is an investor consulting a broker (S) about an asset. The broker knows
the investor’s ideal position in the asset, θ ∈ Θ = [0!1], which is distributed according
to the atomless prior, µ0. The investor’s pre-existing position is a0 ∈ [0!1]. After con-
sulting his broker, the investor chooses a new position in the asset, a ∈ A = [0!1]. The
broker’s payoff accrues from brokerage fees proportional to the net volume of trade; that
is, uS(a)= φ|a−a0| for some φ> 0. The investor wants to match the ideal holdings level,
but must pay the broker’s fees: uR(a! θ) = − 1

2(a − θ)2 − uS(a). In Section 5.2, we find a
Pareto-dominant equilibrium and conduct comparative statics under the assumption that
the investor’s existing position is correct; that is, a0 =

∫
Θ
θdµ0(θ).

EXAMPLE 3: A buyer (R) can take an outside option or buy one of N goods from
a seller (S). The seller knows the vector θ = (θ1! ( ( ( ! θn), where θi denotes the buyer’s
net value from product i. Product values are i.i.d. atomlessly distributed over [0!1]. The
seller wants to maximize the probability of a sale, but does not care which product is
sold. Hence, the seller receives a value of 1 if the buyer chooses to purchase product
i ∈ {1! ( ( ( !n}, and 0 if the buyer chooses the outside option, which we denote by 0. Only
the buyer knows her value from the outside option, ϵ, which is distributed independently
from θ according to G, a continuous, full-support CDF over [0!1]. Chakraborty and Har-
baugh (2010) studied this example and showed the seller can always benefit from commu-
nication. In Section 5.3, we use our tools to expand on their analysis.

We analyze our model via the belief-based approach, commonly used in the commu-
nication literature. This approach uses the ex ante distribution over R’s posterior beliefs,
p ∈ $$Θ, as a substitute for both S’s strategy and the equilibrium belief system. Clearly,
every belief system and strategy for S generate some such distribution over R’s poste-
rior belief. By Bayes’s rule, this posterior distribution averages to the prior, µ0. That is,
p ∈ $$Θ satisfies

∫
µdp(µ) = µ0. We refer to any p that averages back to the prior as an

information policy. Thus, only information policies can originate from some σ and β. The
fundamental result underlying the belief-based approach is that every information policy
can be generated by some σ and β.10 Let I(µ0) denote the set of all information policies.

The belief-based approach allows us to focus on the game’s outcomes. Formally, an
outcome is a pair, (p! s) ∈ $$Θ× R, representing R’s posterior distribution, p, and S’s ex
ante payoff, s. An outcome is an equilibrium outcome if it corresponds to an equilibrium.11

An equilibrium outcome is informative if R’s posterior distribution is non-degenerate, p ≠
δµ0 . In contrast to equilibrium, a triple (σ!ρ!β) is a commitment protocol if it satisfies the
first two of the three equilibrium conditions above; and (p! s) is a commitment outcome if
it corresponds to some commitment protocol. In other words, commitment outcomes do
not require S’s behavior to be incentive-compatible.

Using the belief-based approach, Aumann and Hart (2003) analyzed, among other
things, the outcomes of the cheap-talk model with general S preferences over states and
actions. When S’s preferences are state independent, their characterization essentially
specializes to Lemma 1 below,12 which describes the game’s equilibrium outcomes. To

10For example, see Aumann and Maschler (1995), Benoît and Dubra (2011), or Kamenica and Gentzkow
(2011).

11That is, an equilibrium E = (σ!ρ!β) exists such that p(B̂) = margMPE [β−1(B̂)] for every Borel B̂ ⊆ $Θ,
and s =

∫
A uS dmargAPE .

12Because Aumann and Hart’s (2003) setting is finite, we provide a direct independent proof of said lemma
for the sake of completeness.
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state the lemma, let V (µ) be S’s possible continuation values from R having µ as his
posterior,

V : $Θ⇒ R

µ *→ couS

(
arg max

a∈A

∫
uR(a! ·)dµ

)
(

By Berge’s theorem, V is a Kakutani correspondence, and the value function, v(·) :=
maxV (·), is upper semicontinuous.13

LEMMA 1: The outcome (p! s) is an equilibrium outcome if and only if:
1. p ∈ I(µ0), that is,

∫
µdp(µ) = µ0, and

2. s ∈ ⋂
µ∈supp(p) V (µ).

The lemma’s conditions reflect the requirements of perfect Bayesian equilibrium. The
first condition comes from the equivalence between Bayesian updating and p being an
information policy. The second condition combines both players’ incentive-compatibility
constraints. For S, incentive compatibility requires her continuation value to be the same
from all posteriors in p’s support, meaning her ex ante value must be equal to her contin-
uation value upon sending a message. For R, incentive compatibility requires that V (µ)
contain S’s continuation value from any message that leaves R at posterior belief µ.
Therefore, S’s ex ante value must be in V (µ) for all posteriors µ in p’s support.

Our setting nests the model of Chakraborty and Harbaugh (2010). In their model,
Θ =A ⊆ RN is a compact convex set with a nonempty interior, where N > 1, the prior ad-
mits a full-support density, and arg maxa∈A

∫
uR(a! ·)dµ = {

∫
θdµ(θ)} for every µ ∈ $Θ.

Chakraborty and Harbaugh’s (2010) main result is that this setting always admits an equi-
librium in which S’s messages influence R’s actions. Using Lemma 1, one can generalize
Chakraborty and Harbaugh’s (2010) logic to show S can typically communicate informa-
tion to R; that is, most versions of our model admit an informative equilibrium. Because
our analysis does not rely on the existence of an informative equilibrium, we defer discus-
sion of this result to Section 6.1.

Another insight of Chakraborty and Harbaugh (2010) is that the reliance of equilibrium
communication on S indifference creates a role for quasiconcavity and quasiconvexity. In
particular, they observed that a finite-support distribution can give a quasiconcave (qua-
siconvex) function a constant value only if said value is lower (higher) than the function’s
value at the distribution’s mean. This observation has many useful implications. One im-
plication is that in Chakraborty and Harbaugh’s (2010) setting, S always benefits from
influencing R’s action in equilibrium when uS is strictly quasiconvex. Another implication
is that babbling is S’s best (worst) equilibrium whenever v is quasiconcave (quasiconvex)
and R’s best response is unique for all beliefs.

In what follows, we show quasiconcavity completely summarizes S’s ability to benefit
from communication. More precisely, we prove S’s maximal equilibrium payoff is given
by the quasiconcave envelope of v (Theorem 2). This result is based on our main result
(Theorem 1), presented in the next section.

13That is, V is a nonempty-, compact-, and convex-valued, upper hemicontinuous correspondence, and
v(µ) := maxs∈V (µ) s is upper semicontinuous in µ ∈ $Θ. Notice v is well defined (i.e., maxV (µ) exists) be-
cause V (µ) is nonempty and compact.
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3. SECURABILITY

This section presents our main result, Theorem 1, which characterizes S’s equilibrium
payoffs. The characterization shows that as far as S’s payoffs are concerned, one can ig-
nore S’s incentive constraints by focusing on S’s least favorite message in any given infor-
mation policy. Thus, using the theorem, one can use non-equilibrium information policies
to reason about S’s possible equilibrium payoffs.

Let p be an information policy, and take s to be some possible S payoff. Say that policy
p secures s if p{v ≥ s} = 1,14 and that s is securable if an information policy exists that
secures s, that is, if µ0 ∈ co{v ≥ s}. Our main result shows securability characterizes S’s
equilibrium values.

THEOREM 1—Securability: Suppose s ≥ v(µ0).15 Then, an equilibrium inducing sender
payoff s exists if and only if s is securable.

The key observation behind Theorem 1 is that one can transform any policy p that
secures s into an equilibrium policy by degrading information. Specifically, we replace
every supported posterior µ with a different posterior µ′ that lies on the line segment
between µ0 and µ. Because µ′ is between µ0 and µ, replacing µ with µ′ results in a weakly
less informative signal. To ensure the resulting signal is an equilibrium, we take µ′ to be
the closest posterior to µ0 among the posteriors between µ0 and µ that make providing
s incentive-compatible for R. Thus, this transformation replaces a potentially incentive-
incompatible posterior µ with the incentive-compatible µ′. That µ′ exists follows from two
facts. First, s is between S’s no-information value and her highest µ payoff, v(µ). Second,
V is a Kakutani correspondence, admitting an intermediate value theorem.16

The above logic also identifies a class of equilibrium information policies that span all of
S’s equilibrium payoffs above v(µ0). Say that p barely secures s if {v ≥ s}∩ co{µ!µ0} = {µ}
holds for p-a.e. µ. In words, barely securing policies are policies that secure a payoff
higher than what S can attain at any belief between any supported posterior and the prior.
The construction behind Theorem 1 transforms every securing policy into a barely secur-
ing policy that is also an equilibrium. Because all equilibrium values are securable, we
thus have that any high equilibrium value can be attained in an equilibrium with a barely
securing policy. Moreover, because barely securing policies are left untouched by Theo-
rem 1’s transformation, every barely securing policy must then be an equilibrium.

Theorem 1 highlights the way incentives constrain S’s ability to extract value from her
information. Although S can always degrade self-serving information to guarantee incen-
tives, the same cannot be done to information that is self-harming.17 As such, S’s highest
value is determined by the best worst message she must send if she could commit. It fol-
lows S can do no better than no information if and only if she cannot avoid sending R

14Here, we use the standard notation: {v ≥ s} = {µ : v(µ)≥ s}.
15Given our focus on S’s benefits from cheap talk, we state the theorem for high S values. For s ≤ minV (µ0),

one replaces the requirement that s is securable with the existence of some p ∈ I(µ0) such that p{minV ≤
s} = 1.

16Theorem 1’s proof is related (in that both use the intermediate value theorem to construct an equilibrium)
to the proof of Chakraborty and Harbaugh’s (2010) Theorem 4. Their theorem says that in Chakraborty and
Harbaugh’s (2010) specialization of our model, if uS is strictly quasiconvex, a sequence of equilibria {Ek}∞

k=1
exist such that Ek entails 2k on-path messages, and S’s value from Ek strictly increases in k. We thank an
anonymous referee for making us aware of the relationship between these two results.

17The statement is true for S-beneficial payoffs. For S-harmful payoffs, the sender would degrade excessively
self-harming information to guarantee incentives.
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messages that are worse than providing no information. That is, the set of beliefs at which
S attains a value strictly higher than no information does not contain the prior in its closed
convex hull.18

Theorem 1 also yields a convenient formula for S’s maximal equilibrium value, which
we present in Corollary 1 below.

COROLLARY 1: An S-preferred equilibrium exists, giving the sender a payoff of v∗(µ0),
where

v∗(·) := max
p∈I(·)

infv(suppp)(

Notice that infv(suppp) is the highest value that p secures. Thus, Corollary 1 says
that maximizing S’s equilibrium value is equivalent to maximizing the highest value S
can secure across all information policies. In the next section, we provide a geometric
characterization of v∗.

4. COMMITMENT’S VALUE IN COMMUNICATION

The current section uses Theorem 1 to examine the value of commitment in strate-
gic communication. The main result of this section is Theorem 2, which geometrically
characterizes S’s maximal equilibrium value. Take v̄ : $Θ → R and v̂ : $Θ → R to de-
note the quasiconcave envelope and concave envelope of v, respectively. That is, v̄ (resp. v̂)
is the pointwise lowest quasiconcave (concave) and upper semicontinuous function that
majorizes v.19 Because concavity implies quasiconcavity, the quasiconcave envelope lies
(weakly) below the concave envelope. Figure 2 illustrates the definitions of the concave
and quasiconcave envelopes for an abstract function.

As described in Aumann and Maschler (1995)20 and Kamenica and Gentzkow (2011), v̂
gives S’s payoff from her favorite commitment outcome. Theorem 2 below shows v̄ gives
S’s maximal value under cheap talk.

THEOREM 2—Quasiconcavification: S’s maximal equilibrium value is given by v’s quasi-
concave envelope; that is,

v∗ = v̄(

FIGURE 2.—A function with its concave (left) and quasiconcave (right) envelopes.

18Formally, s ≤ v(µ0) for all equilibrium outcomes if and only if for every ϵ > 0, µ0 /∈ co{v ≥ v(µ0) + ϵ}.
Schnakenberg (2015) showed a similar condition characterizes an expert’s ability to sway voters to support her
favorite of two policies.

19The Appendix contains a proof that, for finite Θ, the quasiconcave envelope is below every quasiconcave
function that majorizes v, even those that are not upper semicontinuous.

20Also see Aumann and Maschler (1966).
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PROOF OF THEOREM 2: We begin by showing v∗ is a quasiconcave, upper semicontin-
uous function that majorizes v. That v∗ majorizes v follows from existence of an uninfor-
mative equilibrium. For upper semicontinuity, we refer the reader to Lemma 5, which we
prove in the Appendix.

We now argue v∗ is quasiconcave. For this purpose, fix µ′, µ′′, and λ ∈ (0!1), and con-
sider the following observations. First, if p′ ∈ I(µ′), and p′′ ∈ I(µ′′), then λp′ + (1 −
λ)p′′ ∈ I(λµ′ + (1 − λ)µ′′). Second, the support of the convex combination of two dis-
tributions is the union of their supports. Taken together, these observations imply the
following inequality chain:

v∗(λµ′ + (1 − λ)µ′′) = max
p∈I(λµ+(1−λ)µ′)

infv(suppp)

≥ max
p′∈I(µ′)!p′′∈I(µ′′)

infv
(
suppp′ ∪ suppp′′)

= max
p′∈I(µ′)!p′′∈I(µ′′)

min
{
infv

(
suppp′)! infv

(
suppp′′)}

= min
{
v∗(µ′)!v∗(µ′′)}!

where the last equality follows from reasoning separately for p′ and p′′.
To show v∗ = v̄, it remains to show that v∗ lies below any upper semicontinuous and

quasiconcave f : $Θ → R that majorizes v. Fixing some prior µ ∈ $Θ, take p ∈ I(µ) to
be an information policy securing S’s favorite equilibrium value, v∗(µ). By choice of p, we
have that, for D := suppp, both infv(D) = v∗(µ) and µ ∈ coD. Combined with f being
upper semicontinuous, quasiconcave, and above v, we have

f (µ) ≥ inf f (coD) = inf f (coD)= inf f (D) ≥ infv(D) = v∗(µ)(

Because µ and f were arbitrary, our proof is complete. Q.E.D.

Theorem 2 provides a geometric comparison between communication’s value under
cheap talk and under commitment. With commitment, communication is only restricted
by R’s incentives and Bayes’s rule. The value function’s concave envelope describes the
maximal payoff S can attain in this manner. Replacing the value function’s concave enve-
lope with its quasiconcave envelope expresses the value S loses in cheap talk due to her in-
centive constraints. Graphically, both envelopes allow S to extract value from connecting
points on the graph of S’s value correspondence. However, although with commitment S
can connect points via any affine segment, cheap talk restricts her to flat ones. One can see
the associated value loss for the Introduction’s example in Figure 1: For priors µ ∈ (0! 3

4),
S’s highest cheap-talk value is 1, whereas with commitment, her highest payoff is given by
1 + 4

3µ.
Corollary 2 below uses the geometric difference between cheap talk and commitment

to show that in a finite setting, commitment is valuable for most priors. In particular, with
finite actions and states, the following is true for all priors lying outside a measure-zero
set: Either S attains her first-best feasible payoff, or S strictly benefits from commitment.

COROLLARY 2: Suppose A and Θ are finite. Then, for Lebesgue-almost all µ0 ∈ $Θ, either
v̄(µ0)= maxv($Θ) or v̄(µ0) < v̂(µ0).

The intuition for the corollary is geometric: Except at S’s first-best feasible payoff, the
concave envelope, v̂, must lie above the interior of any of the quasiconcave envelope’s
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flat surfaces. To see why, notice any prior µ0 in the interior of such a surface can be
expressed as a convex combination of another belief on the same surface and a belief
yielding S’s first-best feasible value. Said formally, some λ ∈ (0!1), µ, and µ′ exist such
that v̄(µ) = v̄(µ0), v̄(µ′) = maxv($Θ), and µ0 = λµ+ (1 − λ)µ′. Because v̄ lies below v̂,
and because v̂ is concave, we obtain

v̄(µ0) < λv̄(µ)+ (1 − λ)v̄
(
µ′) ≤ λv̂(µ)+ (1 − λ)v̂

(
µ′) ≤ v̂(µ0)!

as required.

5. APPLICATIONS

5.1. The Think Tank

This section uses our results to analyze Example 1. We characterize the think tank’s
maximal equilibrium value and find an equilibrium in a barely securing policy that attains
it. To ease notation, we assume in the main text that the probability that two reforms yield
the same benefit to the lawmaker is zero.

In the single-reform case, neither player can do better than no information: In this
case, think-tank indifference occurs only if the lawmaker’s mixed action is constant on
path. With multiple reforms, one can analyze the example using the claim below, made
possible by Theorem 1.

CLAIM 1: The following are equivalent, given k ∈ {1! ( ( ( !n}:
1. The think tank can attain the value uS(k) in equilibrium.
2. Eθ∼µ0[maxi∈{k!(((!n} θi] ≥ c.
3. The policy, pk ∈ I(µ0), that reveals the random variable

ik := arg max
i∈{k!(((!n}

θi

to the lawmaker secures uS(k).

The claim says the think tank attaining a value of uS(k) in equilibrium is equivalent
to two other conditions. First, always choosing the status quo is ex ante worse for the
lawmaker than always choosing the best reform from {k! ( ( ( !n} (Part 2). Second, telling
the lawmaker nothing but the identity of the best reform from {k! ( ( ( !n} secures uS(k)
(Part 3).

Claim 1’s Part 2 provides a simple necessary and sufficient condition for uS(k) to be an
equilibrium value. Using this condition, we can find S’s maximal value across all equilibria:
it is given by uS(k∗), where

k∗ := max
{
k ∈ {1! ( ( ( !n} : Eθ∼µ0

[
max

i∈{k!(((!n}
θi

]
≥ c

}
(

That is, k∗ is the highest k for which Part 2 holds. With k∗ in hand, we can identify a
best equilibrium for the think tank using the claim’s Part 3. This part tells us the think
tank’s favorite equilibrium value, uS(k∗), is securable by the information policy, pk∗ , that
reveals to the lawmaker the identity of the best reform from the set {k∗! ( ( ( !n}. Thus,
to find an equilibrium, we can take pk∗ and garble information message by message to
obtain a new policy that barely secures uS(k∗). Doing so results in a policy that has the
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think tank randomizing between accurately recommending the lawmaker’s best reform
from {k∗! ( ( ( !n} with probability 1 − ϵ, and recommending a uniformly drawn reform
from {k∗! ( ( ( !n} with probability ϵ. By choosing ϵ appropriately, one can degrade infor-
mation so as to make the lawmaker indifferent between the suggested recommendation
and the status quo. The result is an equilibrium in which the lawmaker implements the
suggested reform i with probability uS(k

∗)
uS(i)

and maintains the status quo with complemen-
tary probability. Thus, all that remains is to calculate k∗ and ϵ, which depend on the prior.
For example, if θ1! ( ( ( ! θn are i.i.d. uniformly distributed on [0!1] and c > 1

2 ,21 then

k∗ =
⌊
n− 2c − 1

1 − c

⌋
and ϵ= 2

(
1 − c − 2c − 1

n− k∗

)
(

The policy pk∗ also yields an easy lower bound on commitment’s value. Specifically, the
value of commitment is at least the difference between k∗ and the think tank’s value
function’s expectation under pk∗ ,

∫
v(·)dpk∗ − uS

(
k∗) = 1

n− k∗ + 1

n∑

i=k∗
uS(i)− uS

(
k∗)!

which simplifies to 1
2(n− k∗) in the special case of uS(a)= a.

5.2. The Broker

We now revisit the setting of Example 2 under the assumption that the investor’s initial
holdings are correct given her information, that is, that a0 =

∫
θdµ0(θ). Even without

this assumption, characterizing optimal behavior by the investor is straightforward. For
any posterior belief µ ∈ $Θ, simple calculus yields that the investor’s best response is
unique and given by

a∗(µ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
θdµ(θ)+φ :

∫
θdµ(θ)− a0 ≤ −φ!

a0 :
∫

θdµ(θ)− a0 ∈ [−φ!φ]!
∫

θdµ(θ)−φ :
∫

θdµ(θ)− a0 ≥φ(

As such, V is a single-valued correspondence, with v(µ)= φ[|
∫
θdµ(θ)− a0| −φ]+.22

The above expression demonstrates that this example is a specific instance of a class of
models in which Θ⊆ R and S’s value function is a quasiconvex function of R’s expectation
of the state. The special one-dimensional structure of this class allows us to focus on cutoff
policies. Formally, p is a θ∗-cutoff policy if it reports whether the state is above or below
θ∗ ∈ Θ.23 The following proposition shows garblings of cutoff policies are sufficient to
attain any S equilibrium value in one-dimensional settings.

21When c ≤ 1
2 , the think tank can obtain its first-best outcome under no information; that is, v(µ0)= uS(n).

22We let [·]+ := max{·!0}.
23In Section B.2 in the Appendix, we provide a definition of cutoff policies (and prove a version of Claim 2)

that applies for general priors. The two definitions coincide when the prior is atomless.
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CLAIM 2: Suppose Θ ⊆ R, µ0 is atomless, and that v(µ) = vM(
∫
θdµ(θ)), where vM :

coΘ→ R is weakly quasiconvex. Then, the following are equivalent for all s ≥ v(µ0):
1. S can attain payoff s in equilibrium.
2. The payoff s is securable by a cutoff policy.

Moreover, an S-preferred equilibrium outcome (p! s) exists such that p is a cutoff policy.

We now apply the claim to our specific broker example. Notice the broker’s value func-
tion is given by v(µ) = vM(

∫
θdµ(θ)), where vM(θ) = φ[|θ − a0| − φ]+. Because vM is a

convex function, Claim 2 implies an S-preferred equilibrium exists in which S uses a cut-
off policy. Consider the median-cutoff policy, where the broker tells the investor whether
the state is above or below the median. Let θ< and θ> denote the investor’s expectation
of the state conditional on it being below or above the median, respectively. Because
a0 =

∫
θdµ0(θ) = 1

2θ< + 1
2θ>, one has |θ> − a0| = |θ< − a0|, meaning vM(θ<) = vM(θ>).

Thus, the median cutoff policy is an equilibrium policy. Moreover, vM decreases on
[θ<!a0] and increases on [a0! θ>], and so no alternative cutoff policy can secure a higher
value. Hence, Claim 2 tells us the median cutoff policy yields a broker-preferred equilib-
rium. We can therefore calculate the broker’s maximal equilibrium payoff,

v̄(µ0)= φ

[
1
2
(θ> − θ<)−φ

]

+
( (1)

In the median-cutoff equilibrium, the transmitted information does not depend on φ.
This observation simplifies the task of conducting comparative statics in φ: The broker’s
maximal equilibrium payoff is single-peaked in φ, with the optimal φ being 1

4(θ> − θ<).
Intuitively, increasing φ reduces trade but increases the broker’s income per trade, with
the latter effect dominating for low φ and the former dominating for high φ.

It is easy to see the broker’s maximal equilibrium payoff increases with mean-preserving
spreads of µ0; that is, the more volatile the market is, the better off the broker. However,
not all volatility is equal: Mean-preserving spreads strictly increase the broker’s payoff
if and only if they increase θ> − θ<. Thus, for the broker to strictly benefit from market
volatility, she must be able to communicate about it to the investor.

How does the investor fare in the broker’s preferred equilibrium? Simple algebra re-
veals the investor’s payoff is 1

2φ2 s
2 − Varθ∼µ0(θ) in any equilibrium yielding the broker a

payoff of s.24 Two consequences are immediate. First, the investor’s equilibrium payoffs
increase with the broker’s, meaning the broker’s favorite equilibrium is Pareto-dominant.
Second, the investor’s payoffs in the Pareto-dominant equilibrium are given by

1
2

{[
1
2
(θ> − θ<)−φ

]

+

}2

− Varθ∼µ0(θ)(

Notice the investor is always better off with lower brokerage fees: Because the broker’s
information does not change with φ, a lower φ means the investor pays less for the same
information. By contrast, the investor’s attitude toward higher prior volatility (in the sense
of mean-preserving spreads) is ambiguous. Intuitively, increased market volatility both in-
creases the investor’s risk and increases the usefulness of the broker’s recommendations.
As such, higher volatility that does not change the broker’s recommendations unambigu-
ously hurts the investor.

24The reader can find said algebra in Appendix B.2.
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5.3. The Salesperson

In this section, we return to Example 3. This example was first analyzed by Chakraborty
and Harbaugh (2010),25 who showed it always admits an influential equilibrium, that is,
an equilibrium in which different messages lead to different action distributions by the
buyer. Chakraborty and Harbaugh (2010) also noticed that every influential equilibrium
in this setting benefits the seller due to quasiconvexity. In this section, we find a seller-
preferred equilibrium and obtain a full characterization of when the seller benefits from
commitment.

Because the buyer has private information, this example does not formally fall within
our model. Our analysis, however, still applies.26 Given a belief µ ∈ $Θ, the buyer pur-
chases the good with probability P{ϵ≤ maxi

∫
θi dµ(θ)} =G(maxi

∫
θi dµ(θ)). Hence, the

seller’s continuation value from sending a message that gives the buyer a posterior of µ
is v(µ) := G(maxi

∫
θi dµ(θ)). Using the continuous function v as the seller’s value func-

tion, we can directly apply our results to this example.
Applying Theorem 2 yields an upper bound on the seller’s equilibrium values. To obtain

this bound, define the continuous function v̄∗(µ) := G(
∫

maxj∈{1!(((!n} θj dµ(θ)). Being an
increasing transform of an affine function, v̄∗ is quasiconcave.27 Moreover, because G is
increasing, Jensen’s inequality tells us

v̄∗(µ) = G

(∫
max

j∈{1!(((!n}
θj dµ(θ)

)
≥G

(
max

j∈{1!(((!n}

∫
θj dµ(θ)

)
= v(µ)(

In other words, v̄∗ is a continuous quasiconcave function that majorizes the seller’s value
function, and so lies above the value function’s quasiconcave envelope. Theorem 2 then
implies v̄∗(µ0) is above any equilibrium seller value.

We now describe an equilibrium that attains the upper bound v̄∗(µ0). Let p∗ be the
information policy in which the seller tells the buyer the identity of the most valuable
product.28 Assuming the buyer believes the seller, the seller’s expected value from recom-
mending product i is

G
(
Eθ∼µ0

[
θi

∣∣∣ i ∈ arg max
j∈{1!(((!n}

θj

])
= G

(∫
max

j∈{1!(((!n}
θj dµ0(θ)

)
= v̄∗(µ0)!

where the first equality follows from product values being i.i.d. Notice all recommenda-
tions yield the seller the same value, meaning p∗ is an equilibrium. Moreover, p∗ attains
the upper bound v̄∗(µ0) on the seller’s equilibrium values. In other words, (p∗! v̄∗(µ0)) is
a seller-preferred equilibrium outcome.

The identified equilibrium is, in fact, Pareto dominant. To see why, notice that if
the seller’s equilibrium payoff is s, the buyer’s expected utility from the best prod-
uct is G−1(s) for any on-path message. Therefore, the buyer’s utility in equilibrium is

25Chakraborty and Harbaugh (2014) studied a similar example in which the buyer has product-specific taste
shocks.

26More generally, our results apply without change to the following model. R has a metric space Z of payoff
parameters such that the distribution of (θ!z) ∈ Θ × Z is µ0 ⊗ ζ0 for some ζ0 ∈ $Z. R’s payoffs are given by
uR :A×Θ×Z → R that is measurable over Z and continuous over A×Θ. In this extended model, V : $Θ⇒ R
takes the form V (µ) =

∫
Z couS(arg maxa∈A

∫
Θ uR(a! θ!z)dµ(θ))dζ0(z), a Kakutani correspondence.

27The logic yielding quasiconcavity of v̄∗ is similar to Chakraborty and Harbaugh’s (2010) observation that
S’s utility function in this example is quasiconvex as an increasing transformation of a convex function. We
thank an anonymous referee for pointing out this connection.

28That is, the seller reveals the identity of arg maxi∈{1!(((!n} θi .
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E[max{ϵ!G−1(s)}]. Hence, all equilibria are Pareto-ranked, and so any seller-best equilib-
rium is buyer-best as well.

When does the seller benefit from commitment? The answer depends on the relation-
ship between G and its concave envelope, Ĝ, evaluated at t∗0 :=

∫
maxj∈{1!(((!n} θj dµ0(θ).

CLAIM 3: The seller benefits from commitment if and only if Ĝ(t∗0 ) >G(t∗0 ).

To see that commitment can benefit the seller only if Ĝ(t∗0) > G(t∗0), observe that
v̂∗(µ) := Ĝ(

∫
maxj∈{1!(((!n} θj dµ(θ)) is a continuous and concave function that lies every-

where above the seller’s value function. Hence, the concave envelope of the seller’s value
function, v̂, lies below v̂∗. Thus, if the seller benefits from commitment,

Ĝ
(
t∗0

)
≥ v̂(µ0) > v̄(µ0)= G

(
t∗0

)
(

Conversely, suppose Ĝ(t∗0) > G(t∗0 ). Then, by reasoning analogous to Kamenica and
Gentzkow’s (2011) Proposition 3,29 a seller with commitment power can strictly outper-
form p∗ by providing additional information about the value of the best good. Thus, com-
mitment always benefits the seller when Ĝ(t∗0 ) >G(t∗0 ).

Claim 3 reduces the question of whether commitment benefits the seller to comparing
a one-dimensional function with its concave envelope. Such a comparison is simple when
G is well behaved. In particular, if G admits a decreasing, increasing, or single-peaked
density, G itself is concave, convex, or convex-concave, respectively, and so characterizing
its concave envelope is straightforward.

CLAIM 4: Suppose G admits a continuous density g.
1. If g is weakly decreasing, the seller does not benefit from commitment.
2. If g is nonconstant and weakly increasing, the seller benefits from commitment.
3. If g is strictly quasiconcave, the seller benefits from commitment if and only if g(t∗0 ) >

1
t∗0

∫ t∗0
0 g(t)dt.

The claim’s first part says the seller does not benefit from commitment when g is de-
creasing, that is, when G is concave. The second part says that when G is convex and non-
affine, the seller always benefits from commitment. The third part discusses the seller’s
benefits from commitment when G is S-shaped. Specifically, it shows commitment is valu-
able in this case if and only if G’s density at t∗0 is strictly larger than the average density up
to t∗0 .

6. DISCUSSION

6.1. Effective Communication

In a seminal paper, Chakraborty and Harbaugh (2010) showed that a large special case
of our model always admits an influential equilibrium, namely, an equilibrium in which

29Proposition 3 of Kamenica and Gentzkow (2011) assumes the state space is finite, and so does not di-
rectly apply here. However, the extension to this example is straightforward given that G is continuous. See
Appendix B.3.
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R’s action is non-constant across S’s on-path messages. In this section, we note their in-
sight applies beyond their parametric setting, and implies informative communication is
possible whenever three or more states exist.

We begin with a few definitions. A statistic is a continuous function T from Θ into some
locally convex space X . Say T is multivariate if its range is noncollinear, that is, the affine
span of T(Θ) has dimension strictly greater than 1. Finally, given a belief µ ∈ $Θ, its
associated estimate of a statistic T is the barycenter

∫
T dµ.30

The above-defined objects arise naturally in Chakraborty and Harbaugh’s (2010) set-
ting. There, Θ and A are the same convex, multidimensional Euclidean set, and the prior
admits a density. Moreover, R’s unique optimal action given belief µ is his expectation
of the state; that is, R chooses a =

∫
T dµ, where T = idΘ. Chakraborty and Harbaugh

(2010) showed an equilibrium exists in which the estimate of T , and therefore R’s ac-
tion, changes on path. Adapting Chakraborty and Harbaugh’s (2010) logic, Proposition 1
highlights the key feature behind their result: T is multivariate.

PROPOSITION 1: For any multivariate statistic T , an equilibrium outcome (p! s) exists
such that the estimate of T is not p-almost surely constant.

Observe Proposition 1 readily delivers an informative equilibrium whenever three or
more states exist. The reason is that, in this case, the mapping T(θ) := δθ taking each
state to a degenerate belief is a multivariate statistic (taking values in the span of $Θ).
The proposition also yields an influential equilibrium whenever R’s best response equals
his estimate of a multivariate statistic, as is the case in Chakraborty and Harbaugh’s (2010)
model.

Proposition 1 delivers a generalization of another of Chakraborty and Harbaugh’s
(2010) insights: S always benefits from communication via cheap talk when v is a strictly
quasiconvex function of R’s estimate of a multivariate statistic. This conclusion roughly
follows from the fact that a strictly quasiconvex function can be constant across a non-
degenerate distribution only if it is strictly lower at the distribution’s mean.31

6.2. The Equilibrium Payoff Set

Despite our focus on S’s favorite equilibrium, our approach is useful for analyzing the
entire equilibrium payoff set. To find S’s payoff set, notice that because S’s incentives are
characterized by indifference, the game’s equilibrium set of S strategies is the same re-
gardless of whether S’s objective is uS or −uS . Just as applying Theorem 1 to the original
game characterizes S’s high payoffs, one can apply the theorem to the game with S ob-
jective −uS to find S’s low equilibrium payoffs. Under this objective, S’s value function is
given by −w, where w(·) := minV (·). Theorem 1 then implies s ≤w(µ0) is an equilibrium
payoff in the original game if and only if some p ∈ I(µ0) exists such that p{w ≤ s} = 1. Ap-
plying Theorem 2 then tells us S’s lowest equilibrium payoff is given by the quasiconvex of
envelope of w, which we denote by w.32 The above reasoning gives S’s entire equilibrium
payoff set: s is an S equilibrium payoff if and only if s ∈ [w(µ0)! v̄(µ0)].

30Recall Phelps (2001, p. 1), the barycenter
∫
T dµ is the unique τ ∈ coT(Θ) such that ϕ(τ) =

∫
ϕ ◦

T(θ)dµ(θ) for every continuous linear ϕ : X → R.
31When R may have multiple best responses to a given belief, an additional step is needed. See Appendix C.1

of the Supplemental Material (Lipnowski and Ravid (2020)) for details.
32More precisely, w is the highest quasiconvex and lower semicontinuous function that is everywhere be-

low w.
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With S’s equilibrium payoffs in hand, we can find R’s possible equilibrium payoffs using
two observations. First, one can implement any particular payoff profile in an equilibrium
in which S recommends a pair of actions to R, and R responds by mixing only over the
recommended actions. Second, if S’s equilibrium payoff is s, S’s recommended action
pair must consist of one action yielding S a payoff above s, and one action yielding S a
payoff below s. Taking s as given, we can thus reduce the number of action pairs that S may
recommend in equilibrium. We discuss these observations more formally in Appendix C.2
of the Supplemental Material (Lipnowski and Revid (2020)).

6.3. Long and Transparent Cheap Talk

It is by now well-known that allowing multiple rounds of bilateral communication—that
is, long cheap talk—expands the set of feasible equilibrium outcomes (e.g., see Forges
(1990), Aumann and Hart (2003), and Krishna and Morgan (2004)). Forges (1990)
characterized the long-cheap-talk payoff set in a striking example in which certain out-
comes require infinitely many rounds of communication. Her characterization, which uses
repeated-games techniques (e.g., see Hart (1985)), was generalized by Aumann and Hart
(2003). Broadly, one can describe the long-cheap-talk outcome set in terms of separation
by diconvex functions (Aumann and Hart (1986, 2003)). When S’s preferences are state
independent, one can obtain such a separating function for S’s payoffs using Theorem 1.
One can then show that every S payoff attainable in a Nash equilibrium with long cheap
talk is also attainable in PBE of the one-shot cheap-talk game.33 The same, however, is
not true for R, who can benefit from long cheap talk. We refer the reader to Appendix C.3
for the formal details.

6.4. Optimality of Full Revelation

In this section, we ask when honesty is the best policy. More precisely, we provide a
sufficient condition for full revelation to be an S-favorite equilibrium. To understand our
conditions, starting with the commitment case is useful. When S can commit, full revela-
tion is optimal whenever v is nowhere concave, that is, when every non-extreme prior, µ0 ∈
$Θ \ {δθ}θ∈Θ, admits two beliefs, µ′, µ′′, and a λ ∈ (0!1), such that µ0 = λµ′ + (1 − λ)µ′′

and v(µ0) < λv(µ′)+ (1 − λ)v(µ′′). Intuitively, whenever v is nowhere concave, one can
strictly improve on any non-full revelation policy by appropriately34 splitting non-extreme
beliefs in the policy’s support. Hence, a non-full revelation policy cannot be optimal. Be-
cause an optimal policy exists, it must be full information.

Without commitment, one can use securability to obtain that full revelation is an S-
favorite equilibrium whenever v is nowhere quasiconcave, that is, when, for every non-
extreme prior, µ0 ∈ $Θ \ {δθ}θ∈Θ, two beliefs, µ′ and µ′′, and a λ ∈ (0!1) exist, such that
µ0 = λµ′ + (1 − λ)µ′′ and v(µ) < min{v(µ′)!v(µ′′)}. In fact, we show v being nowhere
quasiconcave implies full revelation barely secures S’s maximal equilibrium value. That

33Although the formal results therein are limited to finite settings, the Aumann and Hart (2003) setting is
conceptually richer than ours, featuring a sender who may also make payoff-relevant decisions after communi-
cation concludes. For such settings, one can still show that one-shot bilateral communication is without loss for
sender payoffs given state-independent preferences over action profiles. The driving observation is that jointly
controlled lotteries deliver a Kakutani correspondence, to which one can then apply Theorem 1.

34In particular, one can benefit by splitting non-extreme beliefs in a measurable way. See Appendix C.4 for
details.
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full information secures S’s maximal equilibrium value, v̄(µ0), under nowhere quasicon-
cavity is straightforward: By correctly splitting non-extreme beliefs, one can weakly in-
crease the value secured by any non-full revelation policy. Showing full revelation barely
secures v̄(µ0) requires a more subtle argument. We refer the reader to Appendix C.4 for
the precise details.

We should remark that, whereas strict convexity is sufficient for nowhere concavity,
strict quasiconvexity of v is insufficient for v to be nowhere quasiconcave. Indeed, full
revelation can fail to be an equilibrium at any non-degenerate prior—even if v is strictly
quasiconvex. The reason is that a strictly quasiconvex function can exhibit quasiconcav-
ities on one-dimensional extreme subsets of its domain. We show such quasiconcavity is
the only possible issue, however: A strictly quasiconvex v is nowhere quasiconcave if and
only if it is nowhere quasiconcave on co{δθ!δθ′} for all θ, θ′.35

Notice a nowhere quasiconcave v must also be nowhere concave. Therefore, whenever
v is nowhere quasiconcave, full revelation is both an S-favorite equilibrium and S’s unique
optimal commitment policy. Note S could still benefit from commitment. The reason is
that under cheap talk, R might need to break ties against S’s interests due to S’s incentive
constraints. Appendix C.4 of the Supplemental Material contains such an example. The
example also demonstrates that nowhere quasiconcavity is insufficient for full informa-
tion to be S’s unique favorite equilibrium. However, both issues disappear when R’s best
response to each belief is unique. Said differently, when R’s best responses are unique,
nowhere quasiconcavity of v is sufficient for full revelation to be the unique equilibrium
attaining S’s maximal commitment payoff. In this case, v’s quasiconcave and concave en-
velopes coincide, that is, v̄ = v̂.

APPENDIX A: OMITTED PROOFS: MAIN RESULTS

A.1. Preliminaries and Additional Notation

We begin by noting an abuse of notation that we use throughout the appendix. For a
compact metrizable space Y , a Borel measure over it γ ∈ $Y , and a γ-integrable function
f : Y → R, we let f (γ) =

∫
Y
f dγ.

We now document the (standard) notion of information ranking used throughout the
paper. This definition is motivated by the Hardy–Littlewood–Polya–Blackwell–Stein–
Sherman–Cartier theorem (see Phelps (2001)).

DEFINITION 1: Given p!p′ ∈ $$Θ, say p is more (Blackwell) informative than p′ if p is
a mean-preserving spread of p′, that is, if a measurable selector r of I : $Θ⇒ $$Θ exists
such that p(D) =

∫
$Θ

r(D|·)dp′ for all Borel D ⊆ $Θ.

Now, we record a useful measurable selection result.

LEMMA 2: If D ⊆ $Θ is Borel and f :D → R is any measurable selector of V |D, a measur-
able function αf :D→ $A exists such that, for all µ ∈D, the measure α̂= αf (·|µ) satisfies:

1. uS(α̂)= f (µ);
2. α̂ ∈ arg maxα∈$A uR(α!µ);
3. | supp(α̂)| ≤ 2.

35To prove this result, we note the generalization of Chakraborty and Harbaugh’s (2010) ideas as in Propo-
sition 1 implies a strictly quasiconvex v is not quasiconcave at any non-binary belief.
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PROOF: The result follows readily from the measurable maximum theorem (Theo-
rem 18.19 from Aliprantis and Border (2006)). Define

A∗ : $Θ ⇒ A!

µ *→ arg max
a∈A

uR(a!µ)(

Notice A∗ is nonempty-compact-valued and weakly measurable by the measurable max-
imum theorem. Applying the same theorem to µ *→ arg maxa∈A∗(µ) uS(a) and µ *→
arg mina∈A∗(µ) uS(a), and noting V = co(uS ◦ A∗), delivers measurable selectors a+ and
a− of A∗ such that uS ◦ a+ = maxV and uS ◦ a− = minV .

But the same theorem delivers measurable selectors a+ and a− of A∗ such that uS ◦a+ =
maxV and uS ◦ a− = minV . Now, define the measurable map:

αf :D → $A!

µ *→

⎧
⎨

⎩

v(µ)− f (µ)

v(µ)− minV (µ)
δa−(µ) + f (µ)− minV (µ)

v(µ)− minV (µ)
δa+(µ) : minV (µ) ≠ f (µ)!

δa−(µ) : minV (µ)= f (µ)(

By construction, αf is as desired. Q.E.D.

Next, we prove a variant of the intermediate value theorem, which is useful for our
setting. This result is essentially proven in Lemma 2 of de Clippel (2008). Because the
statement of that lemma is slightly weaker than we need, however, we provide a proof
here for the sake of completeness.

LEMMA 3: If F : [0!1]⇒ R is a Kakutani correspondence with minF(0)≤ 0 ≤ maxF(1),
and x̄ = inf{x ∈ [0!1] : maxF(x) ≥ 0}, then 0 ∈ F(x̄).

PROOF: By definition of x̄, some weakly decreasing {x+
n }∞

n=1 ⊆ [x̄!1] exists that con-
verges to x̄ such that maxF(x+

n )≥ 0 for every n ∈ N. Define the sequence {x−
n }∞

n=1 ⊆ [0! x̄]
to be the constant 0 sequence if x̄= 0 and to be any strictly increasing sequence that con-
verges to x̄ otherwise. By definition of x̄ (and, in the case of x̄ = 0, because minF(0)≤ 0),
it must be that minF(x−

n )≤ 0 ≤ maxF(x+
n ).

Passing to a subsequence if necessary, we may assume (as a Kakutani correspondence
has compact range) {maxF(x+

n )}∞
n=1 converges to some y ∈ R, which would necessarily be

nonnegative. Upper hemicontinuity of F then implies maxF(x̄) ≥ 0. An analogous argu-
ment shows minF(x̄)≤ 0. Because F is convex-valued, it follows that 0 ∈ F(x̄). Q.E.D.

A.2. Proof for Section 2

Below is the proof of Lemma 1, which initializes our belief-based approach. For finite
states, the result can be easily proven from results in Aumann and Hart (2003). Although
their ideas easily generalize to infinite state spaces such as ours, we include a direct proof
here for completeness.

PROOF OF LEMMA 1: First, take any equilibrium (σ!ρ!β) and let (p! s) be the induced
outcome. That p ∈ I(µ0) follows directly from the Bayesian property.

Define the interim payoff, ŝ : M → R via ŝ(m) := uS(ρ(m)). S incentive compatibility
tells us some M∗ ⊆ M exists such that

∫
Θ
β(M∗|·)dµ0 = 1, and for every m ∈ M∗ and
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m′ ∈ M , we have ŝ(m) ≥ ŝ(m′). In particular, ŝ(m) = ŝ(m′) for every m!m′ ∈ M∗; that is,
some ŝ∗ ∈ R exists such that ŝ|M∗ = ŝ∗. But

s =
∫

Θ

∫

M∗
uS

(
ρ(m)

)
dσ(m|θ)dµ0(θ) =

∫

Θ

∫

M∗
ŝ∗ dµ0(θ) = ŝ∗!

so that by receiver incentive compatibility, s ∈ V (β(·|m)) for every m ∈ M∗. By definition
of p, then, s ∈ V (µ) for p-almost every µ ∈ $Θ. Because V is upper hemicontinuous, it
follows that s ∈ ⋂

µ∈supp(p) V (µ).
Now suppose (p! s) satisfies the three conditions. Define the compact set D := supp(p).

It is well known (see Benoît and Dubra (2011) or Kamenica and Gentzkow (2011)) that
every p ∈ I(µ0) exhibits some S strategy σ and Bayes-consistent belief map β : M →
$Θ that induce distribution p over posterior beliefs.36 Without disrupting the Bayesian
property, we may without loss assume β(m) ∈ D for all m ∈ M . Now let α= αs :D → $A
be as given by Lemma 2. We can then define the receiver strategy σ := α ◦ β, which is
incentive-compatible for R by definition of α. Finally, by construction,

∫
A
uS dρ(·|m) = s

for every m ∈ M , so that every S strategy is incentive-compatible. Therefore, (σ!ρ!β) is
an equilibrium that generates outcome (p! s). Q.E.D.

A.3. Proofs for Section 3

A.3.1. Proof of Theorem 1

Below, we prove a lemma that is at the heart of Theorem 1. It constructs an equilib-
rium (a barely securing policy, which we then show to be compatible with equilibrium)
of S value s from an arbitrary information policy securing s. The constructed equilibrium
policy is less informative than the original policy and requires fewer messages to imple-
ment.

LEMMA 4: Let p ∈ I(µ0) and s ∈ R.
1. If p secures s and s ≥ v(µ0), some p∗ ∈ I(µ0) exists such that p∗ barely secures s, p∗ is

weakly less Blackwell-informative than p, and | supp(p∗)| ≤ | supp(p)|.
2. If p barely secures s, (p! s) is an equilibrium outcome.

PROOF: If s = v(µ0), both results are trivial: In this case, the uninformative policy is
the unique one that barely secures s. From this point, we focus on the case of s > v(µ0).

Toward the first point, let p ∈ I(µ0) secure s, and D := supp(p). Notice v(µ) ≥ s for
every µ ∈ D because v is upper semicontinuous. Define the semicontinuous (and so mea-
surable) function,

λ= λp!s :D→ [0!1]!
µ *→ inf

{
λ̂ ∈ [0!1] : v

(
(1 − λ̂)µ0 + λ̂µ

)
≥ s

}
(

By Lemma 3, it must be that s ∈ V ([1 − λ(µ)]µ0 + λ(µ)µ) for every µ ∈D.
Notice some number ϵ > 0 exists such that λ ≥ ϵ uniformly. If no such ϵ existed, a

sequence {µn}n ⊆ D would exist such that λ(µn) converges to zero. But the sequence

36In particular, such (σ!β) exist with σ($Θ|θ)= 1 for all θ ∈Θ and β(·|µ)= µ for all µ ∈D.
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{([1 − λ(µn)]µ0 + λ(µn)µn! s)}n from the graph of V would then converge to (µ0!s). Be-
cause V is upper hemicontinuous, such convergence would contradict s > v(µ0). There-
fore, such an ϵ> 0 exists, and so 1

λ
is a bounded function.

Now, define p∗ = p∗
s ∈ $$Θ by letting

p∗(D̂) :=
(∫

$Θ

1
λ

dp
)−1

·
∫

$Θ

1
λ(µ)

1[1−λ(µ)]µ0+λ(µ)µ∈D̂ dp(µ)

for every Borel D̂ ⊆ $Θ. Direct computation shows p∗ ∈ I(µ0), and p∗ barely secures s
by construction.

Last, we note p∗ has the other required properties. The map µ *→ [1−λ(µ)]µ0 +λ(µ)µ
is a surjection from supp(p∗) to supp(p), so that | supp(p∗)| ≤ | supp(p)|. Also by con-
struction, p∗ is weakly less informative than (1−

∫
$Θ

λdp)δµ0 +(
∫
$Θ

λdp)p, which in turn
is less informative than p. This proves (1).

Toward (2), suppose p barely secures s. That is, p-a.e. µ has {v ≥ s} ∩ co{µ!µ0} = {µ}.
For such µ, some subsequence of {v((1 − 2−n)µ + 2−nµ0)}∞

n=1 ⊆ [minuS(A)! s] con-
verges, leading to (as V is upper hemicontinuous) some element of V (µ) that is weakly
less than s. Because v(µ) ≥ s by hypothesis, and V is convex-valued, it follows that
s ∈ V (µ). But upper hemicontinuity of V then implies s ∈ V (µ′) for each µ′ ∈ supp(p),
and Lemma 1 delivers an equilibrium that generates S value s and information pol-
icy p. Q.E.D.

We now prove the securability theorem (Theorem 1).

PROOF OF THEOREM 1: The “only if” direction follows directly from Lemma 1: For
any equilibrium outcome (p! s), information policy p secures payoff s. The “if” direction
is a direct consequence of (both parts of) Lemma 4. Q.E.D.

A.3.2. Convexity of the Equilibrium Payoff Set, and Corollary 1

Given Theorem 1, all that remains for proving Corollary 1 is that an S-best equilibrium
exists, which follows from Corollary 3 below.

COROLLARY 3: The set of sender equilibrium payoffs is a compact interval.

PROOF: Let Π∗ be the set of equilibrium S payoffs, Π+ := {s ∈ Π∗ : s ≥ maxV (µ0)},
Π− := {s ∈ Π∗ : s ≤ minV (µ0)}, and Π0 := {s ∈ Π∗ : minV (µ0)≤ s ≤ maxV (µ0)}.

Because V is convex-valued, Π0 =Π∗ ∩V (µ0). By considering uninformative equilibria,
we see that Π0 = V (µ0) = [minV (µ0)!maxV (µ0)].

It follows immediately from Theorem 1 that Π+ is convex. Letting s+ := sup(Π+) ≥
v(µ0), a sequence {sn}∞

n=1 ⊆ [v(µ0)! s+] exists that converges to s+. Dropping to a subse-
quence, if necessary, we may assume some {pn}∞

n=1 ⊆ I(µ0) exists such that pn secures
sn for each n, and {pn}n converges to some p+ ∈ I(µ0). But p+ secures s+ because v is
upper semicontinuous, so that (by Theorem 1) s+ ∈ Π+. It follows that Π+ = [v(µ0)! s+], a
compact interval. By an identical argument, Π− is a compact interval, say, [s−!minV (µ0)]
as well.37

Therefore, Π∗ = [s−!minV (µ0)]∪[minV (µ0)!maxV (µ0)]∪[maxV (µ0)! s+] = [s−! s+].
Q.E.D.

37Notice the only property of V used in the proofs—that it is a Kakutani correspondence—is also true of
−V .
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A.4. Proofs for Section 4

A.4.1. Upper Semicontinuity of v∗

We prove here that v∗ is upper semicontinuous, a fact that the main-text proof of The-
orem 2 takes as given.

LEMMA 5: v∗ is upper semicontinuous.

PROOF: Let ṽ∗ : $$Θ → R be given by ṽ∗(p) := infv(suppp), so that v∗(µ) :=
maxp∈I(µ) ṽ∗(p) for every µ ∈ $Θ. The correspondence supp : $$Θ⇒ $Θ is lower hemi-
continuous (Aliprantis and Border (2006, Theorem 17.14)). Because v is upper semicon-
tinuous, it follows (Aliprantis and Border (2006, Lemma 17.29)) that ṽ∗ is upper semicon-
tinuous. Next, the correspondence I : $Θ⇒ $$Θ is upper hemicontinuous because the
barycenter map (p *→

∫
$Θ

µdp(µ)) is continuous (Phelps (2001, Proposition 1.1)). Upper
semicontinuity of v∗ follows (Aliprantis and Border (2006, Lemma 17.30)). Q.E.D.

A.4.2. Quasiconcave Envelope With Finite States

The purpose of this section is to prove Corollary 4 below. The corollary says that, with
finite states, v̄ is the lowest quasiconcave function majorizing v. In other words, the “upper
semicontinuous” qualifier in the definition of the quasiconcave envelope is necessary only
when the state is infinite.

COROLLARY 4: Suppose Θ is finite. Then, v̄ lies below every quasiconcave function ma-
jorizing v.

PROOF: Take any quasiconcave f : $Θ → R majorizing v. We show f ≥ v∗. The re-
sult then follows from v∗ = v̄ (Theorem 2). Fix some prior µ ∈ $Θ and let p ∈ I(µ) be
an information policy securing S’s favorite equilibrium value, v∗(µ). Because Θ is finite,
Carathéodory’s theorem delivers a finite subset D ⊆ suppp whose convex hull includes
the prior. Combined with f being a quasiconcave function majorizing v, we have that

v∗(µ) = infv(suppp)≤ minv(D) ≤ min f (D) ≤ f (µ)!

as required. Q.E.D.

A.4.3. Corollary 2: Commitment Is Usually Valuable

We now prove Corollary 2, for which it suffices to show that Lebesgue-almost every
prior µ0 has either v̄(µ0)= sFB := maxv($Θ) or v̂(µ0) > v̄(µ0).

PROOF: First, observe

v̄($Θ)= v∗($Θ)⊆ cl
[
v($Θ)

]
⊆ cl

[
uS(A)

]
= uS(A)!

which is finite. Next, that v̄ is quasiconcave implies {v̄ ≥ s} is convex for every s ∈ uS(A).
Let

D := ($Θ)◦ \
⋃

s∈uS(A)

∂{v̄ ≥ s}

be the set of full-support beliefs that are not on the boundary of any v̄-upper contour set.
Being the boundary of a bounded convex set in a (|Θ| − 1)-dimensional space, the set
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∂{v̄ ≥ s} is a manifold of dimension strictly lower than |Θ| − 1 for each s ∈ uS(A), and so
has zero Lebesgue measure. Because ($Θ)◦ has full Lebesgue measure, the finite union
$Θ \D is Lebesgue-null as well.38

Suppose µ0 ∈ D, and fix some belief µ ∈ $Θ such that some action in u−1
S (sFB) is a

best response for R to belief µ. By definition of D, sufficiently small ϵ ∈ (0!1] will have
ϵµ ≤ µ0 and v̄( µ0−ϵµ

1−ϵ
)≥ v̄(µ0). But v̂ being concave and lying above v̄,

v̂(µ0)≥ (1 − ϵ)v̄

(
µ0 − ϵµ

1 − ϵ

)
+ ϵv̄(µ)≥ (1 − ϵ)v̄(µ0)+ ϵsFB(

Thus, the proof is complete: Either v̄(µ0) < v̂(µ0) or v̄(µ0)= sFB. Q.E.D.

APPENDIX B: OMITTED PROOFS: APPLICATIONS

B.1. Proofs for Section 5.1: The Think Tank

In this example, A = {0! ( ( ( !n}, Θ = [0!1]n, µ0 is exchangeable, uS is increasing with
uS(0)= 0, and

uR(a! θ)=
{
θi − c : a= i ∈ {1! ( ( ( !n}!
0 : a= 0(

We now invest in some notation. For θ ∈ Θ and k ∈ {1! ( ( ( !n}, let θ(1)
k!n := maxi∈{k!(((!n} θi

be the first-order statistic among reforms better (for S) than k. For finite M̂ ⊆ M , let
U(M̂) ∈ $(M̂) ⊆ $M be the uniform measure over M̂ . Given k ∈ {1! ( ( ( !n}, let

σk :Θ → ${k! ( ( ( !n} ⊆ $M!

θ *→ U
(

arg max
i∈{k!(((!n}

θi

)
!

be the S strategy that reports the best reform from among those the think tank prefers
to k; let βk : M → $Θ be some belief map such that σk and βk are together Bayes
consistent; and let pk ∈ I(µ0) be the associated information policy. For any measur-
able f : Θ → [0!1], let E0f (θ) :=

∫
f dµ0; and for k ∈ {1! ( ( ( !n} and i ∈ {k! ( ( ( !n}, let

Ek
i f (θ) :=

∫
f dβk(·|i). Finally, for any k ∈ {1! ( ( ( !n}, let θ̂k := E0θ

(1)
k!n.

B.1.1. Claim 1: Ranking the Best Reforms

Toward the proof of Claim 1, we first show the following.

CLAIM: Fix k ∈ {1! ( ( ( !n} and i ∈ {k! ( ( ( !n}. Then, i ∈ arg maxa∈A uR(a!βk(i)) if and
only if θ̂k ≥ c.

PROOF: For a given i ∈ {k! ( ( ( !n}, exchangeability of µ0 implies the following four
facts:

(1) E0θi = E0θj = Ek
i θj for j ∈ {1! ( ( ( !k− 1}.

(2) E0θi ∈ co{Ek
i θi!Ek

i θj} for j ∈ {k! ( ( ( !n} \ {i}.

38By the same argument, $Θ \D is also nowhere dense.
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(3) Ek
i θi ≥ E0θi.

(4) Ek
i θi = θ̂k.

The first three facts collectively tell us Ek
i θi ≥ Ek

i θj for j ∈ {1! ( ( ( !n} \ {i}. As an impli-
cation, i ∈ arg maxa∈A uR(a!βk(i)) if and only if Ek

i θi ≥ c. The fourth fact completes the
proof of the claim. Q.E.D.

PROOF OF CLAIM 1: Now, we prove the three-way equivalence of Claim 1. First, that
Part 2 implies Part 3 follows from the above claim. Next, that Part 3 implies Part 1 follows
directly from Theorem 1. Now, to show Part 1 implies Part 2, consider any equilibrium
yielding S value uS(k). In this equilibrium, every on-path message yields value uS(k) to
S, implying some reform from {k! ( ( ( !n} is incentive-compatible for R. That is, R has an
optimal strategy in which his gross benefit is one of {θi}ni=k almost surely. But R’s ex ante
payoff is no greater than the prior expectation of maxi∈{k!(((!n} θi − c. This expectation is
then nonnegative by R’s incentives: He does not want to deviate to the status quo ex ante.
Thus, Part 1 implies Part 2, completing the proof of Claim 1. Q.E.D.

B.1.2. Construction of an S-Best Equilibrium

Finally, Corollary 1 tells us the sender’s best equilibrium value lies in {0! ( ( ( !n}, so that
the S-optimal equilibrium payoff is uS(k∗), where

k∗ =
{

max
{
k ∈ {1! ( ( ( !n} : θ̂k ≥ c

}
: θ̂1 ≥ c!

0 : θ̂1 < c(

As described in Section 5.1, we can use the constructive proof of Theorem 1 to explic-
itly derive the modification of pk∗ that supports payoff uS(k∗) as an equilibrium payoff
when k∗ > 0. Let ϵ := θ̂k

∗ −c
θ̂k∗−θ̂n

, and consider the truth-or-noise signal σ∗ := (1 − ϵ)σk∗ +
ϵU{k∗! ( ( ( !n}. That is, among the proposals that the think tank weakly prefers to k∗, it
either reports the best (with probability 1 − ϵ, independent of the state) or a random one.
Following a recommendation i ∈ {k! ( ( ( !n}, the lawmaker is indifferent between reform
i and no reform at all. He responds with ρ(i|i)= uS(k

∗)
uS(i)

and ρ(0|i)= 1 − ρ(i|i). The proof
of Lemma 4 shows such play is in fact equilibrium play.

B.2. Proofs for Section 5.2: The Broker

B.2.1. The One-Dimensional Model

In this section, we look at a one-dimensional version of our model, which generalizes
Example 2, analyzed in Section 5.2. Our task is to prove a generalization of Claim 2 that
applies for all priors (including those exhibiting atoms).

Suppose Θ ⊆ R and that some vM : coΘ → R exists such that v = vM ◦ E, where E :
$Θ → coΘ maps each belief to its associated expectation of the state. This setting, which
we call the one-dimensional model, was studied in Gentzkow and Kamenica (2016) and
Dworczak and Martini (2019) under sender commitment power. We assume without loss
that coΘ = [0!1], and denote the prior mean by θ0 = Eµ0.

An important concept to simplify analysis of the one-dimensional model is the notion
of a cutoff policy. Given q ∈ [0!1], the q-quantile-cutoff policy is the (necessarily unique)
information policy pq ∈ I(µ0) of the form pq = qδµ

q
− + (1 − q)δµ

q
+ , for µq

−!µ
q
+ ∈ $Θ with

max supp(µq
−) ≤ min supp(µq

+); and let θq
− := Eµq

− and θq
+ := Eµq

+. Say p ∈ I(µ0) is a
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cutoff policy if it is the q-quantile-cutoff policy for some q ∈ [0!1]. The following alter-
native characterization of cutoff policies, which is immediate, is useful for analyzing the
one-dimensional model.

FACT 1: For q ∈ [0!1], the belief µq
− (µq

+) is the unique solution to the program
minµ∈$Θ:qµ≤µ0 Eµ (maxµ∈$Θ:(1−q)µ≤µ0 Eµ).

The q-quantile-cutoff policy reports whether the state is in the bottom q quantiles or the
top 1−q quantiles, as measured according to the prior. More concretely, S simply reports
whether the state is above or below some well-calibrated cutoff.39 As the following claim
shows, securability enables us to use cutoff policies to analyze many one-dimensional ap-
plications of interest, including the broker example.

CLAIM 5: Suppose Θ ⊆ R and vM : coΘ → R is a weakly quasiconvex function such that
v = vM ◦E. Then, the following are equivalent for all s ≥ v(µ0):

(i) S can attain a payoff s in equilibrium.
(ii) The payoff s is securable by a cutoff policy.
Moreover, an S-preferred equilibrium outcome (p! s) exists such that p is a cutoff policy.

PROOF: Because vM is quasiconvex, vM is either nonincreasing on [0! θ0] or nonde-
creasing on [θ0!1]. Suppose the latter holds without loss. Because uninformative commu-
nication is a cutoff policy with cutoff quantile 0 or 1, the result is immediate if s = v(µ0),
so we may assume s > v(µ0).

That (ii) implies (i) follows directly from Theorem 1. Now we suppose (i) holds and
show (ii) does as well. The nonempty (because s is securable) compact sets ΘL := {θ ∈
[0! θ0] : vM(θ) ≥ s} and ΘR := {θ ∈ [θ0!1] : vM(θ) ≥ s} both exclude θ0 because s > v(µ0).
Let θL := maxΘL and θR := minΘR. By Theorem 1 and Lemma 4, a Bayes-plausible
information policy p exists that barely secures s, which then implies p ◦ E−1{θL! θR} = 1.
That is, some q̂ ∈ (0!1), pL ∈ $[E−1(θL)], pR ∈ $[E−1(θR)] exist such that p = q̂pL +
(1 − q̂)pR. But Fact 1 implies θq̂

− ≤ θL and θq̂
+ ≥ θR. Because θq̂

− ≤ θL < θ0 = θ1
−, the

intermediate value theorem (and Berge’s theorem, which tells us from Fact 1 that θ(·)
−

is continuous) delivers some q2 ∈ [q̂!1) such that θq2
− = θL. Similarly, some q1 ∈ (0! q̂]

exists such that θq1
+ = θR. Now, because θq2

− = θL, θq2
+ ≥ θR, and vM |[θ0!1] is nondecreasing,

it follows that pq2 secures s.
To prove the “moreover” part, we specialize to the case in which s = v̄(µ0). Let Q :=

[q1!q2], Q+ := {q ∈ Q : vM(θq
+)= s}, and Q− := {q ∈ Q : vM(θq

−)= s}. That no value strictly
above s is securable implies Q = Q+ ∪ Q−. Therefore, the union of the closures has the
same property: Q̄+ ∪ Q̄− = Q. Because Q is connected (because vM is monotone on each
side of q̂), some q ∈ Q̄+ ∩ Q̄− must then exist. That V is upper hemicontinuous (together
with Lemma 1) then implies the q-cutoff policy, paired with payoff s, is an equilibrium
outcome. Q.E.D.

Although not directly relevant to the broker example, we briefly note one can apply
Claim 5 to simplify the one-dimensional model even when vM is not quasiconvex. We do
so in Corollary 5 below.

39This description is correct as stated in the case in which µ0 is atomless; if the cutoff is itself a state with
positive prior probability, S’s message may need to be random conditional on the cutoff state itself occurring.
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COROLLARY 5: Suppose Θ ⊆ R and VM : coΘ⇒ R is such that V = VM ◦ E. Then, for
any equilibrium sender payoff s, an equilibrium outcome of the form (p! s) exists, such that
p is a garbling of a cutoff policy (with at most two supported posterior beliefs).

PROOF: We have nothing to show for s ∈ V (µ0). We now focus on the case of s > v(µ0),
the alternative case being symmetric.

Define the correspondence ṼM : [0!1] ⇒ R by letting ṼM(θ) := VM(co{θ!θ0}) for every
θ ∈ [0!1]. Appealing to Lemma 3, ṼM is a Kakutani correspondence, so that Ṽ := ṼM ◦E :
$Θ⇒ R is as well. We can therefore apply the mathematical results of Claim 5, letting
ṽM := max ṼM (which is quasiconvex and minimized at θ0) replace vM to find a cutoff
q ∈ [0!1] such that ṽM(θ

q
−)! ṽM(θ

q
+) ≥ s. But, by definition of ṼM , some two-message gar-

bling p′ of pq exists that secures s in the original game, that is, has p′{v ≥ s} = 1. Finally,
Lemma 4 delivers a further two-message garbling p of p′ such that (p! s) is an equilibrium
outcome. Q.E.D.

B.2.2. The Investor’s Payoff (Equation (1))

Suppose (p! s) is an equilibrium outcome of the broker example (Example 2), and let
r be R’s associated payoff. Then,

r + Vθ∼µ0(θ)

=
∫ {

1
2

∫ (
a2

0 − 2a0θ+ θ2)dµ0

− 1
2

∫ [
a∗(µ)2 − 2a∗(µ)θ+ θ2]dµ− uS

(
a∗(µ)

)}
dp(µ)

=
∫ {∫ (

1
2
θ2 − a0θ

)[
dµ0(θ)− dµ(θ)

]

+
[
a∗(µ)− a0

]
Eµ+ 1

2
[
a2

0 − a∗(µ)2] − s

}
dp(µ)

= 0 +
∫ [

a∗(µ)− a0
]{

Eµ− 1
2
[
a0 + a∗(µ)

]}
dp(µ)− s

=
∫ [

a∗(µ)− a0
]{[

Eµ− a∗(µ)
]
+ 1

2
[
a∗(µ)− a0

]}
dp(µ)− s

=
∫ {[

a∗(µ)− a0
][
Eµ− a∗(µ)

]
+ 1

2
[
a∗(µ)− a0

]2
}

dp(µ)− s

=
∫ [

s + 1
2

(
s

φ

)2]
dp(µ)− s

= 1
2φ2 s

2!

where the second to last equality follows from separately analyzing the case a∗(µ) = a0

and the complementary case.
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B.3. Proofs for Section 5.3: The Salesperson

We begin by providing an alternative version of Kamenica and Gentzkow’s (2011)
Proposition 6 (which generalizes their Proposition 3). Their proposition shows an S-
beneficial equilibrium exists whenever S’s value function is a transformation of R’s es-
timate of a finite-dimensional statistic, said transformation disagrees with its concave en-
velope, and the state is finite. We show that with sufficient continuity, the same conclusion
holds when the state is infinite.

LEMMA 6: Suppose some N ∈ N admits continuous T : Θ → RN and continuous G :
coT(Θ)→ R such that v(µ) =G(

∫
T dµ) for all beliefs µ ∈ $Θ. If the concave envelope Ĝ

of G satisfies Ĝ(
∫
T dµ0) >G(

∫
T dµ0), then v̂(µ0) > v(µ0).

PROOF: Let X := coT(Θ) and x0 :=
∫
Tµ0, which is in the relative interior of X . By

Carathéodory’s theorem, that Ĝ(x0) > G(x0) means some p̃ ∈ $X exists with affinely
independent support {x1! ( ( ( !xK} such that

∫
xdp̃(x) = x0 and

∫
Gdp̃ > v(µ0). As G is

continuous, we may assume without loss that {x1! ( ( ( !xK} has X in its affine hull.40 For
sufficiently small convex neighborhood Y = ∏K

k=1 Yk of (x1! ( ( ( !xK) in XK , every y⃗ =
(y1! ( ( ( ! yK) ∈ Y has y1! ( ( ( ! yK affinely independent with x0 in their convex hull, and so
admits a unique p̃y⃗ ∈ ${y1! ( ( ( ! yK} such that

∫
xdp̃y⃗ = x0. Observe y⃗ *→ p̃y⃗ is continuous

because y⃗ *→ p̃y⃗(yk) is an affine function of its finite-dimensional argument for each k ∈
{1! ( ( ( !K}. Moreover, making Y smaller if necessary, we may assume

∫
Gdp̃y⃗ > v(µ0) for

every y⃗ ∈ Y , because G is continuous.
Observe now that D := ∏K

k=1{µk ∈ $Θ :
∫
T dµk ∈ Yk} is a nonempty open subset of

($Θ)K such that every µ⃗ ∈ D admits some pµ⃗ ∈ ${µk}Kk=1 with
∫
(
∫
T dµ)dpµ⃗(µ) = x0

and
∫
vdpµ⃗ > v(µ0). Indeed, D is open because Y is and T is continuous; D is nonempty

because Y ⊆ XK is, and because every x ∈ X admits a µ ∈ $Θ with x =
∫
T dµ; and pµ⃗

can be taken to be
∑K

k=1 p̃(
∫
T dµ1!(((!

∫
T dµK)(

∫
T dµk)δµk

.
Finally, Lemma 2 of Lipnowski and Mathevet (2018) says that the set of all µ ∈ $Θ such

that ϵ̃µ≤ µ0 for some ϵ̃> 0 is dense. Therefore, D being open and nonempty delivers µ⃗ ∈
D and ϵ > 0 such that ϵ

∑K
k=1 µk ≤ µ0. Then, defining µ∗ := 1

1−ϵ
[µ0 − ϵ

∫
µdpµ⃗(µ)] and

p∗ := (1 − ϵ)δµ∗ + ϵp∗ ∈ I(µ0), see that
∫
vdp∗ − v(µ0)= ϵ[

∫
vdpµ⃗ − v(µ0)]> 0. Q.E.D.

With this lemma in hand, we readily complete the proof of Claim 3.

PROOF: In the main text, we demonstrated that Ĝ(t∗0 ) >G(t∗0 ) is necessary for commit-
ment to strictly benefit the seller. To see it is sufficient, apply Lemma 6 with N = 1: The
seller gets a value strictly higher than v̄(µ0) = G(t∗0) by telling the buyer which product is
best and by further revealing some (well-chosen) information about the value of the best
product. Q.E.D.

40Indeed, observe K must lie in {1! ( ( ( !N+1}, so let p̃ be chosen to make K as large as possible. Assume for
a contradiction that xK+1 ∈X is outside the affine hull of {x1! ( ( ( !xK}. As x0 is relatively interior and x0 −xK+1

is a convex combination of {xi − xK+1}Ki=1, some i ∈ {1! ( ( ( !K} has xi + ϵ(xi − xK+1) ∈ X for sufficiently small
ϵ> 0. Then, consider p̃ϵ := p̃+ p̃(xi)[ 1

1+ϵ
δxi+ϵ(xi−xK+1) + ϵ

1+ϵ
δxK+1 − δxi ] ∈ $X . This measure has

∫
xdp̃ϵ(x) =

x0 by construction and, converging to p̃ as ϵ> 0, has
∫
Gdp̃ϵ > v(µ0) when ϵ is sufficiently small, contradicting

the maximality of K.
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Now, en route to Claim 4, we prove the following slightly more general result about
when commitment is valuable for a CDF G admitting a single-peaked continuous den-
sity g. For this purpose, let

ϕG : [0!1] → R!

t *→G(t)−G(0)− tg(t)= −
∫ t

0
t̃ dg(t̃)!

where the equality follows from integration by parts.

LEMMA 7: Suppose G admits a continuous, weakly quasiconcave density g. Let tM :=
min[arg maxt∈[0!1] g(t)]. Then, Ĝ(t∗0)= G(t∗0) if and only if t∗0 ≥ tM and ϕG(t∗0)≥ 0.

PROOF: First, we show ϕG(t∗0)≥ 0 is necessary for no commitment gap to exist. To that
end, suppose ϕG(t∗0) < 0. Recall that full support of µ0 implies t∗0 ∈ (0!1). Then, letting
ϵ ∈ (0!1 − t∗0], we have

t∗0 + ϵ

ϵ

[
Ĝ

(
t∗0

)
−G

(
t∗0

)]
≥ t∗0 + ϵ

ϵ

[
t∗0

t∗0 + ϵ
G

(
t∗0 + ϵ

)
+ ϵ

t∗0 + ϵ
G(0)−G

(
t∗0

)]

= t∗0
G

(
t∗0 + ϵ

)
−G

(
t∗0

)

ϵ
−

[
G

(
t∗0

)
−G(0)

]
!

which tends to −ϕG(t∗0) > 0, as ϵ → 0. Therefore, t∗0 +ϵ

ϵ
[Ĝ(t∗0) − G(t∗0)] > 0 when ϵ> 0 is

sufficiently small, so that Ĝ(t∗0 ) >G(t∗0 ).
Now, we verify that t∗0 ≥ tM is necessary for no commitment gap to exist. Suppose t∗0 <

tM . Then g|[0!tM ] is continuous, weakly increasing, and nonconstant. Therefore, G|[0!tM ] is
weakly convex and not affine, implying

Ĝ
(
t∗0

)
≥ tM − t∗0

tM
G(0)+ t∗0

tM
G(tM) >G

(
t∗0

)
(

Conversely, suppose t∗0 ≥ tM and ϕG(t∗0)≥ 0. Below, we construct a continuous concave
function, G∗, that majorizes G and agrees with it at t∗0 . It follows G∗(t∗0 )≥ Ĝ(t∗0 )≥G(t∗0 )=
G∗(t∗0 ), that is, there is no commitment gap.

Toward finding such a G∗, observe first ϕG decreases on [0! tM] (because g|[0!tM ] is in-
creasing) and ϕG(0) = 0. Therefore, ϕG(tM) ≤ 0 ≤ ϕG(t∗0). Because ϕG is continuous, the
intermediate value theorem delivers a t∗ ∈ [tM! t∗0 ] with ϕG(t∗) = 0. We now use t∗ to con-
struct G∗. To do so, note

G(t∗)= G(0)+
∫ t∗

0
g(t)dt = G(0)+ t∗g(t∗)−ϕG(t∗)= G(0)+ t∗g(t∗)!

meaning

G∗ : [0!1] → R!

t →
{
G(0)+ tg(t∗) : t ≤ t∗!

G(t) : t ≥ t∗!
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is well-defined and continuously differentiable. We now claim G∗ satisfies the desired
properties. Observe first G∗(t∗0 ) = G(t∗0 ), because t∗0 ≥ t∗. Second, because t∗ ≥ tM , g is
decreasing on [t∗!1], meaning G∗ has a decreasing derivative, that is, G∗ is concave. Thus,
it remains to show G∗ majorizes G. Because G∗(t)=G(t) for all t ≥ t∗ by construction, it
remains to show G∗(t) ≥ G(t) for all t < t∗. For t ∈ [tM! t∗), observe g|[tM !t∗0 ] is decreasing,
and so

G∗(t)−G(t)=
[
G∗(t)−G(t)

]
−

[
G∗(t∗)−G(t∗)

]
=

∫ t∗

t

[
g(t̃)− g

(
t∗

)]
dt̃ ≥ 0(

For t ∈ [0! tM), observe G∗(0) = G(0), G∗(tM) ≥ G(tM), G is convex, and G∗ is concave.
Therefore,

G∗(t)≥ t

tM
G(tM)+ tM − t

tM
G(0)≥G(t)(

The proof is now complete. Q.E.D.

From this, we can prove Claim 4 easily.

PROOF OF CLAIM 4: First, suppose g is weakly decreasing. Then, t∗0 ≥ 0 = tM and
G(t∗0 )−G(0)=

∫ t∗0
0 g(t)dt ≥ t∗0g(t

∗
0 ), and Lemma 7 applies.

Second, suppose g is nonconstant and increasing. If t∗0 < tM , then Ĝ(t∗0 ) > G(t∗) by
Lemma 7. If t∗0 ≥ tM , then g(t∗0 ) ≥ g(tM) > g(0), implying g|[0!t∗0 ] is continuous, noncon-
stant, and increasing. So g|[0!t∗0 ] is below g(t∗0 ) everywhere, and strictly below it for some
nondegenerate interval. Therefore, t∗0g(t∗0 ) >

∫ t∗0
0 g(t)dt = G(t∗0 ) − G(0), and Lemma 7

applies.
Third, suppose g is strictly quasiconcave. For any t̃ ∈ (0! tM], the function g is con-

tinuous and strictly increasing on [0! t̃]. This tells us ϕG is nonconstant and decreasing
on [0! t̃], implying ϕG(t̃) < ϕG(0) = 0. Therefore, if ϕG(t∗0 ) ≥ 0, then t∗0 ≠ t̃. Because
t̃ ∈ (0! tM] was arbitrary, we now know that if ϕG(t∗0 )≥ 0, then t∗0 ≥ tM . Thus, by Lemma 7,
a commitment gap exists if and only if

0 > ϕG

(
t∗0

)
= G

(
t∗0

)
−G(0)− t∗0g

(
t∗0

)
=

∫ t∗0

0
g(t)dt − t∗0g

(
t∗0

)
(

The claim follows. Q.E.D.
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APPENDIX C

IN THIS APPENDIX, we elaborate on the results mentioned in Section 6 of “Cheap Talk
With Transparent Motives” and discuss some additional relevant results.

C.1. Proof of Proposition 1: Effective Communication

We now operationalize Chakraborty and Harbaugh’s (2010) insight of using fixed-point
reasoning to show effective communication is possible, proving Proposition 1. We begin
by representing the prior as an average of three posterior beliefs, µ1, µ2, and µ3, such
that the three induced estimates of the statistic are noncollinear; one can always find such
beliefs because the statistic is itself multivariate. Next, we find a circle of beliefs around
the prior within the convex hull of {µ1!µ2!µ3}. By construction, each belief on said circle
yields a different estimate of the statistic. We then document a generalization of the one-
dimensional Borsuk–Ulam theorem, which yields an antipodal pair of beliefs µ and µ′ on
the circle such that V (µ)∩ V (µ′) is nonempty. Therefore, we can split the prior across µ
and µ′ to obtain an equilibrium information policy.

In what follows, define the circle S = {(x! y) ∈ R2 : x2 + y2 = 1}, and let Tµ denote the
estimate

∫
T dµ of statistic T for any belief µ ∈ "Θ.

LEMMA 8: Let T be a multivariate statistic. Then, a continuous ϕ : S → "Θ exists such
that every z ∈ S has:

1. 1
2ϕ(z)+ 1

2ϕ(−z)= µ0;
2. T(ϕ(z)) ≠ T(ϕ(ẑ)) for every ẑ ∈ S \ {z};
3. 2ϕ(z)−µ0 ∈ "Θ.

PROOF: By assumption, T(Θ) is noncollinear, and so Tµ0 /∈ co{Tθ1!Tθ2} for some
distinct θ1! θ2 ∈ Θ. Because µ0 has full support, both µ0(N1) > 0 and µ0(N2) > 0 for any
open neighborhoods N1 of θ1 and N2 of θ2. We can then define the conditional distri-
bution µi(·) := µ0(Ni∩(·))

µ0(Ni)
for i ∈ {1!2}. Letting N1, N2 be sufficiently small neighborhoods,

we may assume N1 ∩ N2 = ∅, Tµ0 /∈ co{Tµ1!Tµ2}, and µ(N1 ∪ N2) < 1. Therefore, let-
ting µ3(·) := µ0((·)\(N1∪N2))

1−µ0(N1∪N2)
, we know that µ0 ∈ co{µ1!µ2!µ3}, that µ0 is not in the convex

hull any two of {µ1!µ2!µ3}, and that the three points {Tµ1!Tµ2!Tµ3} are affinely inde-
pendent. So µ0 = ∑3

i=1 λiµi for some µ1!µ2!µ3 ∈ "Θ and λ1!λ2!λ3 ∈ (0!1). Therefore,
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2 E. LIPNOWSKI AND D. RAVID

letting ϵ := 1
2 min{λ1#λ2#λ3}, define the map

ϕ : S → %Θ#

(x# y) "→ (λ1 + ϵx)µ1 + (λ2 + ϵy)µ2 +
[
λ3 − ϵ(x+ y)

]
µ3'

Affine independence of Tµ1, Tµ2, Tµ3 ensures T ◦ϕ is injective, and the other desiderata
for ϕ are obviously satisfied. Q.E.D.

Next, we document a generalization of the one-dimensional Borsuk–Ulam theorem.

LEMMA 9: Suppose f : S → R is upper semicontinuous, and every z ∈ S has max{f (z)#
f (−z)} ≥ 0. Then, some z ∈ S exists such that min{f (z)# f (−z)} ≥ 0.

PROOF: Define f̃ : S → R by letting f̃ (z) := f (−z). By hypothesis, both f and f̃ are
upper semicontinuous and {f̃ < 0} ⊆ {f ≥ 0}. Assume for a contradiction that the lemma
fails, so that {f̃ ≥ 0} ⊆ {f < 0}. Because {f̃ < 0} ∪ {f̃ ≥ 0} = S and {f ≥ 0} ∩ {f < 0} = ∅,
these containments in fact imply {f̃ < 0} = {f ≥ 0} and {f̃ ≥ 0} = {f < 0}. But (given the
definition of f̃ ) the two sets would both be empty if either were, and so would fail to cover
S. Therefore, the set {f ≥ 0} is a nonempty clopen proper subset of the connected space
S, a contradiction. Q.E.D.

We now complete the proof of the generalization of Chakraborty and Harbaugh’s
(2010) Theorem 1.

PROOF OF PROPOSITION 1: First, let ϕ : S → R be as delivered by Lemma 8. Next, de-
fine the function

f : S → R#

z "→ maxV
(
ϕ(z)

)
− minV

(
ϕ(−z)

)
'

Two properties of f are immediate. First, f is upper semicontinuous because V is up-
per hemicontinuous. Second, any z ∈ S satisfies f (z) + f (−z) ≥ 0 because maxV ≥
minV . Therefore, Lemma 9 delivers z ∈ S with f (z)# f (−z) ≥ 0. That is, maxV (ϕ(z)) ≥
minV (ϕ(−z)) and maxV (ϕ(−z)) ≥ minV (ϕ(z)). Said differently (recall V is convex-
valued), V (ϕ(z)) ∩ V (ϕ(−z)) ≠ ∅. Lemma 1 then guarantees the existence of an equi-
librium that generates information policy p = 1

2δϕ(z) + 1
2δϕ(−z). In particular, Tµ is not

p(µ)-a.s. constant. Q.E.D.

Just as Proposition 1 generalizes Chakraborty and Harbaugh’s (2010) Theorem 1, the
following result generalizes their Theorem 2.

COROLLARY 6: Let T be any statistic, and suppose ũ : coT(Θ) → R is a strictly quasicon-
vex function such that v(µ) = ũ(Tµ) for every µ ∈ %Θ. If T is multivariate, an S-beneficial
equilibrium exists.

Before proving this result, we note the result follows immediately from Proposition 1
under the additional hypothesis that R has a unique best response to every belief—as
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assumed in Chakraborty and Harbaugh (2010). Indeed, following Chakraborty and Har-
baugh’s (2010) argument, strict quasiconvexity of ũ would imply the binary-message equi-
librium constructed above is S-beneficial. The below proof for the general case is similar
in spirit, although one additional step is needed.

PROOF OF COROLLARY 6: Again, let ϕ : S → R be as delivered by Lemma 8. Now, de-
fine f := v ◦ ϕ − v(µ0) : S → R, which is upper semicontinuous because v is. Moreover,
for any z ∈ S, the distinct estimates Tϕ(z) and Tϕ(−z) have Tµ0 as their midpoint, and
so max{f (z)" f (−z)} ≥ 0 by quasiconvexity of ũ. Applying Lemma 9 to f then delivers a
z ∈ S such that v ◦ϕ(z)"v ◦ϕ(−z) ≥ v(µ0).

By Lemma 8 Part 3, both µ := 2ϕ(z) − µ0 and µ′ := 2ϕ(−z) − µ0 are in #Θ. Because
Tϕ(z) = 1

2Tµ+ 1
2Tµ0, strict quasiconvexity of ũ delivers the following inequality chain:

v(µ0)≤ v ◦ϕ(z)= ũ
(
Tϕ(z)

)
< max

{
ũ(Tµ)" ũ(Tµ0)

}
= max

{
v(µ)"v(µ0)

}
%

It follows v(µ) > v(µ0). By the same argument, v(µ′) > v(µ0). Thus, the information
policy p = 1

2δµ + 1
2δµ′ secures min{v(µ)"v(µ′)} > v(µ0). The result then follows from

Theorem 1. Q.E.D.

C.2. The Equilibrium Payoff Set

In this subsection, we briefly comment on how our tools, and the belief-based approach
more broadly, can generate a more complete picture of the world of cheap talk with state-
independent S preferences. As will be clear, the results outlined herein are all straightfor-
ward to derive given earlier results in the paper.

C.2.1. Other Sender Payoffs

Following the recent literature on communication with S commitment, our focus has
largely been on high equilibrium S values, that is, those providing payoffs at least as high
as those attainable under uninformative communication. However, the tools developed
in our paper work equally well to characterize bad sender payoffs. Indeed, the proof of
Lemma 1 used no special features of V other than it being a Kakutani correspondence,
which −V is as well. Therefore, our game has the same equilibrium distributions over
A×Θ as the game with S objective −uS . To deliver the mirror-image versions of our main
results, define the value function from S-adversarial tiebreaking, w := minV : #Θ→ R.

Theorem 1 implies a sender payoff s ≤ w(µ0) is an equilibrium payoff if and only if
some p ∈ I(µ0) exists such that p{w ≤ s} = 1. Combining this observation with the orig-
inal statement of the securability theorem tells us s ∈ R is an equilibrium S payoff if and
only if p+"p− ∈ I(µ0) exist such that p+{v ≥ s} = p−{w ≤ s} = 1. An easy consequence is
that the equilibrium S payoff set is convex, which we document in Corollary 3. Corollary 1
has a mirror image as well, telling us the set of S equilibrium payoffs is exactly

[
min

p∈I(µ0)
supw(suppp)" max

p∈I(µ0)
infv(suppp)

]
%

Note convexity of the set of attainable S payoffs is special to the case in which S’s payoffs
are state independent; indeed, the leading example of Crawford and Sobel (1982) does
not share this feature.
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The mirrored counterpart of our geometric Theorem 2 is that the lowest S payoff attain-
able in equilibrium is w(µ0), where w is the quasiconvex envelope of w, that is, the point-
wise highest quasiconvex and lower semicontinuous function that minorizes w. Therefore,
we can geometrically characterize S’s equilibrium payoff set as [w(µ0)! v̄(µ0)].

C.2.2. Receiver Payoffs

Our most powerful tools (the securability theorem and its descendants) pertain to S
payoffs. However, the belief-based approach (i.e., Lemma 1) can be used to describe
R payoffs as well. Indeed, let vR : "Θ → R be R’s value function, given by vR(µ) :=
maxa∈A

∫
Θ
uR(a! ·)dµ. It follows from R’s interim rationality that any equilibrium that

generates outcome (p! s) will deliver a payoff of r =
∫
"Θ

vR dp to R.
Given equilibrium S payoff s, we can then more explicitly derive the set of equilibrium

R payoffs compatible with an equilibrium in which S gets payoff s. Let

Bs := {w ≤ s ≤ v} =
{
µ ∈ "Θ : ∃a+!a− ∈ arg max

a∈A

∫

Θ

uR(a! ·)dµ s.t. uS(a−)≤ s ≤ uS(a+)

}
$

Then, (s! r) is an equilibrium payoff profile if and only if r =
∫
"Θ

vR dp for some p ∈
I(µ0) ∩ "(Bs). The best such R payoff (given s) is given by v̂sR(µ0), where vsR : Bs → R is
the restriction of vR and v̂sR : coBs → R is the concave envelope of vsR.

C.2.3. Implementing Equilibrium Payoffs

In addition to their role in proving Theorem 1, barely securing policies generate a
straightforward way of implementing any equilibrium S payoff.41 If S could commit, we
could apply the revelation principle42 to implement any S commitment payoff with a com-
mitment protocol in which S makes a pure action recommendation to R, and R always
complies. Using barely securing policies, we can show a similar result holds with cheap
talk, with one important caveat: R must be allowed to mix. To state this result, for any S
strategy σ , define Mσ as the set of messages in σ ’s support.43

PROPOSITION 2: Fix some S payoff s. Then, the following are equivalent:
1. s is generated by an equilibrium.
2. s is generated by an equilibrium with Mσ ⊆ "A and ρ(α)= α ∀α ∈ Mσ .
3. s is generated by an equilibrium with Mσ ⊆ A and ρ(a|a) > 0 ∀a ∈ Mσ .

The proposition suggests two ways in which one can implement a payoff of s via
incentive-compatible recommendations. The first way has S giving R a mixed action rec-
ommendation that R always follows. The second way has S giving R a pure action recom-
mendation that R sometimes follows. Both ways can result in R mixing.

That 1 implies 2 follows from standard revelation principle logic. To prove 1 implies
3,44 we start with a minimally informative information policy that secures s. Because p
is minimally informative, it must barely secure s, meaning (p! s) is an equilibrium. Let E

41For S payoffs s ≤ minV (µ0), we use the mirror image of barely securing policies, that is, information
policies p such that {minV (·)≤ s} ∩ co{µ!µ0} = {µ} holds for p-a.e. µ.

42See, for example, Myerson (1986), Kamenica and Gentzkow (2011), and Bergemann and Morris (2016).
43That is, let Mσ = ⋃

θ∈Θ suppσ(·|θ).
44The equivalence between 1 and 3 echoes an important result of Bester and Strausz (2001), who studied

a mechanism-design setting with one agent, finitely many types, and partial commitment by the principal.
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be Part 2’s implementation of (p! s), and take a(µ) to be some S-preferred action among
all those that R plays in E at belief µ. By minimality of p, a(·) must be p-essentially
one-to-one, because pooling any posteriors that induce the same a(·) value would yield
an even less informative policy that secures s. Thus, a(·) takes distinct beliefs to distinct
(on-path) actions: R can infer µ from a(µ). One can then conclude the proof by having S
recommend a(µ) and R respond to a(µ) as he would have responded to µ under E .

The formal proof is below.

PROOF OF PROPOSITION 2: Because 2 and 3 each immediately imply 1, we show the
converses.

Suppose s is an equilibrium S payoff. Now take some p ∈ I(µ0) Blackwell-minimal
among all policies securing payoff s, and let D := supp(p) ⊆ "Θ.45 Lemma 4 guarantees
(p! s) is an equilibrium outcome, say, witnessed by equilibrium E1 = (σ1!ρ1!β1). Letting
α = αs : D → "A be as delivered by Lemma 2, we may assume ρ1(·|m) = α(·|β(m)). In
particular, ρ1 specifies finite-support play for every message.

Let M := margMPE1 and X := supp[M ◦ ρ̂−1] ⊆ "A, and fix arbitrary (α̂! µ̂) ∈ supp[M ◦
(ρ1!β1)−1]; in particular, α̂ ∈ X . By continuity of uR and receiver incentive compatibility,
α̂ ∈ arg maxα∈"A uR(α ⊗ µ̂). Defining ρ′ : M → "A (resp. β′ : M → "Θ) to agree with ρ1
(β1) on path and take value α̂ (µ̂) off path, an equilibrium E ′ = (σ1!ρ′!β′) exists such that
PE ′ = PE1 and ρ′(·|m) ∈ X for every m ∈M .

Now define

σ2 :Θ → "X ⊆ "M!

θ (→ σ1(·|θ) ◦ ρ′−1!

ρ2 :M → X ⊆ "A!

m (→
{
m :m ∈X!

α̂ :m /∈X!

β2 :M → "Θ!

m (→
{

Em∼M
[
β(m)|ρ(m)

]
:m ∈X!

µ̂ :m /∈X)

By construction, (σ2!ρ2!β2) is an equilibrium that generates outcome (p! s),46 proving 1
implies 2.

Now define the (A- and D-valued, respectively) random variables a, µ on ⟨D!p⟩ by let-
ting a(µ) := arg maxa∈suppα(µ) uS(a) and µ(µ) := µ for µ ∈ D. Next define the conditional
expectation f := Ep[µ|a] : D→ D, which is defined only up to a.e.-p equivalence. By con-
struction, the distribution of µ is a mean-preserving spread of the distribution of f. That
is, p is weakly more informative than p ◦ f−1. By hypothesis, a(µ) is incentive compatible

Applying a graph-theoretic argument, they showed one can restrict attention to direct mechanisms in which
the agent reports truthfully with positive probability. Although the proof techniques are quite different, a
common lesson emerges. Agent mixing helps circumvent limited commitment by the principal: in Bester and
Strausz’s (2001) setting, by limiting the principal’s information, and in ours, by limiting her control.

45Some policy secures s if s is an equilibrium payoff. The set of such policies is closed (and so compact)
because v is upper semicontinuous. Therefore, because the Blackwell order is closed-continuous, a Blackwell-
minimal such policy exists.

46It generates (p̃! s) for some garbling p̃ of p. Minimality of p then implies p̃ = p.
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for R at every µ ∈ D. But D = supp(p ◦ f−1), which implies p ◦ f−1 secures s. But mini-
mality of p implies p ◦ f−1 = p. So f = Ep[µ|a] and µ have the same distribution, which
implies f =µ a.s.-p. By definition, f is a-measurable, so that Doob–Dynkin delivers some
measurable b :A→ D such that f = b ◦ a.

Summing up, we have some measurable b :A→ D such that b◦a =a!e!−p µ. Now define

σ3 :Θ → $A⊆ $M%

θ &→ σ2(·|θ) ◦ (a ◦β2)
−1%

ρ3 :M → X ⊆ $A%

m &→
{
α
(
b(m)

)
:m ∈ A%

α̂ :m /∈ A%

β3 :M → $Θ%

m &→
{

b(m) :m ∈ A%

µ̂ :m /∈ A!

By construction, (σ3%ρ3%β3) is an equilibrium that generates outcome (p% s), proving 1
implies 3. Q.E.D.

Proposition 2 shows some forms of communication are without loss as far as S payoffs
are concerned. First, any S equilibrium payoff is attainable in an equilibrium in which S
recommends mixed actions that are (on path) followed exactly. This equivalence extends
to equilibrium payoff pairs, with the same argument: Pooling messages that lead to the
same R behavior relaxes incentive constraints and generates the same joint distribution
over actions and states, preserving payoffs. Second, any S equilibrium payoff is attainable
in an equilibrium in which S recommends pure actions that are followed with positive
probability. Whether this result holds in general for payoff pairs is an open question. It is
easy to see why, at least, our argument does not go through as stated. The proof begins by
considering an information policy that gives no “extraneous” information to R, subject to
securing the relevant S value. But taking information away from R in this way can result
in a payoff loss.

Still, we can leverage Lemma 1 to show a result of a similar spirit: To implement an
equilibrium payoff profile, it is sufficient for R to only use binary mixed actions, the sup-
port of which is S’s message.

PROPOSITION 3: Fix some payoff profile (s% r). Then, the following are equivalent:
1. (s% r) is generated by an equilibrium.
2. (s% r) is generated by an equilibrium with Mσ ⊆ $A and ρ(α)= α ∀α ∈ Mσ .
3. (s% r) is generated by an equilibrium with Mσ ⊆ { 1

2δa + 1
2δa′ : a% â ∈ A} and

supp[ρ(α)] = supp(α) ∀α ∈ Mσ .

We can interpret 3 as describing equilibria in which S tells R, “Play a or â,” for some
pair of actions, but does not suggest mixing probabilities.

To see the equivalence between 1 and 3, Lemma 2 from the Appendix can be used to
show equilibrium payoff profile (s% r) can be implemented with an equilibrium in which
R only ever uses pure actions or binary-support mixtures, with the latter only being used
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when S is not indifferent between the two supported actions. Without loss, say such equi-
librium is as in 2, with S suggesting an incentive-compatible mixture to R. But S rational-
ity implies no two on-path recommendations can have the same support, because then S
would have an incentive to deviate to the one putting a higher probability on the preferred
action. Therefore, the same behavior could be induced by having every message replaced
with a uniform distribution over its (at most binary) support, and the result follows.

With finitely many actions, Proposition 3 yields an a priori upper bound on the number
of distinct messages required in equilibrium, similar to Proposition 2. Still, the upper
bound of Proposition 2 is significantly smaller: Whereas Proposition 2 says no more than
n := |A| messages are required to span the set of equilibrium S values, Proposition 3
guarantees any equilibrium payoff pair can be attained with at most n(n−1)

2 messages.

C.3. Long Cheap Talk

Let us define the long-cheap-talk game. In addition to the objects in our model
section, R has some message space M̃ , which we assume is compact metrizable. Let
H<∞ := ⊔∞

t=0(M × M̃)t , H∞ := (M × M̃)N, and Ω := H∞ × A × Θ. In a long-cheap-talk
game, S first sees the state θ ∈ Θ. Then, at each time t ∈ Z+, players send simultaneous
messages: S sends mt ∈ M and R sends m̃t ∈ M̃ . Finally, after seeing the sequence of
messages, R chooses an action a ∈ A. Formally, a (behavior) strategy for S is a measur-
able function σ : Θ× H<∞ → %M , and a strategy for R is a pair of measurable functions
(σ̃& ρ), where σ̃ : H<∞ → %M̃ and ρ : H∞ → %A. These maps induce (together with the
prior µ0) a unique distribution, Pσ&σ̃&ρ ∈ %Ω, which induces payoff uS(margAPσ&σ̃&ρ) and
uR(margA×ΘPσ&σ̃&ρ) for S and R, respectively.

C.3.1. Extra Rounds Cannot Help the Sender

Below, we use our Theorem 1 to show that any S payoff attainable under long cheap
talk is also attainable under one-shot communication.47

PROPOSITION 4: Every sender payoff attainable in a Nash equilibrium of the long-cheap-
talk game is also attainable in a perfect Bayesian equilibrium of the one-shot cheap-talk game.

To prove the proposition, fix a payoff s∗ that S cannot attain in the one-shot game, and
use our securability theorem to construct a continuous biconvex function on %Θ× R that
is strictly positive at (µ0& s∗) and zero on V ’s graph. Mimicking Appendix A.3 of Aumann
and Hart (2003), we then take an arbitrary equilibrium of the long-cheap-talk game, and
construct a bimartingale {µk& sk}k, that is, a martingale over the graph of V such that only
one coordinate ever moves at a time.48 The bimartingale converges to a measure over
V ’s graph and has a time-zero value of (µ0& s0) = (µ0& s0), where s0 is S’s payoff in said
equilibrium. We then follow the easy direction of Aumann and Hart’s (1986) character-
ization of the bi-span of a set, noting the expectations of continuous biconvex functions
of a bimartingale grow over time, and so the function constructed at the beginning of the

47To ease notational overhead, we employ Nash equilibrium as our solution concept in studying long cheap
talk, and so have no need to define a belief map for the receiver. We therefore obtain a stronger result, because
any perfect Bayesian equilibrium is also Bayes Nash.

48Although the bimartingale we construct is related to the stochastic process of pairs of R beliefs and S
payoffs, the two processes are not the same: Each round of communication corresponds to two periods under
the bimartingale. Aumann and Hart (2003) used the same construction.
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proof assigns (µ0! s0) a weakly negative value. It follows that (µ0! s0) ≠ (µ0! s∗). Because
the chosen long-cheap-talk equilibrium was arbitrary, no such equilibrium can yield S a
payoff of s∗.

Other than our construction of a biconvex function, the proof follows the logic pre-
sented in Aumann and Hart (2003) and Aumann and Hart (1986). Because both papers
assume a finite state space, the results of Aumann and Hart (1986) and Aumann and Hart
(2003) do not apply directly. We therefore provide a self-contained proof below.

PROOF OF PROPOSITION 4: Take any s∗ ∈ R that is not an equilibrium payoff for prior
µ0 in the one-shot cheap-talk game. In particular, s∗ /∈ V (µ0). Focus on the case of
s∗ > v∗(µ0), the mirror-image case being analogous. Fix some payoff s′ ∈ (v∗(µ0)! s∗). Let-
ting B be the closed convex hull of v−1[s′!∞), Theorem 1 tells us µ0 /∈ B. Hahn–Banach
then gives an affine continuous ϕ : #Θ → R such that ϕ(µ0) > maxϕ(B). Now define the
function49

F : #Θ× R → R+!

(µ! s) )→
[
ϕ(µ)− maxϕ(B)

]
+
[
s − s′]

+%

Observe that F is biconvex and continuous. Moreover, F(µ! s) = 0 whenever s ∈ V (µ):
either s < s′ because µ /∈ B, or µ ∈ B and so ϕ(µ) ≤ maxϕ(B).

Now consider any Nash equilibrium (σ! (σ̃! ρ)) of the long-cheap-talk game. Let us
define several random variables on the Borel probability space ⟨Ω!Pσ!σ̃!ρ⟩. For ω =
((mt! m̃t)∞

t=0!a! θ) ∈Ω, let θ(ω) := θ and a(ω) := a; and, for t ∈ Z+, let m2t(ω) :=mt and
m2t+1(ω) := m̃t . From these, we define a filtration (Fk)k∈K with index set K = Z+ ∪ {∞}
by letting each Fk be the σ-algebra generated by {mℓ}ℓ∈Z+!ℓ<k. Finally, for each k ∈ K,
define the (#Θ-valued and R-valued, respectively) random variables µk := E[δθ|Fk] and
sk := E[uS(a)|Fk]; and let Pk ∈ #(#Θ× R) denote the distribution of (µk! sk). Note that,
by construction, P0 has a distribution δ(µ0!s0) for some s0 ∈ R. Our task is to show s0 ≠ s∗.

In what follows, take any statements about the stochastic processes (µk)k∈K and (sk)k∈K
to hold Pσ!σ̃!ρ-almost surely. By construction, µ2t+2 = µ2t+1 for every t ∈ Z+, and both
(µk)k∈K and (sk)k∈K are martingales. By S rationality, s2t = E[s2t+1|F2t+1] = s2t+1 for ev-
ery t ∈ Z+. Because F is biconvex and continuous,

∫
F dP0 ≤

∫
F dP1 ≤ · · · . In particu-

lar,
∫
F dPk ≥

∫
F dP0 = F(µ0! s0) for every k ∈ Z+. By the martingale convergence the-

orem, sk converges to s∞. By the same, every continuous g : Θ → R has
∫
Θ
gdµk con-

verging to
∫
Θ
gdµ∞; so µk converges (weak*) to µ∞. But Pk converges (weak*) to P∞.

Therefore,
∫
F dP∞ = limk→∞

∫
F dPk ≥ F(µ0! s0). By R rationality, s∞ ∈ V (µ∞), imply-

ing F(µ∞! s∞) = 0, so that
∫
F dP∞ = 0, too. Therefore, F(µ0! s0) ≤ 0 < F(µ0! s∗). So

s0 ≠ s∗, as required. Q.E.D.

C.3.2. Extra Rounds Can Help the Receiver

Unlike S, R may benefit from long cheap talk when S’s preferences are state in-
dependent. To see this, consider the following example, which we describe informally.
Let Θ = {0!1}; µ0(1) = 1

8 ; A = {ℓ!b! t! r}; uS(b) = 0, uS(ℓ) = 1, uS(t) = uS(r) = 2; and
uR(a! θ) = −(za − θ)2, where zℓ = 0, zr = 1, and zb = zt = 1

2 . The associated value corre-
spondence V and prior belief µ0 are depicted in Figure 3.

49Recall that [·]+ := max{·!0}.
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FIGURE 3.—S’s value correspondence in an example where R strictly benefits from long cheap talk.

Because every µ ∈ !Θ with µ(1) ≤ µ0(1) has V (µ) = {1}, Lemma 1 immediately im-
plies every equilibrium outcome (p# s) of the one-shot cheap-talk game has s = 1 and
p{µ : µ(1) ≤ 3

4 } = 1. In particular, every equilibrium of the long-cheap-talk game gener-
ates a “mean outcome” of y0, as depicted in the figure.

Given the above observations, an equilibrium exists with one round of communication
with R beliefs supported on {0# 3

4 }, and every other one-shot equilibrium generates less
information (in a Blackwell sense) for R; we can depict this equilibrium as generating
support {x1# y1} in the figure. But now, with a jointly controlled lottery, this y1 can be
split in the next round to {x2# y2}.50 Finally, S can provide additional information in the
next round to split y2 into {x3# y3}. Because action t is optimal for R at belief 3

4 (i.e.,
that associated with y2) but not at belief 1 (i.e., that associated with y3), this additional
information is instrumental to R. Therefore, our equilibrium is strictly better for R than
any one-round equilibrium.

Thus, although additional rounds of communication do not change S’s equilibrium pay-
off set, the static and long-cheap-talk models are economically distinct, even under state-
independent S preferences.

C.4. Optimality of Full Revelation

This section presents formal results discussed in Section 6.4. This section’s main re-
sult is Proposition 5, which shows two things when v is nowhere quasiconcave: First, full
revelation is an S-favorite equilibrium; and second, every S-favorite equilibrium entails
full revelation if the state is binary or R’s best response is unique for every belief. We also
demonstrate, via an example, that nowhere quasiconcavity is insufficient for full revelation
to be uniquely S-optimal. The example also illustrates S-unfavorable tie breaking can cre-
ate a benefit from commitment even when full revelation is both S’s favorite equilibrium
and S’s favorite commitment policy. We conclude the section by discussing conditions un-
der which v is nowhere quasiconcave. In particular, we show a strictly quasiconvex v is
nowhere quasiconcave if and only if it is nowhere quasiconcave on each of the simplex’s
one-dimensional extreme subsets (Corollary 7).

50Informally, following Aumann and Hart (2003), each player could toss a fair coin (independent of the
state for S) and announce its outcome. Then, the players move to x2 if the coins come up the same, and
y2 otherwise. Such jointly controlled randomization could be done simultaneously with the information that S
initially conveys, so that our three-round example can be converted into a slightly more complicated two-round
example.
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The next few lemmas serve as preliminary steps toward Proposition 5. Lemma 10 pro-
vides a way of constructing a measurable correspondence. Using this lemma, we show
every non-full revelation commitment policy can be improved upon when v is nowhere
concave, by splitting non-extreme beliefs. Similarly, one can split such beliefs to weakly
increase a policy’s secured value whenever v is nowhere quasiconcave (Lemma 11). An
immediate consequence is that under nowhere quasiconcavity, full revelation secures S’s
highest equilibrium value (Lemma 12). Nowhere quasiconcavity also implies S can do bet-
ter than no information at every non-extreme belief (Lemma 13). We then combine these
lemmas with the observation that the payoff secured by full revelation depends only on
the prior’s support to show full revelation barely secures S’s highest equilibrium payoff.

We now proceed with proving Lemma 10. This lemma is based on Aliprantis and Bor-
der’s (2006) discussion concerning measurability of correspondences. All measurability
statements are made with respect to the appropriate Borel σ-algebras.

LEMMA 10: Let X and Y be compact metrizable spaces, Ξ : X → R upper semicontinu-
ous, and Υ : Y → R measurable. Then,

$ : Y ⇒ X%

y "→ Ξ−1[Υ (y)%∞)%

is weakly measurable.

PROOF: Recall that a nonempty-compact-valued correspondence into X is weakly
measurable if and only if it is measurable when viewed as a KX -valued function (Theo-
rem 18.10 from Aliprantis and Border (2006)).51 We now proceed with proving the lemma.
To begin, let z̄ = maxΞ(X), and observe that

Λ :
(
−∞% z̄] ⇒ X%

z "→ Ξ−1[z%∞
)
= {Ξ ≥ z}%

is nonempty-compact-valued because Ξ is upper semicontinuous. We claim below that Ξ
is weakly measurable. It follows that y "→ Λ ◦ Υ (y) is a measurable function from Y into
KX , and so is weakly measurable when viewed as a correspondence. Noting $ = Λ ◦ Υ
completes the proof.

We now argue Ξ is weakly measurable. To do so, consider any open G⊆ X . The lower
inverse image of G under Λ is

Λl(G)=
{
z ≤ z̄ :Λ(z)∩G ≠ ∅

}

=
{
z ≤ z̄ : {Ξ ≥ z} ∩G ≠ ∅

}

=
{
z ≤ z̄ :Ξ(G)! (−∞%z)

}
%

which is an interval. Q.E.D.

When v is nowhere (quasi)concave, Lemma 10 gives a splitting of each non-extreme
belief that increases v’s expected (secured) value. We present this result below.

51KX denotes all nonempty compact subsets of X , equipped with the Hausdorff metric.
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LEMMA 11: Suppose v is nowhere (quasi)concave. Then, a measurable selector r of
I : !Θ ⇒ !!Θ exists such that

∫
vdr(µ) > v(µ) (infv(supp r(µ)) > v(µ)) for all µ ∈

!Θ\{δθ}θ∈Θ.

PROOF: Observe that v̂(·) (v̄(·)) is upper semicontinuous and therefore measurable.
Moreover, p "→

∫
vdp (p "→ infv(suppp)) is an upper semicontinuous function from

!!Θ to R. Therefore, Lemma 10 implies µ "→ {p ∈ !!Θ :
∫
vdp ≥ v̂(µ)} (µ "→ {p ∈

!!Θ : infv(suppp) ≥ v̄(µ)}) is weakly measurable. Noting I is also weakly measurable
(by upper hemicontinuity) implies

µ "→ I(µ)∩
{
p ∈ !!Θ :

∫
vdp ≥ v̂(µ)

}

(
µ "→ I(µ)∩

{
p ∈ !!Θ : infv(suppp)≥ v̄(µ)

})

is weakly measurable. Because the latter correspondence is nonempty-valued, it ad-
mits a measurable selector, r, by the Kuratowski and Ryll–Nardzewski selection theo-
rem (Theorem 18.13 from Aliprantis and Border (2006)). The result follows from not-
ing v̂(µ) > v(µ) (v̄(µ) > v(µ)) holds for all µ ∈ !Θ\{δθ}θ∈Θ whenever v is nowhere
(quasi)concave (appealing to Corollary 1). Q.E.D.

Lemma 11 above immediately implies full revelation is S’s uniquely optimal commit-
ment protocol whenever v is nowhere concave. The reason is that any other information
policy can be strictly improved upon via the splitting generated by the lemma. Lemma 11
also implies that when v is nowhere quasiconcave, full revelation secures S’s maximal
equilibrium. We prove the latter result in the lemma below.

LEMMA 12: If v is nowhere quasiconcave, v̄(µ)= infθ∈supp(µ) v(δθ) for all µ ∈ !Θ; that is,
full information secures S’s maximal equilibrium value.

PROOF: Fix µ ∈ !Θ. A unique pF ∈ I(µ) exists with pF{δθ}θ∈Θ = 1; clearly, pF has
support {δθ}θ∈supp(µ). By Corollary 1, we know v̄(µ) is the highest securable value at prior
µ. Thus, letting P := {p ∈ I(µ) : p secures v̄(µ)}, our aim is to show pF ∈ P . Corollary 1
tells us P is nonempty, and upper semicontinuity of v implies P is closed. The mean-
preserving spread order being closed-continuous, P contains some maximal element, p,
with respect to this order. Letting r be as delivered by Lemma 11, the policy

∫
r dp belongs

to P as well.52 But maximality of p requires that p =
∫
r dp, implying p = pF . Q.E.D.

The next lemma establishes that under nowhere quasiconcavity, S can always benefit
from cheap talk.

LEMMA 13: If v is nowhere quasiconcave, v̄(µ) > v(µ) for all µ ∈ !Θ\{δθ}θ∈Θ.

PROOF: Fix any µ ∈ !Θ\{δθ}θ∈Θ. By hypothesis, µ′%µ′′ ∈ !Θ and λ ∈ (0%1) exist such
that µ = λµ′ + (1 − λ)µ′′ and v(µ) < v(µ′)%v(µ′′). Therefore, p = λδµ′ + (1 − λ)δµ′′ ∈
I(µ) secures a value strictly above v(µ), and so v̄(µ) > v(µ) by Theorem 1. Q.E.D.

We now prove our main result regarding nowhere quasiconcavity.

52Here,
∫
r dp ∈ I(µ) is given by [

∫
r dp](D) :=

∫
r(D|·)dp for Borel D⊆ !Θ.
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PROPOSITION 5: Suppose v is nowhere quasiconcave. Then,
1. Some S-preferred equilibrium entails full information.
2. If Θ is binary, or if R has a unique best response to every belief, every S-preferred equi-

librium entails full information.

PROOF: We begin by showing full revelation barely secures v̄(µ0). Fix some θ ∈
suppµ0. Consider any µ ∈ co{δθ$µ0}\{δθ}. We argue v̄(µ0) > v(µ), and so v−1[v̄(µ0)$
∞) ∩ co{δθ$µ0} = {δθ}, as required. Because the support of µ and µ0 is the same, full
revelation secures the same value for both beliefs. Therefore, Lemma 12 and Lemma 13
yield

v(µ) < v̄(µ)= inf supv
(
{δθ}θ∈suppµ0

)
= v̄(µ0)%

In other words, full revelation barely secures v̄(µ0). The securability theorem (more pre-
cisely, Lemma 4) then delivers the first point.

To show the second part, we claim below v̄(µ) ≤ v̄(µ0) for each µ ∈ &Θ\{δθ}θ∈Θ.
Lemma 13 then implies v(µ) < v̄(µ) ≤ v̄(µ0) for all µ ∈ &Θ\{δθ}θ∈Θ. As such, p ∈ I(µ0)
secures v̄(µ0) only if suppp ⊆ {δθ}θ∈Θ, that is, p provides full information. To conclude
the proof, we note (p$ v̄(µ0)) is an equilibrium outcome only if p secures v̄(µ0), meaning
no p other than full revelation can yield S a payoff of v̄(µ0).

All that remains is to show v̄(µ) ≤ v̄(µ0) for all µ ∈ &Θ\{δθ}θ∈Θ. When |Θ| = 2, this
inequality holds with equality by Lemma 12. If R’s best response is unique, v is continuous,
and so every θ ∈Θ has

v(δθ)= lim
n→∞

v

(
n− 1
n

δθ + 1
n
µ0

)
≤ lim

n→∞
v̄

(
n− 1
n

δθ + 1
n
µ0

)
= v̄(µ0)$

where the last equality follows from Lemma 12. The same lemma then implies v̄(µ) =
infv({δθ}θ∈suppµ)≤ v̄(µ0), as required. Q.E.D.

We now provide an example that witnesses two properties. First, it shows nowhere qua-
siconcavity alone is insufficient for uniqueness of full revelation as an S-favorite equilib-
rium. Second, it is possible for S to benefit from commitment despite full revelation being
best for S both with and without commitment.

EXAMPLE 4: Let Θ := {−1$0$1}, A := {0$1} × &Θ, µ∗ := 1
2δ−1 + 1

2δ1, µ0 := 1
2δ0 + 1

2µ
∗,

and H : &Θ→ R+ a continuous and strictly concave function with H(δθ) = 0 ∀θ ∈ Θ. Let
players utilities uS :A → R and uR :A×Θ → R be given by

uS

(
(x$ µ̂)

)
:= xH

(
µ∗) −H(µ̂)

and

uR

(
(x$ µ̂)$ θ

)
:= −

∑

θ̃∈Θ

[
µ̂(θ̃)− 1θ̃=θ

]2 − x
(
1 − θ2)%

Observe (x$ µ̂) is a best response to R belief µ if and only if µ̂ = µ and xµ(0) = 0. There-
fore, the value function is given by v(µ) = H(µ∗)1µ(0)=0 − H(µ). By construction, this
function is strictly quasiconvex because −H is. Appealing to Corollary 7 (see below), the
value function is then nowhere quasiconcave, and so full information is an S-preferred
equilibrium, yielding S payoff min{H(µ∗)$0} = 0.
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Observe that, in an S-preferred equilibrium, R breaks indifferences against S when the
state is nonzero. Therefore, S gets a payoff strictly lower than her commitment value of
1
2H(µ∗). Moreover, full information is not the only S-preferred equilibrium information
policy, because Lemma 1 implies ( 1

2δδ0 + 1
2δµ∗"0) is an equilibrium outcome.

We conclude this section with sufficient conditions for v to be nowhere quasiconcave.
In particular, we show a strictly quasiconvex v is nowhere quasiconcave if and only if it is
nowhere quasiconcave on every one-dimensional extreme subset of #Θ.

COROLLARY 7: Let v be strictly quasiconvex. The following are equivalent:
(i) v is nowhere quasiconcave.

(ii) v|#{θ"θ′} is nowhere quasiconcave for every θ"θ′ ∈Θ.

PROOF: Clearly, (i) implies (ii). That (ii) implies (i) follows from applying Corollary 6
with T(θ) := δθ. Indeed, for any prior µ ∈ #Θ with | suppµ| ≥ 3, Corollary 6’s proof deliv-
ers a pair of beliefs µ′, µ′′ with µ as their midpoint such that v(µ) < v(µ′)"v(µ′′). There-
fore, the definition of nowhere quasiconcavity need only be verified at binary-support
beliefs whenever v is strictly quasiconvex. Q.E.D.
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