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Abstract

This note confirms a conjecture posed by Françoise Forges concerning sender-receiver
games of cheap talk with finite parameters. I show that, if the sender’s value function is
continuous, then she can attain in equilibrium the same payoff as under communication
with commitment.
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Model

A sender (S ) and receiver (R) interact in a game of strategic information transmission (i.e.,
cheap talk). A state θ ∈ Θ is realized according to some distribution µ0 ∈ ∆Θ and directly
observed by the sender, then the sender transmits a message m ∈ M to the receiver, after
which the receiver chooses an action a ∈ A. Each player i ∈ {S ,R} enjoys payoff ui(a, θ)
for some given ui : A × Θ → R, and wishes to maximize her expectation of this payoff.
Throughout, I assume that Θ, A, and M, are all finite nonempty sets with |M| ≥ min{|A|, |Θ|},
and µ0 is of full support.

Define sender and receiver (behavioral) strategy spaces as ΣS := (∆M)Θ and ΣR :=
(∆A)M, respectively. For each strategy profile (σS , σR) ∈ ΣS × ΣR, define the associated
payoff for each player i ∈ {S ,R} to be

Ui(σS , σR) :=
∑

θ∈Θ, m∈M, a∈A

µ0(θ) σS (m|θ) σR(a|m) ui(a, θ).

I focus attention on Nash equilibria, which I henceforth call “equilibria” for brevity.
Recall the following objects, familiar from the literature on communication games.

A∗R : ∆Θ ⇒ A

µ 7→ argmaxa∈A

∑
θ∈Θ

µ(θ) uR(a, θ)

A∗S : ∆Θ ⇒ A

µ 7→ argmaxa∈A∗R(µ)

∑
θ∈Θ

µ(θ) uS (a, θ)

v : ∆Θ → R

µ 7→ max
a∈A∗R(µ)

∑
θ∈Θ

µ(θ) uS (a, θ) =
∑
θ∈Θ

µ(θ) uS
(
A∗S (µ), θ

)
.

In words, A∗R is the receiver’s best response correspondence, mapping every belief µ ∈ ∆Θ

to the nonempty set of actions that the receiver finds optimal given a belief µ concerning
the state. The correspondence A∗S describes sender-preferred selection among the receiver’s
best responses, mapping every belief µ ∈ ∆Θ to the nonempty set of actions in A∗R(µ) that
the sender would prefer if, hypothetically, the sender too had belief µ concerning the state.
Finally, v is the sender’s value function, mapping every belief µ ∈ ∆Θ to the highest attain-
able expected sender payoff conditional on state distribution µ and the receiver responding
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optimally to the same.
Let v̂ : ∆Θ→ R denote the concave envelope of v, that is, the pointwise smallest concave

function ∆Θ → R that is everywhere weakly above v. It is well known (e.g., see Kamenica,
2019; Forges, 2020, for related surveys) that v̂ summarizes the highest attainable sender value
if the sender could commit to a strategy ex ante. In particular, prior work demonstrates that
v̂(µ0) is the highest sender payoff US (σS , σR) among any (σS , σR) ∈ ΣS × ΣR such that σR is
a best response for the receiver to σS . As said optimality property for the receiver must also
hold in any equilibrium, the following well-known fact immediately follows.

Fact 1. No equilibrium generates a sender payoff strictly greater than v̂(µ0).

Proposition 1 below establishes that this upper bound can be attained by some equilib-
rium whenever v is continuous.

Analysis

Toward proving Proposition 1, I establish the relevant incentive property that continuity of
the value function enables.

Lemma 1. If v is continuous, then A∗S is upper hemicontinuous.

Proof. The graph of A∗R is closed by Berge’s theorem, and the set(µ, a) ∈ ∆Θ × A :
∑
θ∈Θ

µ(θ) uS (a, θ) = v(µ)


is closed because v is continuous. The graph of A∗S , being the intersection of the above two
sets, is closed too. That is, A∗S is upper hemicontinuous. �

Lemma 2. Suppose µ ∈ ∆Θ; A∗S is upper hemicontinuous at µ; ϕ : ∆Θ→ R is affine; ϕ ≥ v;

and ϕ(µ) = v(µ). Then, some α ∈ ∆A∗S (µ) exists such that
∑

a∈A αµ(a) uS (a, θ) ≤ ϕ(δθ) for

every θ ∈ Θ.

Proof. Upper hemicontinuity of A∗S at µ delivers a neighborhood N ⊆ ∆Θ of µ such that
A∗S (µ̃) ⊆ A∗S (µ) for every µ̃ ∈ N. Defining the convex function (as a maximum of affine
functions),

ψ : ∆Θ → R

µ̃ 7→ max
a∈A∗S (µ)

ϕ(µ̃) −
∑
θ∈Θ

µ̃(θ) uS (a, θ)

 ,
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then, every µ̃ ∈ N has

ψ(µ̃) ≥ max
a∈A∗S (µ̃)

ϕ(µ̃) −
∑
θ∈Θ

µ̃(θ) uS (a, θ)

 = ϕ(µ̃) − v(µ̃) ≥ 0.

The function ψ is convex, zero at µ, and nonnegative on a neighborhood of µ; it is therefore
globally nonnegative. Finally, the minimax theorem implies

max
α∈∆A∗S (µ)

min
θ∈Θ

ϕ(δθ) −
∑

a∈A∗S (µ)

α(a) uS (a, θ)

 = min
µ̃∈∆Θ

max
a∈A∗S (µ)

ϕ(µ̃) −
∑
θ∈Θ

µ̃(θ) uS (a, θ)


= min

µ̃∈∆Θ
ψ(µ̃) ≥ 0,

so that some α ∈ A∗S (µ) is as desired. �

Proposition 1. If v is continuous, then an equilibrium exists that yields sender payoff v̂(µ0).

Proof. By Theorem 23.4 of Rockafellar (1970), the concave function v̂ is superdifferentiable
at µ0. That is, some affine ϕ : ∆Θ → R exists such that ϕ ≥ v̂ and ϕ(µ0) = v̂(µ0). Let
D := {µ ∈ ∆Θ : v(µ) = ϕ(µ)}. Then, by Lemmata 1 and 2, each µ ∈ D admits some
αµ ∈ ∆A∗S (µ) such that

∑
a∈A αµ(a) uS (a, θ) ≤ ϕ(δθ) for every θ ∈ Θ.

I now construct an equilibrium that delivers payoff v̂(µ0) to the sender. To that end, fix
some (σ∗S , σ

∗
R) ∈ ΣS × ΣR that maximizes US subject to the receiver responding optimally

to the sender’s strategy; hence US (σ∗S , σ
∗
R) = v̂(µ0). Without loss of generality, assume

M0 := {m ∈ M : σ∗S (m|θ) = 0 ∀θ ∈ Θ} is empty.1 Below, I show that one can alter the
receiver’s strategy to construct an equilibrium that generates the same sender payoff.2

For each m ∈ M, define the total probability τm :=
∑
θ̃∈Θ µ0(θ̃) σ∗S (m|θ̃) > 0 of message m,

and the posterior belief µm ∈ ∆Θ associated with Bayesian updating from message m, that
is, µm(θ) := µ0(θ) σ∗S (m|θ)

τm
for each θ ∈ Θ. A given strategy σR ∈ ΣR is a best response to σ∗S if

and only if σR

(
A∗R(µm)|m

)
= 1 for every m ∈ M. Among such strategies σR, the sender has a

payoff of US (σ∗S , σR) = v̂(µ0) if and only if σR

(
A∗S (µm)|m

)
= 1 for every m ∈ M.

1Indeed, if not, one could fix some m∗ ∈ M\M0, replace σ∗S (·|θ) with σ∗S (·|θ)− σ∗S (m∗ |θ)
2 δm∗+

σ∗S (m∗ |θ)
2|M0 |

∑
m∈M0

δm

for every θ ∈ Θ, and replace σ∗R(·|m) with σ∗R(·|m∗) for every m ∈ M0. It is easy to see that the modified strategy
profile is incentive compatible for the receiver because the original one is.

2As every non-terminal history is reached with strictly positive probability, the resulting Nash equilibrium
is, in fact, a sequential equilibrium.
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Observe that, because

ϕ(µ0) = v̂(µ0) =
∑
m∈M

τmv(µm) ≤
∑
m∈M

τmϕ(µm) = ϕ

∑
m∈M

τmµm

 = ϕ(µ0),

it must be that the inequality holds with equality. Therefore, {µm}m∈M ⊆ D. Define, then,
the receiver strategy σ∗∗R ∈ ΣR by letting σ∗∗R (·|m) := αµm for every message m ∈ M. By
construction, σ∗∗R is a best response to σ∗S for the receiver and US (σ∗S , σ

∗∗
R ) = v̂(µ0). It

remains to verify sender optimality. To that end, observe that the highest payoff the sender
can achieve from any deviation is

max
σS ∈ΣS

US (σS , σ
∗∗
R ) =

∑
θ∈Θ

µ0(θ) max
m∈M

∑
a∈A

αµm(a) uS (a, θ)

≤
∑
θ∈Θ

µ0(θ) max
m∈M

ϕ(δθ)

= ϕ

∑
θ∈Θ

µ0(θ) δθ


= ϕ(µ0) = v̂(µ0) = US (σ∗S , σ

∗∗
R ).

Therefore, (σ∗S , σ
∗∗
R ) is an equilibrium as required. �

The following example, presented informally, shows that one must allow both players to
mix for Proposition 1’s conclusion to hold.3

Example 1. Suppose A = {0, 2, 4}, Θ = {0, 4}, M = {0, 3}, µ0 is uniform, uR(a, θ) = −(a−θ)2,

and

uS (a, θ) =

a : a , 2

2(θ − 1) : a = 2.

Observe first that this specification satisfies the continuity condition. Identifying a be-

lief µ ∈ ∆Θ with its associated expectation in [0, 4] of the state, the receiver optimally

chooses action 0 when µ ∈ [0, 1], optimally chooses action 2 when µ ∈ [1, 3], and op-

timally chooses action 4 when µ ∈ [3, 4]. The sender’s value function is then given by

v(µ) = min{max{0, 2(µ − 1)}, 4}, which is continuous.

The unique equilibrium (up to switching the two messages) attaining sender payoff v̂(µ0)
has the sender transmitting message 3 when the state is 4, the sender transmitting message 0
with probability 2

3 and message 3 with probability 1
3 when the state is 0, the receiver choosing

3Example 1 from Forges (2020), with two states and four actions, illustrates the same.
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action 0 when the message is 0, and the receiver choosing action 2 with probability 2
3 and

action 4 with probability 1
3 when the message is 3. In particular, neither players employs a

pure strategy. Uniqueness of the sender strategy obtains because the two induced posterior

beliefs (0 from message 0 and 3 from message 3) are the only two posterior beliefs at which

the value function coincides with its concave envelope’s tangent line at the prior. The re-

ceiver, who has one optimal action following message 0 and two optimal actions following

message 3, must mix with the described probabilities to make the sender indifferent between

the two messages when the state is 0.

I conclude with a stronger sufficient condition for the main result to apply, also proposed
by Françoise Forges. The condition says that, whenever the receiver has multiple best re-
sponses to a given belief, the sender would (at the same belief) be indifferent between these
receiver best responses.

Corollary 1. If A∗S = A∗R, then an equilibrium exists that yields sender payoff v̂(µ0).

The corollary can be derived from Proposition 1 by showing that v is continuous when-
ever A∗S = A∗R. Alternatively, modifying the proof of Proposition 1, one can invoke Lemma 2
without appealing to Lemma 1 in this case, by appealing to Berge’s theorem.
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