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Abstract

This note confirms a conjecture posed by Francoise Forges concerning sender-receiver
games of cheap talk with finite parameters. I show that, if the sender’s value function is
continuous, then she can attain in equilibrium the same payoff as under communication
with commitment.
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Model

A sender (S) and receiver (R) interact in a game of strategic information transmission (i.e.,
cheap talk). A state 8 € O is realized according to some distribution o € A® and directly
observed by the sender, then the sender transmits a message m € M to the receiver, after
which the receiver chooses an action a € A. Each player i € {S, R} enjoys payoff u;(a, 6)
for some given u; : A X ® — R, and wishes to maximize her expectation of this payoff.
Throughout, I assume that ®, A, and M, are all finite nonempty sets with [M| > min{|A], |O|},
and uy is of full support.

Define sender and receiver (behavioral) strategy spaces as g := (AM)® and X :=
(AAYM, respectively. For each strategy profile (o5, 0r) € Zg X Zg, define the associated
payoff for each player i € {S, R} to be

Ulos,om) = . 1o(0) os(ml6) ow(alm) w(a, 6).
0€®, meM, acA

I focus attention on Nash equilibria, which I henceforth call “equilibria” for brevity.

Recall the following objects, familiar from the literature on communication games.

Ap:A® =3 A
M argmax ., Z u(0) ug(a, )
0e®
As:A® 33 A
Mo argmax ey, Z u(0) us(a, )
6c®
v:A® — R
—  max 6 ,0) = 6 A(w),0).
" a%w;m>mm> ém>m(m0)

In words, A}, is the receiver’s best response correspondence, mapping every belief u € A®
to the nonempty set of actions that the receiver finds optimal given a belief u concerning
the state. The correspondence A describes sender-preferred selection among the receiver’s
best responses, mapping every belief 4 € A® to the nonempty set of actions in Ay (u) that
the sender would prefer if, hypothetically, the sender too had belief u concerning the state.
Finally, v is the sender’s value function, mapping every belief u € A® to the highest attain-

able expected sender payoff conditional on state distribution ¢ and the receiver responding



optimally to the same.

LetV : A® — R denote the concave envelope of v, that is, the pointwise smallest concave
function A® — R that is everywhere weakly above v. It is well known (e.g., see Kamenica,
2019; Forges, 2020, for related surveys) that ¥ summarizes the highest attainable sender value
if the sender could commit to a strategy ex ante. In particular, prior work demonstrates that
V(o) 1s the highest sender payoff Ug (o5, 0g) among any (05, 0g) € Zg X g such that o is
a best response for the receiver to og. As said optimality property for the receiver must also

hold in any equilibrium, the following well-known fact immediately follows.
Fact 1. No equilibrium generates a sender payoff strictly greater than d(u).

Proposition 1 below establishes that this upper bound can be attained by some equilib-

rium whenever v is continuous.

Analysis

Toward proving Proposition 1, I establish the relevant incentive property that continuity of
the value function enables.

Lemma 1. Ifv is continuous, then Ay is upper hemicontinuous.

Proof. The graph of A} is closed by Berge’s theorem, and the set

{(ﬂ, @) €AOXA: )" () us(a,0) = v(,u)}
0e®
is closed because v is continuous. The graph of A}, being the intersection of the above two

sets, is closed too. That is, A§ is upper hemicontinuous. O

Lemma 2. Suppose i € A®; A% is upper hemicontinuous at u; ¢ : A® — R is affine; ¢ > v;
and ¢(u) = v(u). Then, some a € AAG(u) exists such that ., a,(a) us(a,0) < ¢(6y) for
every 6 € 0©.

Proof. Upper hemicontinuity of A at u delivers a neighborhood N C A® of u such that
Ag(@r) © Ag(u) for every i € N. Defining the convex function (as a maximum of affine

functions),
Yy:A® — R
(i +— max i) — (6 ,0)3,
oo max {<P(,u) %u( ) us(a )}



then, every ft € N has

W(i) = max {cp(m - DO us(a, 9)} = ¢(B) ~ V() > 0.

acAs (0 0c®

The function ¢ is convex, zero at u, and nonnegative on a neighborhood of y; it is therefore

globally nonnegative. Finally, the minimax theorem implies

max min< ¢(dg) — Z a(a) us(a, )

min max {(p(ﬂ) - Z,&(e) us(a, 9)}

“ (1) €@ ieA :
@eAAG (1) be aCAT (1) AEA® acA (1) <o
= miny((Qt) >0,
HEA® lﬂ(,u)
so that some @ € Ag(u) is as desired. i

Proposition 1. If v is continuous, then an equilibrium exists that yields sender payoff vV(u).

Proof. By Theorem 23.4 of Rockafellar (1970), the concave function ¥ is superdifferentiable
at uo. That is, some affine ¢ : A® — R exists such that ¢ > ¥ and ¢(uy) = P(up). Let
D :={u € A® : v(u) = ¢(u)}. Then, by Lemmata 1 and 2, each u € D admits some
@, € AA§ () such that 3 4 a,(a) us(a, 8) < ¢(6y) for every 0 € ©.

I now construct an equilibrium that delivers payoff ¥(u) to the sender. To that end, fix
some (0g,0%) € Xg X Xp that maximizes Uy subject to the receiver responding optimally
to the sender’s strategy; hence Ug(o,0%) = ¥(ug). Without loss of generality, assume
My :={m e M : oy(mlf) = 0Vl € B} is empty.! Below, I show that one can alter the
receiver’s strategy to construct an equilibrium that generates the same sender payoff.”

For each m € M, define the total probability 7,, 1= Ysce to(6) o (m|f) > 0 of message m,
and the posterior belief u,, € A® associated with Bayesian updating from message m, that
is, U, (0) = ;%j(ml&

and only if oy (A;(pm)lm) = 1 for every m € M. Among such strategies o, the sender has a

for each 6 € ©. A given strategy o € X is a best response to o if

payoff of Us (s, o7g) = ¥(up) if and only if og (A5 ()lm) = 1 for every m € M.

: ) L - —
'Indeed, if not, one could fix some m* € M\ My, replace o (-|6) with o (-/0) — = ('; 95, + GSZFAH;J‘ ) Somery Om

for every 6 € ©, and replace o7 (+|[m) with o (:|m*) for every m € M. It is easy to see that the modified strategy
profile is incentive compatible for the receiver because the original one is.

2As every non-terminal history is reached with strictly positive probability, the resulting Nash equilibrium
is, in fact, a sequential equilibrium.




Observe that, because

(o) = Ppt) = ) Tuv(pan) < D Tuplptn) = ¢ [Z rmum] = ¢(so),
meM meM meM
it must be that the inequality holds with equality. Therefore, {u,}.cyy € D. Define, then,
the receiver strategy o), € X by letting o' ((lm) := «a,, for every message m € M. By
construction, o' is a best response to o for the receiver and Us(co, o)) = P(ug). It
remains to verify sender optimality. To that end, observe that the highest payoff the sender

can achieve from any deviation is

max Us (075, 07) = ) uo(6) max > ay,, (@) us(a,6)

S
ISEEs e} aeA

< ;;uo(e) max ¢(6y)
e

= so[z 0(6) 59)

fe®
= @(uo) = V(o) = Us (o, 0g").

Therefore, (0, o%’) is an equilibrium as required. m]

The following example, presented informally, shows that one must allow both players to

mix for Proposition 1’s conclusion to hold.?

Example 1. Suppose A = {0,2,4}, ® = {0,4}, M = {0, 3}, uo is uniform, ug(a, ) = —(a—6)>?,
and
ca+?2

20-1) :a=2.

us(a,0) =

Observe first that this specification satisfies the continuity condition. Identifying a be-
lief u € AO with its associated expectation in [0,4] of the state, the receiver optimally
chooses action 0 when u € [0, 1], optimally chooses action 2 when u € [1,3], and op-
timally chooses action 4 when u € [3,4]. The sender’s value function is then given by
v(u) = min{max{0, 2(u — 1)}, 4}, which is continuous.

The unique equilibrium (up to switching the two messages) attaining sender payoff V(uo)
has the sender transmitting message 3 when the state is 4, the sender transmitting message 0

with probability % and message 3 with probability % when the state is 0, the receiver choosing

SExample 1 from Forges (2020), with two states and four actions, illustrates the same.
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action O when the message is 0, and the receiver choosing action 2 with probability % and
action 4 with probability % when the message is 3. In particular, neither players employs a
pure strategy. Uniqueness of the sender strategy obtains because the two induced posterior
beliefs (0 from message 0 and 3 from message 3) are the only two posterior beliefs at which
the value function coincides with its concave envelope’s tangent line at the prior. The re-
ceiver, who has one optimal action following message 0 and two optimal actions following
message 3, must mix with the described probabilities to make the sender indifferent between

the two messages when the state is 0.

I conclude with a stronger sufficient condition for the main result to apply, also proposed
by Francoise Forges. The condition says that, whenever the receiver has multiple best re-
sponses to a given belief, the sender would (at the same belief) be indifferent between these

receiver best responses.
Corollary 1. If A5 = Ay, then an equilibrium exists that yields sender payoff ¥(uo).

The corollary can be derived from Proposition 1 by showing that v is continuous when-
ever A; = Aj. Alternatively, modifying the proof of Proposition 1, one can invoke Lemma 2

without appealing to Lemma 1 in this case, by appealing to Berge’s theorem.
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